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A B S T R A C T

Aortic dissection (AD) is a life-threatening cardiovascular disease with a high mortality
rate. The accurate and generalized 3-D reconstruction of AD from CT-angiography can
effectively assist clinical procedures and surgery plans, however, is clinically unavali-
able due to the lacking of efficient tools. In this study, we presented a novel multi-stage
segmentation framework for type B AD to extract true lumen (TL), the false lumen (FL)
and all branches (BR) as different classes. Two cascaded neural networks were used to
segment the aortic trunk and branches and to separate the dual lumen, respectively. An
aortic straightening method was designed based on the prior vascular anatomy of AD,
simplifying the curved aortic shape before the second network. The straightening-based
method achieved the mean Dice scores of 0.96, 0.95 and 0.89 for TL, FL, and BR on
a multi-center dataset involving 120 patients, outperforming the end-to-end multi-class
methods and the multi-stage methods without straightening on the dual-lumen segmen-
tation, even using different network architectures. Both the global volumetric feature of
the aorta and the local characteristics of the primary tear could be better identified and
quantified based on the straightening. Comparing to previous deep learning methods
dealing with AD segmentations, the proposed framework presented advantages in seg-
mentation accuracy.

c© 2020 Elsevier B. V. All rights reserved.

1. Introduction

Aortic dissection (AD) is a serious cardiovascular disease. It
is initiated by a tear on the aortic intima and followed with a
surge of blood flowing into the aortic wall, splitting the origi-
nal single lumen of the aorta into a true (TL) and false lumen

∗Corresponding authors.
e-mail: duanduan@bit.edu.cn (Duanduan Chen),

yantianyi@bit.edu.cn (Tianyi Yan), xiongjiangdoc@126.com (Jiang
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(FL) (Criado, 2011; Hagan et al., 2000)(Figure 1). Due to the
FL development, the disease may cause insufficient blood sup-
ply to vital organs and/or induce rupture of the aorta (Criado,
2011; Nienaber and Clough, 2015). Based on the dissection-
affected region, the disease is commonly categorized as Stan-
ford type A and B, where type A dissections affect the ascend-
ing aorta while that in type B only affects the descending aor-
ta or beyond (White et al., 2013). Type A AD is markedly
lethal and often requires urgent open surgery to replace the as-
cending aorta (Khan and Nair, 2002; Tsai et al., 2009), while
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Fig. 1. Aortic dissection in 3-D/2-D views. (a) The 3-D AD extracted from
CT workstation. (b) Reconstruction of AD from simulation software based
on the manual labeling of CT-angiography, with the primary tear shown in
the box. (c) The TL and FL in an axial slice with the primary tear shown
in the dashed circle.

type B AD allows for more time and is commonly treated with
medication or thoracic endovascular aortic repair (Chen et al.,
2013; Khan and Nair, 2002). The diagnosis, risk evaluation and
surgery/intervention planning of AD all rely on medical imag-
ing, in which CT-angiography is the most common imaging
modality. Morphological indicators including aortic diameter,
luminal volume, position and size of tears are important for de-
termining the necessity of surgery/intervention and indispens-
able for personalized treatment planning. Traditional morpho-
logical analyses by CT workstations, although presenting 3-D
rendering of the contrast-enhanced vessels based on threshold,
mainly support routine 2-D operations. Measurements with-
out a mastery of global structure are empirical. Computational
hemodynamics is increasingly used in analyzing cardiovascu-
lar disease (Chen et al., 2013; Xu et al., 2020), since it pro-
vides functional characteristics of the disease and assists clini-
cal strategy. However, these analyses are also highly dependent
on patient-specific aortic models, which are manually segment-
ed and reconstructed by image processing software. This pro-
cess is time-consuming, may conflict with clinical protocols and
time constraints and may involve personal bias. Thus, to avoid
3-D structural information loss, an automatic and standardized
segmentation method, which supports various 3-D operations
and accurate measurements, is greatly needed by both the clin-
ical and biomedical engineering fields.

Similar to the identification or segmentation of other lesions
in coronary (Wolterink et al., 2016) and cerebral arteries (Livne
et al., 2019), pathological aortic structures also present chal-
lenges in this task. Most of the previous studies concentrated
on enhancing the vessel structures (Frangi et al., 2000) or seg-
menting the healthy aorta (He et al., 2020; Morais et al., 2017;
Noothout et al., 2018; Trullo et al., 2017), with only few meth-
ods reported for AD. Some of the AD-related work achieved
the identification of type B AD from original images (Dehghan
et al., 2017) or (semi-) automatically extracting dissection wall-
s (or flaps) (Krissian et al., 2013; Morariu et al., 2016), while
they did not segment the vascular structure. For the segmenta-

tion of type B AD, several strategies were proposed by using
deformable model (Fetnaci et al., 2013), Hough transforma-
tion (Kovács et al., 2006), spatial continuity prior model (D-
uan et al., 2016), multi-scale wavelet analysis (Lee et al., 2008)
and boundary cost minimization combined with image denois-
ing (Fitria et al., 2019). These methods have made meaningful
explorations and achieved good segmentation performances for
AD based on a relatively small number of datasets. However,
they were rule-based, requiring hand-crafted feature selection
for the initialization or predominantly relying on manual pro-
cessing. Moreover, these methods have not been widely used
in clinic, probably due to the lack of detailed 3-D measure-
ments and of verification being insufficient. Recently, a multi-
stage AD segmentation framework was proposed by using deep
learning (DL), aiming at extracting TL and FL and calculating
the dual-lumen volumes with a fully automatic method (Cao
et al., 2019). However, this framework did not remove the bot-
tleneck of the dual-lumen segmentation or evaluate the perfor-
mance on identifying primary tears. Moreover, it did not ac-
count for the branch vessels (BR) of the aorta, which are im-
portant anatomical sites for both clinical evaluations and hemo-
dynamics modelling.

DL is a subfield of machine learning, which has been rapid-
ly developed and used in medical image processing. Convolu-
tional neural networks (CNN), a variant of traditional artificial
neural networks, which was initially used for classification (An-
thimopoulos et al., 2016; LeCun et al., 1990), has been widely
applied to pixel-wise image segmentation tasks (Khened et al.,
2018; Lu et al., 2019; Shelhamer et al., 2016). In the field of
cardiovascular imaging, several efforts have been made to pro-
cess CT-angiography via CNN models, such as vascular struc-
tures segmentation (Chen et al., 2018c), thrombus extraction
(López-Linares et al., 2018) and lesion detection and classifi-
cation (Zreik et al., 2018). In contrast to the rule-based non-
neural-network attempts, DL-based methods avoided manual
operations. The outstanding inherent capability of extracting
relevant image features during the training phase created broad
consensus that DL frameworks constituted the state-of-the-art
performers for such applications. In this study, we proposed
a new DL-based framework for segmenting type B AD in a
multi-stage manner. Two cascaded CNN models were used:
CNN1 segmented the aortic trunk (AO) and BR firstly, and then
CNN2 separated TL and FL based on the extracted AO in the
former stage. Moreover, between the two networks, an adaptive
aorta straightening algorithm was designed relying on the prior
vascular anatomy, which efficiently simplifies the second stage
segmentation of the dual lumen.

In summary, our main contributions are summarized below:

• We designed a fully novel automatic type B AD segmen-
tation pipeline for extracting TL, FL and BR as differen-
t classes. It had superior automation compared with the
traditional rule-based methods and achieved better perfor-
mance than the previous DL-based model on the same
dataset. The effect of different components in the proposed
pipeline was sufficiently analyzed and discussed.

• Based on the prior anatomy of vascular structure, an aorta
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Fig. 2. The entire proposed pipeline in this study. It contained two main parts: the pre-processing of CT images and the multi-stage AD segmentation. The
latter consisted of three steps: the multi-class segmentation of AO and BR (Segmentation 1), the straightening of the aorta (Straightening), and the further
segmentation of the dual lumen (Segmentation 2). The key intermediate results were annotated in the pipeline (e.g., I, Imask, and I′mask). The difference
between S and S ′ was only the Z-axis resolution so that they had similar shape and were shown in the same figure. Note that S ′ was the input of CNN2.

straightening method was designed for this segmentation
task, which brings a significant gain in dual-lumen seg-
mentations and presents potential to be extensively used in
other lesion vessel segmentation tasks.

• By using visualization, we discussed the difficulties en-
countered by applying DL methods to the scene of dual-
lumen segmentation, and their performance on the local
key morphological structure, i.e. the primary tear, thus fur-
ther evaluating the clinical application value of this frame-
work.

2. Data

2.1. Patients and Image Acquisition

This study included a multi-center dataset comprising of 120
patients (age: 53.15±11.36 years, 97 males), which were retro-
spectively collected by the Chinese PLA General Hospital, the
First Affiliated Hospital of Medical College of Zhejiang Univer-
sity, Xiangya Hospital of Central South University, Qilu Hos-
pital of Shandong University, and the second People’s Hospital
of Yunnan Province. All the patients were diagnosed with Stan-
ford type B AD and underwent preoperative CT-angiography.
Due to the various slice thickness and the difference of the s-
canning region, the number of the valid CT slices varied a-
mong the patient cases (809 ± 119.75). Each axial slice had
512 × 512 pixels. The whole aorta, internal iliac artery, and
both left and right subclavian arteries were within the scanning
range. These images were reconstructed with a in-plane resolu-
tion of 0.721 ± 0.079 mm and slice thickness ranging from 0.5
to 1.0 mm.

2.2. Manual Annotation
For training, validating and testing the proposed AD segmen-

tation framework, all 120 scans were labeled by an expert with
rich experience of reading CT images using medical image pro-
cessing software Mimics 19.0 (Materialise, Leuven, Belgium).
The multi-class manual annotation consisted of the background
and three vascular foreground structures, i.e. TL, FL and BR,
where BR comprised all branch vessels, including aortic arch
branches, abdominal aortic branches and iliac arteries, and the
AO was the combination of TL and FL. The whole annotation
process had two stages: first, a complete mask of the AD was
generated slice by slice in axial view, where some anatomi-
cal positions were defined as the endpoints of different vascu-
lar structures: ascending aorta started from the first slice upon
the aortic valve; both subclavian arteries ended with the high-
est anatomical curvatures; renal arteries and inferior mesenter-
ic arteries were stopped at the primary bifurcation site; celiac
trunk was stopped at the secondary bifurcation site, while the
remained branches were annotated till the boundary of the CT
image. All the branches were separated from the aorta at the
entrances. Second, the BR were removed and all the tears con-
necting the dual lumen were cut off to create isolated TL and FL
as two another classes. The identification of tears was strictly
in accordance with the criteria of the expert and no gap was left
between TL and FL at tears. All scans were labeled under the
same conditions, i.e. window width equal to 700 HU and win-
dow level equal to 300 HU, avoiding irrelevant interference of
visualization.

3. Methods

In this section, a novel AD segmentation pipeline was intro-
duced and divided into two main parts. As shown in Figure 2,
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Fig. 3. Preprocessing of CT images for extracting VOI automatically. (a) 3-D reconstruction of the regions with CT values within the prior range of 200-500
HU; (b) the binary maximal connected mask modified by morphological opening and the 3-D bounding box in purple; (c) the bounding box shown in the
sagittal and coronal slices (purple) and the final VOI (green). (d) the resampled VOI with the in-plane size of 256 × 256 and voxel spacing of 1 × 0.7 × 0.7
mm3.

Fig. 4. The architecture of the network used in this study. Dense block was the basic component of the encoding path, while three consecutive deconvolution
layers were used as the decoder. The channel number of the output layer could be changed for different segmentation strategies, i.e., four for end-to-end
multi-class strategy and three for multi-stage CNN1 and CNN2. The input and feature map size of CNN1 were shown as examples.

it contained the preprocessing of CT images for volume of in-
terest (VOI) extraction and multi-stage AD segmentation based
on the anatomy simplification.

3.1. Automatic VOI extraction

The inherent shortcoming of using DL-based methods in
medical 3-D scenes (Livne et al., 2019; López-Linares et al.,
2018) were the large memory requirements and the resultan-
t hard-to-deploy challenges of the models in the practice (I-
mai et al., 2018). In CT images, AO and BR were distributed
in all axial slices, so the entire CT image should be used for
the network training, making the memory requirements even
more severe. One strategy for alleviating this problem was to
compress the original image into a smaller size by interpola-
tion (Cao et al., 2019), however, at the expense of keeping an
extended view of unrelated background and losing high resolu-
tion. In order to maintain the fine image features and simultane-
ously decrease the memory requirement in the training phase,
we designed an intensity-based method for extracting VOI au-
tomatically.

The contrast-enhanced arteries in CT images had a prior in-
tensity range of 200-500 HU. We extracted all the voxels within
this range first and cut off the small connections using morpho-
logical opening. The maximal connected domain was subse-

quently extracted as a mask for roughly locating the enhanced
organs containing blood, like aorta and heart. A bounding box
of the mask was generated in the coordinate system of Figure 3,
whose axis was also set as the one of VOI. For avoiding the in-
fluence of the kidneys, only the higher half part of the mask was
used for generating the bounding box. We empirically specified
an X-Y square region as the in-plane range of the VOI with a
side length of 256 × 0.7 mm in the physical world, where the
256 represented the number of resampled voxels and 0.7 mm
represented the resampled spacing. All slices in Z-axis were in-
cluded in the VOI, and resampled with the same spacing of 1.0
mm. Hence, after the image preprocessing, all VOI from dif-
ferent CT images had the same spacing and image size in X-Y
plane, but inconsistent slices in the Z-axis due to the different
scanning lengths.

3.2. Multi-stage segmentation

3.2.1. Segmentation of AO and BR
Different from the previous DL-based method (Cao et al.,

2019) feeding the network with the compressed entire CT im-
age, we used the cropped subvolumes of VOI to train the
network. It was similar to the strategies that generated im-
age patches for segmentations (Hou et al., 2016; Nazeri et al.,
2018), which also achieved good performance in practice. In
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this work, all the subvolumes were randomly extracted from
the VOI with a fixed number of layers along the Z-axis and in-
cluded all the in-plane voxels with the size of 256 × 256. All
the subvolumes were fed into CNN1 for a multi-class segmen-
tation of AO, BR, and background. We made full use of the
GPU memory in the training phase to increase the subvolume
layers as much as possible for providing more Z-axis features.
To better learn the local image features of the subvolumes, we
used dense block (Huang et al., 2017) as the basic component
to construct the network, whose dense connections significant-
ly increase the efficiency of using parameters and improve flow
of information and gradients throughout the network (Gibson
et al., 2018; Khened et al., 2018). As shown in Figure 4, 3
dense blocks were applied to the encoding part of the network,
consisting of various numbers of layers. A 3×3×3 convolution-
al downsample layer with stride 2 was added before each block.
In the decoding part, 3 consecutive deconvolution layers were
responsible for recovering the size of images, where the latter
two integrated the high-resolution features with the same size
from the shortcut connections. Finally, a 3 × 3 × 3 convolution
was used to convert multiple channels to the 3-channel output,
corresponding to three different classes. After each convolu-
tion, we used the In-Place activated batchnorm algorithm (Rota
Bulò et al., 2018) to free the additional memory by avoiding the
buffers needed for the gradient computation during the back-
ward pass. For feature activation, Leaky ReLU (LReLU) (Maas
et al., 2013) was used with a slope of 0.01.

For effectively alleviating the class imbalance problem
caused by the voxel number difference between background and
different vascular structures, CNN1 was trained with voxel-wise
multi-class dice loss (Yang et al., 2018):

L1 = −
N
2

N∑
C=1

‖YC · ŶC‖
2

‖YC‖
2 + ‖ŶC‖

2
(1)

where YC and ŶC were the Cth channel of the label and the out-
put, respectively. N meant the number of classes and was 3 in
this design. During the training phase of this network, random-
ly cropped subvolumes had the size of 96 × 256 × 256. For
the inference, the extracted VOI was split into non-overlapping
subvolumes from bottom to top with the same size and fed in-
to the trained network. If the Z-axis length of VOI was not
divisible by 96, only the last two subvolumes could partially
overlap. After the segmentation, all the subvolumes were final-
ly concatenated based on the correct order in Z-axis, forming
the entire segmentation result of VOI, which was then interpo-
lated to the initial resolution of CT images and mapped to the
original position.

3.2.2. Straightening of the aorta
For the AD segmentation, the separation of TL and FL was

the most difficult part and might be influenced by the complex
torsion and the curved shape of the aorta. In this section, we
proposed to straighten the naturally curved aorta for simplifying
the prior shape and eliminating the interference above before
the dual-lumen segmentation.

The aorta straightening contained two steps, i.e., centerline
calculation and coordinate transformation. In the first step, the

maximal connected domain of the segmented AO from CNN1
was used as a binary mask. Both the mask and the original
CT image were resampled to have isotropic resolution, which
were denoted with Imask and I (the key intermediate results
were marked in Figure 2.), respectively. After that, the flap
(a gap shown as background) between the dual lumen in Imask
was filled using morphology closing, forming I′mask. The aortic
skeleton was then calculated from I′mask by skeletonization (Lee
et al., 1994). The longest path of the skeleton was extracted
using the Dijkstra’s algorithm and set as the initial centerline
of the whole aorta. Due to the skeletal points having step-wise
coordinates, which could not carry the true gradient informa-
tion of the centerline, we designed a new adaptive method for
adjusting the coordinates, i.e., iteratively modifying a displace-
ment vector for each point. In this design, three types of losses
were derived and combined to guide the convergence of the al-
gorithm. Firstly, we applied distance transformation to I′mask
and the output values were normalized. During each iteration,
the centerline was moved using the recent displacement vectors
and the result was denoted with coordinate vector c. The values
on the points of c were trilinearly interpolated based on the nor-
malized values above, forming a value vector cv. The first part
of the loss was described as:

l1(cv) =
1
n

n∑
i=1

tan
(1 − ci

v)π
2

(2)

where n represents the number of points on the centerline and ci
v

denotes the ith point value. This loss could constraint the point
movement by decreasing the displacement magnitude, making
the line near the center of the aorta. In order to keep the similar
distances between the adjacent points, we denoted d j = ‖c j+1 −

c j‖, where c j represents the coordinate of the jth point, and the
second loss was as follow:

l2(c) =
1

n − 1

n−1∑
j=1

(d j − d̄)2 (3)

where d̄ =
∑n−1

j=1 d j/(n − 1). Last but not least, the smoothness
of the centerline was improved by the third part of the loss:

l3(c, δ) =
1

n − 2δ

n−2δ∑
k=1

‖ck+2δ + ck − 2ck+δ‖2 (4)

where δ ∈ {1, 2, ..., b(n − 1)/2c} and was the half interval influ-
enced by each point. In this study, δ = 1, 2, 3 was used. All
above losses were combined in the following form:

lline(c, cv) = l1(cv) + βl2(c) + ω
∑
δ

l3(c, δ) (5)

and optimized using gradient descent with the learning rate of
1. Only when the change of the loss was smaller than 10−7, the
iteration was stopped. In this study, the scalars β and ω were
both 0.1.

In the second step, i.e., coordinate transformation, we firstly
initialized local 2-D coordinate systems based on the modified
centerline. Each coordinate system centered on a point of the
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line and was in the plane of the corresponding aortic cross sec-
tion. Therefore, a total n local systems were constructed. For
the initialization of each coordinate system, the in-plane X and
Y axis were denoted with an unit vector x and y, respectively,
which were randomly selected but orthometric in each plane.
All above coordinate systems should be finely rotated for im-
proving the smoothness between the adjacent planes. In this
study, we denoted the rotation angle with θ and the axis after
the rotation with vθ = {xθ, yθ}. The iteration for optimizing θ
used the loss as below:

lplane(vθ) =
1

n − 2δ′
∑
v∈vθ

∑
δ′

n−2δ′∑
m=1

‖vm+2δ′ + vm − 2vm+δ′‖2 (6)

where δ′ ∈ {1, 2, ..., b(n − 1)/2c} and had the values of {1, 2, 3}.
Gradient descent was also used with learning rate of 1 in our
setting. After the two-step centerline optimization, new cross
sections could be resampled from I on the 2-D local coordi-
nate systems and finally stacked up as the straightened image
S . Each resampled cross section had the same space resolu-
tion with I, and the size was 96 × 96. All the values of S were
calculated using trilinear interpolation.

3.2.3. Separation of TL and FL
In this stage, we designed the second network CNN2 for the

segmentation of TL and FL. In order to better capture the global
dual-lumen features like lengths and volumes, we trained CNN2
with the entire straightened aorta in S , which should be first re-
sampled as S ′ with the same image size of 640×96×96. CNN2
had the same main architecture with CNN1 but output the prob-
ability maps of the straightened TL and FL simultaneously. The
multi-class dice loss was also used for the training phase. For
inference, we used the image straightened based on AO out-
put by CNN1 rather than the annotation, directly evaluating the
performance of the whole framework on the dual-lumen seg-
mentation.

3.2.4. Morphological recovery
During the aorta straightening, the mapping relationship of

each couple of I and S was saved in a matrix. We could use this
matrix to recover the curved shape of the segmented TL and
FL. In our design, the voxel nearest to an interpolated point in
the original space was inversely filled with the corresponding
prediction in the straightening space. However, notably it was
a preliminary recovery process because the curved dual lumen
were very loose with a lot of holes inside. We subsequently
filled every hole voxel with the value of the nearest predicted
vascular voxel. Finally, the resolution of the compact TL and
FL were recovered to the original value of CT images by using
the nearest neighbor interpolation.

3.3. Data augmentation
The training of CNN2 with the entire aorta caused a severe re-

duction of the training samples. Data augmentation was adopt-
ed to improve the segmentation performance, i.e., each straight-
ened image S ′ was rotated with a random angle and scaled with
a factor in the range of 0.75-1.25. The augmentation was only
carried out in the X-Y plane. Moreover, in the first segmenta-
tion step, we did not use any augmentation methods.

4. Experiments and results

In this section, we described the experimental set up in detail,
including the implemental configurations, evaluation metrics,
and the specific experiments. The straightening performance of
the AD was firstly shown in section 4.2. In order to prove the
advantage of the proposed framework, the comparisons with
an end-to-end multi-class segmentation strategy and the multi-
stage strategies without straightening were presented in section
4.3. The quantitative and qualitative analysis of the morpholog-
ical results were performed in section 4.4. Finally, we analyzed
the influence of the network by applying various architectures
to different strategies in section 4.5.

4.1. Implementation and metrics
For adequately evaluating the proposed framework, we

adopted 6-fold cross validation on the 120 patients, i.e., each
training set had 80 CT images, while the validation and testing
set had 20 images. For evaluating TL and FL of the testing set
in each fold, two networks with the best validation performance
in the corresponding segmentation stages were embedded in the
pipeline which was tested. Note that the chosen models were
trained based on the same fold. In single epoch of the training
phase, each VOI was randomly cropped 50 times for CNN1,
while each straightened image was sampled 30 times for CNN2
using augmentation. All networks were trained from scratch
using 4 NVIDIA GeForce GTX 1080Ti GPUs synchronously
with a batch size of 4, and optimized by stochastic gradien-
t descent with the momentum of 0.9. The initial learning rate
was 0.01 and divided by 10 every 50 epochs. The weight de-
cay was set to 0.0001. Convergence was defined as a state in
which no substantial progress was observed in the validation
dice score. About 80,000 iterations were performed for training
CNN1, while 40,000 for CNN2. All experiments were carried
out using Python programming language, while the network-
s were constructed and trained based on the Pytorch library
(Paszke et al., 2017).

Three metrics were used to compare the performances: dice
similarity coefficient (DSC), mean boundary distance (MBD),
and symmetric 95% Hausdorff distance (HD95) of the bound-
ary:

DS C =
2|R ∩G|
|R| + |G|

(7)

MBD = max(D(R,G) + D(G,R)) (8)

HD95 =
P95[D(R,G)] + P95[D(G,R)]

2
(9)

where R and G are the segmentation result and the ground truth.
D(R,G) is the set of distances from boundary voxels of R to the
nearest boundary voxel of G. P95[D] means the 95th percentile
of D.

4.2. The performance of straightening
In order to evaluate the aorta straightening method, we drew

the loss curves of the two smoothing steps (i.e., the centerline s-
moothing and plane rotating) in Figure 5(a). All the centerlines
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Fig. 5. The performance on aorta straightening using β, ω = 0.1. (a) Loss curves in two smoothing steps. The shaded areas represented the standard
deviation of the loss. (b) The visualization of one case in different steps, i.e., the initial straightening without any smoothing (first), the result after
centerline smoothing (second), and the final result after plane rotating (third).

Fig. 6. Boxplots showing segmentation performances of different strategies.

were extracted based on the result AO of the first segmenta-
tion stage. The visualized result of one case in different steps
were shown in Figure 5(b). It was obvious that the smoothing
efficiently improved the straightening performance, where the
borders of the dual lumen and the flap had better continuity.
Additionally, a group of experiments were designed for eval-
uating the influence of scalars (i.e., β and ω in Eq.(5)) on the
final dual-lumen segmentation. The results were presented in
Appendix and we found that there was no obvious trend shown
in the comparisons. The used configuration (β, ω = 0.1) just
resulted in slightly higher dice score.

4.3. The effect of segmentation strategies

In this study, several modules assembled in the proposed
framework should be further evaluated for confirming their con-
tributions to this task. Therefore, we designed two strategies for
a horizontal comparison. Firstly, an end-to-end multi-class seg-
mentation method was set as the baseline in this design, which
used a single network with the same architecture as CNN1 to
segment TL, FL, and BR simultaneously. Considering the lim-
itation of the GPU memory and the large CT image size with
high resolution, we trained the network with the cropped sub-
volumes of VOI and the same settings for CNN1 to approximate



8 Duanduan Chen et al. / Medical Image Analysis (2020)

Fig. 7. 3-D reconstructions of the segmentations based on different strate-
gies. BR of NS and S were the same, so only the one in NS was shown fully
opaquely for a better comparison of the dual lumen.

the end-to-end design. Moreover, we removed the straighting
step and used only two cascaded networks to achieve the seg-
mentation (abbreviated as NS). The CNN2 was fed with the im-
age region only containing AO, which was extracted based on
Imask. Meanwhile, the proposed straightening-based framework
was abbreviated as S. All CNN2 in the multi-stage pipelines
used the same network in section 3.2.3 and were trained with
the same settings in section 4.1. All strategies were evaluated
based on 6-fold cross validation. The results of 6 testing sets
were combined for statistical analysis.

The boxplots of the horizontal comparison were shown in
Figure 6. To evaluate the results of AO and BR, the multi-class
results of TL and FL were also combined to form the AO com-
pared with the one output by the multi-stage framework. The
multi-stage strategies performed slightly better both on AO and
BR, and produced fewer outliers on AO. For the segmentation

Fig. 8. Bland-Altman analysis of TL and FL volumes of end-to-end multi-
class and two multi-stage strategies with manual quantification.

of the dual lumen, the straightening-based method was obvious-
ly better than the NS-based and the multi-class methods. 3-D
reconstructions of the segmentations were visualized in Figure
7. Because the BR of multi-stage methods were the same, we
only set the opacity of BR in NS as 1, making it easier to com-
pare the morphology of the dual lumen.

4.4. Morphological analysis

4.4.1. Quantitative analysis of lumen volumes
In clinical practice, the volume of the dual lumen was one of

the most essential morphological characteristics, which could
assist the individual surgical planning and be useful for ana-
lyzing the surgical outcomes. We calculated the volumes of
the segmented TL and FL for evaluating the practicality of
our framework. The multi-class and two multi-stage strategies
were all compared to the manual quantification by using Bland-
Altman analysis with the results shown in Figure 8.
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Fig. 9. The performances on primary tears of three patients. The first column showed the local 3-D reconstructions near the primary tear. A, S, and C
represented axial, sagittal, and coronal planes, respectively. The boundary of the segmentations based on different strategies were delineated and compared
in the different views. The lines inside the contrast-enhanced regions represented the interfaces of TL and FL, which were also recognized as primary tears.

4.4.2. Qualitative analysis of tears
For the separation of the dual lumen in preoperative CT im-

ages, one of the most difficult tasks was grasping the distinction
of TL and FL locally at the aortic arch (Fetnaci et al., 2013;
Kovács et al., 2006). We qualitatively compared the local seg-
mentation results by visualizing the performances on identify-
ing primary tears, which have been delineated as the interfaces
between the dual lumen in Figure 9. Similarly, the multi-class
and two multi-stage methods were tested. It was obvious that
the boundary of the strategy S was smoother and more similar
to the ground truth than the others.

4.5. The effect of CNN networks

For further understanding the influence of the CNN archi-
tectures on this segmentation task, we chose three other ma-
ture models, i.e., 3D U-Net (Çiçek et al., 2016), SegNet (Badri-
narayanan et al., 2017), and DeepLabV3+ (Chen et al., 2018b),
to replace the network used in the proposed framework. In
this study, the end-to-end multi-class network, the multi-stage
CNN1, and CNN2 of NS and S were all replaced. 6-fold cross
validation was used and all the testing sets were combined to
show the performances of these different strategies. Details of

Table 1. The properties of the tested CNN architectures. For each network,
the following were reported: the maximum acceptable slice number of the
cropped subvolume from VOI for training multi-class model and CNN1
(#Slices); the number of trainable weights (#Weights); average and SD in-
ference time per case for CNN1 (Time1) and CNN2 (Time2).

#Slices #Weights(M) Time1(s) Time2(s)

3D U-Net 96 16.82 13.10 ± 1.67 0.93 ± 0.02
SegNet 128 46.85 10.50 ± 1.59 0.66 ± 0.04
DeepLabV3+ 192 132.93 10.52 ± 1.90 0.55 ± 0.12
Ours 96 6.48 14.19 ± 2.15 0.91 ± 0.03

the networks and experimental settings were presented in Ta-
ble 1. Both the training of the multi-class network and CNN1
made full use of the GPU memory by using maximum accept-
able number of the slices in the subvolumes. The results of the
testing sets were presented in Table 2, showing the comparison
of TL, FL, and BR. The straightening-based strategies still ob-
viously outperformed the others when using all the mentioned
models.

5. Discussion

In this paper, a novel multi-stage segmentation framework
was constructed for extracting AD from CT images and divid-
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Table 2. TL, FL, and BR segmentation results of the 6-fold testing sets using end-to-end multi-class or multi-stage strategies. In each group, both the CNN2
of NS and S connected with the same CNN1, eliminating the influence of the AO segmented in the first stage. The BR results of NS and S were the same.

Networks Strategies DSC MBD(mm) HD95(mm)

TL FL BR TL FL BR TL FL BR

3D U-Net Multi-class 0.92(0.04) 0.90(0.18) 0.88(0.03) 1.34(0.99) 5.09(35.47) 1.37(1.16) 4.92(4.12) 8.11(32.18) 4.78(5.55)
NS 0.94(0.04) 0.92(0.12) 0.89(0.02) 0.92(0.98) 2.19(19.25) 1.34(1.06) 3.09(3.55) 4.73(18.70) 4.55(4.65)
S 0.95(0.04) 0.94(0.07) - 0.85(0.87) 1.53(3.46) - 2.76(3.29) 3.93(7.42) -

SegNet Multi-class 0.88(0.07) 0.85(0.13) 0.87(0.03) 1.75(1.16) 4.81(17.30) 1.38(0.84) 6.82(4.36) 10.28(19.08) 4.92(3.64)
NS 0.92(0.06) 0.90(0.10) 0.87(0.02) 1.09(0.87) 2.11(9.09) 1.30(0.66) 3.97(3.57) 5.18(10.30) 4.38(3.02)
S 0.96(0.02) 0.95(0.04) - 0.57(0.38) 0.84(1.70) - 1.85(1.75) 2.28(4.74) -

DeepLabV3+ Multi-class 0.86(0.10) 0.83(0.16) 0.81(0.10) 2.62(5.31) 5.89(17.98) 2.61(1.87) 8.10(8.91) 11.56(20.28) 9.88(9.83)
NS 0.85(0.13) 0.80(0.22) 0.81(0.13) 2.71(3.58) 4.72(15.50) 2.32(1.80) 7.67(7.25) 9.89(16.44) 9.19(9.33)
S 0.93(0.07) 0.89(0.17) - 1.43(2.06) 3.15(11.30) - 4.60(6.81) 7.03(17.33) -

Ours Multi-class 0.94(0.05) 0.91(0.14) 0.88(0.03) 1.00(1.02) 3.08(16.62) 1.25(0.97) 3.37(3.67) 5.59(18.28) 3.81(3.86)
NS 0.94(0.05) 0.92(0.12) 0.89(0.03) 0.86(0.85) 2.38(16.52) 1.21(0.96) 2.75(3.25) 4.04(14.21) 3.58(4.13)
S 0.96(0.03) 0.95(0.06) - 0.55(0.45) 0.69(1.16) - 1.72(1.83) 2.05(4.46) -

ed it into three different structures: TL, FL and BR. Two 3-D
fully convolutional networks and an aorta straightening method
were embedded in this framework, responsible for extracting
the aortic features and simplifying the vascular complexity, re-
spectively. By using strategy comparison, we demonstrated the
advantage of the proposed framework and confirmed that the
anatomy simplification using aorta straightening could signifi-
cantly improve the accuracy of the dual-lumen segmentation.

We listed the results of the reported AD segmentation meth-
ods in Table 3 and divided them into two categories, i.e., the
rule-based ones and those using DL. Unfortunately, these re-
ported methods were evaluated with different datasets and e-
valuation metrics and there is no publicly available type B AD
dataset that could support the comparison of the different mod-
els. However, we tried to train and test the DL-based framework
proposed by Cao et al. (2019) with our dataset and the reported
configurations, which also used a multi-stage design. As a re-
sult, our framework yielded obviously higher Dice scores on the
testing set (i.e., 0.96 versus 0.86 for the AO, 0.92 versus 0.82
for TL, and 0.93 versus 0.84 for FL). As illustrated in section
3.1, this method resized the original image to a smaller size in
the preprocessing and trained the network with the entire aorta,
but the feature loss caused by the compression might adversely
affect the segmentation performance.

The separation of TL and FL was the most challenging part
in the AD segmentation task, because the start position and the
length of dissections varied in different patients, and the mor-
phology of the flap was invariably complex along the aorta.
Moreover, the curved shape made the dual-lumen relative lo-
cation more difficult to discern, although the aortic curvature
and torsion were smaller and simpler comparing to small ves-
sels like cerebral (Wolterink et al., 2016) and coronary arteries
(Livne et al., 2019). All these prior characteristics were non-
negligible obstacles that made learn the luminal continuity and
dual-lumen differences difficult. By visualizing the 3-D recon-
structions in Figure 7, the local fracture or shift of TL and FL
were very common segmentation errors and obviously caused
damage to luminal continuity. It was also the key bottleneck
influencing the clinical and scientific practicality of the frame-
work.

Aorta straightening brought significant improvements for the
dual-lumen segmentation by efficiently alleviating the error

above. Though adding the straightening step between the t-
wo networks made the segmentation not end-to-end, it was
still greatly beneficial for this task because the straightened
aorta had simpler and similar morphological characteristics in
the transformed space. Moreover, based on the straightening,
CNN2 could avoid paying attention to the features of curvature
and torsion, which were saved directly in the centerline infor-
mation. The relative location and the morphological difference
of the dual lumen became the key knowledge learned by the
network, which might effectively reduce the local luminal frac-
tures or shifts.

Considering the limitation of the GPU memory in this work,
it was impossible to directly train the network using the entire
CT image with original resolution and large image size. We
chose to use the multi-class subvolume segmentation strategy
to approximate the end-to-end design, which also extrracting
extracted TL, FL, and BR simultaneously but achieved un-
satisfactory performance compared with the proposed frame-
work. Though the end-to-end segmentation was more efficien-
t, it could not learn the curvature and torsion features and the
continuity of the single lumen well only based on insufficien-
t dual-lumen contextual information of subvolumes, such that
some local features could be considered as keys for judging the
lumens. For example, the FL was usually larger than the TL
locally, hence it might be easier to cause local shifts in region-
s where the volume and shape of the dual lumen were similar.
The other end-to-end segmentation strategy was resizing the C-
T image to a smaller size but has been proven to be unfavorable
for this task because of the severe feature loss.

By removing the straightening step, the strategy NS was a
compromise using only two cascaded networks for the segmen-
tation. It used CNN1 to learn the significant structural differ-
ences between the aortic trunk and branches, generating fewer
outliers of AO and achieved slight advantage on BR (Figure
6) because the task was simplified into subtasks. We could find
that TL and FL results were more compact than the ones of end-
to-end method, but the optimal values were significantly lower.
It was understandable because the training of CNN2 with the
entire aorta enlarged the receptive field and was conducive to
learning the global vascular structure. However, the AO should
be interpolated to a consistent size in the Z axis for the training,
which could be harmful because the normalized resolution was
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Table 3. Comparison with the previous work. Two categories of methods (rule-based and DL-based) were listed. The number of the tested patients
(#Patients) in these studies were shown. Note that distinct evaluation metrics were reported in these studies. All the mentioned metrics were calculated by
our framework for a more comprehensive comparison.

Type Study #Patients AO TL FL

DSC MBD(mm) Precision Recall Specificity DSC DSC

Rule- Kovács et al. (2006) 17 - 1.71 - - - - -
based Lee et al. (2008) 14 - - - 0.83 0.87 - -

Duan et al. (2016) 10 0.93 - - - - - -
Fitria et al. (2019) 11 0.94 - 0.96 0.92 - - -

DL Cao et al. (2019) 30 0.93 - - - - 0.93 0.91
Ours 120 0.97 0.39 0.97 0.97 0.99 0.96 0.95

lost and the essential curvature and torsion features might be
destroyed. The straightening-based strategy just could simulta-
neously maintain the advantage of the full-image training and
avoid the aortic feature loss by encoding the curvature and tor-
sion information in the transformation procedure, further prov-
ing straightening was the core making the multi-stage designs
perform better than the end-to-end ones. If conditions permit,
the end-to-end training using the entire AD with high resolu-
tion might achieve better results like the multi-stage strategy
NS, but could still be influenced by the complex morphological
features.

This straightening method was designed based on the prior
anatomy of the dissected aorta, because the extraction and the
smoothing of the aortic centerline must be highly dependent on
the natural tubular morphology of the vascular structure. More-
over, we considered that though the dual lumen were separated
by the flap, the exterior outline of the aortic cross section could
be still regarded as a circle, which meant it was suitable to ap-
proximately recover the original tubular shape of the aorta by
filling the flap. In fact, tubular morphology was a common fea-
ture of vascular structures, and we believed this vessel straight-
ening method and the segmentation pipeline could be also ap-
plied to other pathological vessels with complex structures and
multiple scales, in particular, other dissected artery segmenta-
tion tasks. However, it might be not suitable for segmenting
some lesions with aneurysms or thrombus (López-Linares et al.,
2018), which caused relatively obvious damages to the local
tubular shape of the blood vessels.

In Table 3, it was obvious that the straightening-based strate-
gies still performed better than end-to-end multi-class ones even
changing the network architecture, especially for the FL, whose
shape and position were more complicated due to the thrombo-
genesis and might benefit more from the anatomy simplifica-
tion. The network structure actually had a certain degree of
influence on the segmentation. For instance, the multi-stage
strategy NS had a tendency to improve the TL and FL result-
s compared to the multi-class strategy. However, it was more
obvious for SegNet but weaker for others, even appearing as a
degradation for DeepLab model. This might be because some
networks were more sensitive to the aortic feature loss during
the image resizing for CNN2. Additionally, the results of BR
were not significantly improved by the multi-stage strategies,
but obviously showed the performance differences of these net-
works because of its complicated features. The branches are
important vascular structures in hemodynamic analysis and the
landmarks for morphological measurements. If the BR segmen-

tation is not concerned in applications, we think the networks
in the proposed straightening-based pipeline are replaceable.

The volumes of the dual lumen showed the capability of the
framework for understanding the global AD anatomy, while the
tears indicated the performance on grasping detailed local struc-
tures. For the clinical application, the accurate volumes might
support quantitative evaluation of the long-term outcome of AD
patients, while the shape and position of the tear could improve
the surgical planning (Karmonik et al., 2010). We could fur-
ther ensure that the TL was accurate enough in the local region
where the primary tear occured, meaning that virtual interven-
tion could be carried out (Chen et al., 2018a; Spranger et al.,
2015) and potentially improved the success of the operation.
However, it was difficult to automatically extract the tear be-
cause there was no intensity-based difference between the tear
and the surrounding lumens. The variety of the flap shape at the
aortic arch made it confusing to delineate the tears empirical-
ly. Fortunately, the straightening-based segmentation effective-
ly simplified the flap shape so that achieved satisfactory perfor-
mance on the recognition of the primary tears.

In future work, we will further evaluate the performance of
the framework on the post-operative images and type A AD seg-
mentation, while improving the performance on BR by modi-
fying the subvolume cropping method and the loss function.
Moreover, we will try to extract more morphological parame-
ters of type B AD based on the segmentation, such as curvature
and torsion of the aorta, position and area of the tear, and di-
ameters of the dual lumen, which might greatly assist clinical
diagnosis and treatment.

6. Conclusion

To conclude, this study constructed a novel DL-based type
B AD segmentation framework in a multi-stage manner. Two
cascaded CNNs and a novel aorta straightening method were
embedded in the pipeline. The anatomy simplification of the
AD based on the proposed aorta straightening was confirmed
to be the core step significantly improving the TL and FL seg-
mentation performances. Both the global volumetric features
and local characteristics of primary tears could be well iden-
tified or quantified using the proposed framework. Moreover,
this framework extracted all main branch vessels and poten-
tially support the implementation of hemodynamic simulations.
We believe we have shown that this framework may offer ad-
vantages over previous methods and may have great potential
for clinical application.
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Appendix A. Coefficient test for straightening

A group of experiments was designed for evaluating the in-
fluence of the key coefficients in straightening on the final dual-
lumen segmentation. In our design, we tried to change the or-
der of magnitude for the scalars β and ω in Eq.(5), i.e., from
10−2 to 10, and performed the straightening using each pair of
β and ω based on the same 120 CT images. Totally 16 sets of
straightened AD were generated. We used the same one fold in
each set to train and evaluate CNN2 in the multi-stage pipeline
and calculated DSC, MBD, and HD95 on the testing set. All
the results of TL and FL were presented in Table A1 and Table
A2, respectively. Two-sided and paired Wilcoxon signed rank
test was used for testing the statistical difference between the
configuration with β = 0.1, ω = 0.1 (used in the current frame-
work) and others (p < 5 ·10−2). We could find that there was no
obvious trend shown in the comparisons. The used configura-
tion (β, ω = 0.1) just resulted in slightly higher dice score. No
significant difference was found in any of these comparisons.

Table A1. Coefficient test for the influence of β and ω in Eq.(5) on the TL
segmentation performance. Numbers with ∗ indicate significant difference
compared to β = 0.1, ω = 0.1.

ω = 0.01 ω = 0.1 ω = 1 ω = 10

β DSC

0.01 .951(.044) .949(.041) .952(.040) .949(.063)
0.1 .948(.051) .954(.036) .953(.037) .951(.044)
1 .952(.030) .951(.042) .946(.048) .948(.041)
10 .951(.040) .951(.040) .949(.041) .954(.032)

β MBD (mm)

0.01 0.55(0.41) 0.57(0.41) 0.57(0.41) 0.59(0.48)
0.1 0.56(0.41) 0.53(0.34) 0.53(0.37) 0.55(0.40)
1 0.53(0.30) 0.54(0.38) 0.57(0.46) 0.54(0.37)
10 0.54(0.33) 0.53(0.37) 0.56(0.42) 0.58(0.38)

β HD95 (mm)

0.01 1.77(2.20) 1.84(2.03) 1.81(1.89) 1.84(2.00)
0.1 1.80(2.11) 1.74(1.83) 1.80(2.06) 1.74(1.88)
1 1.66(1.71) 1.75(2.02) 1.89(2.24) 1.75(1.86)
10 1.71(1.80) 1.81(2.06) 1.72(1.78) 1.83(1.86)
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Rota Bulò, S., Porzi, L., Kontschieder, P., 2018. In-place activated batchnorm
for memory-optimized training of DNNs, in: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5639–5647.

Shelhamer, E., Long, J., Darrell, T., 2016. Fully convolutional networks for
semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–
651.

Spranger, K., Capelli, C., Bosi, G., Schievano, S., Ventikos, Y., 2015. Com-
parison and calibration of a real-time virtual stenting algorithm using finite
element analysis and genetic algorithms. Comput. Methods Appl. Mech.
Eng. 293, 462–480.

Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., Shen, D., 2017. Seg-
mentation of organs at risk in thoracic CT images using a SharpMask ar-
chitecture and conditional random fields, in: 2017 IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017), pp. 1003–1006.

Tsai, T.T., Trimarchi, S., Nienaber, C.A., 2009. Acute aortic dissection: per-
spectives from the international registry of acute aortic dissection (IRAD).
Eur. J. Vasc. Endovasc. Surg. 37(2), 149–159.

White, A., Broder, J., Mando-Vandrick, J., Wendell, J., Crowe, J., 2013. Acute
aortic emergencies–part 2: aortic dissections. Adv. Emerg. Nurs. J. 35(1),
28–52.

Wolterink, J., Leiner, T., De Vos, B., van Hamersvelt, R., Viergever, M., Isgum,
I., 2016. Automatic coronary artery calcium scoring in cardiac CT angiog-
raphy using paired convolutional neural networks. Med. Image Anal. 34(1),
123–136.

Xu, H., Xiong, J., Han, X., Mei, Y., Shi, Y., Wang, D., Zhang, M., Chen,
D., 2020. Computed tomography based hemodynamic index for aortic dis-
section. J. Thorac. Cardiovasc. Surg. doi:https://doi.org/10.1016/j.
jtcvs.2020.02.034.

Yang, X., Bian, C., Yu, L., Ni, D., Heng, P., 2018. Hybrid loss guided convolu-
tional networks for whole heart parsing, in: Statistical Atlases and Compu-
tational Models of the Heart. ACDC and MMWHS Challenges (STACOM),
Springer. pp. 215–223.

Zreik, M., van Hamersvelt, R., Wolterink, J., Leiner, T., Viergever, M., Isgum,
I., 2018. A recurrent CNN for automatic detection and classification of coro-
nary artery plaque and stenosis in coronary CT angiography. IEEE Trans.
Med. Imag. 38(7), 1588–1598.

http://arxiv.org/abs/1812.07816
http://dx.doi.org/10.1117/12.770610
http://dx.doi.org/10.1117/12.2293114
http://dx.doi.org/https://doi.org/10.1016/j.jtcvs.2020.02.034
http://dx.doi.org/https://doi.org/10.1016/j.jtcvs.2020.02.034

	Introduction
	Data
	Patients and Image Acquisition
	Manual Annotation

	Methods
	Automatic VOI extraction
	Multi-stage segmentation
	Segmentation of AO and BR
	Straightening of the aorta
	Separation of TL and FL
	Morphological recovery

	Data augmentation

	Experiments and results
	Implementation and metrics
	The performance of straightening
	The effect of segmentation strategies
	Morphological analysis
	Quantitative analysis of lumen volumes
	Qualitative analysis of tears

	The effect of CNN networks

	Discussion
	Conclusion

