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4 Chapter 1. General Introduction

C ardiovascular diseases and Chronic Obstructive Pulmonary Disease (COPD)
are among the major leading causes of death globally [1]. Patients with COPD
are at increased risk of cardiovascular disease [2, 3], while the prognosis in

COPD is greatly affected by the presence of cardiovascular disease [4, 5]. Noninvasive
imaging techniques such as Computed Tomography (CT), together with quantitative
image analysis, play an increasingly important role in investigating the clinical and
pre-clinical stage of cardiovascular disease. In CT scans used for lung cancer screening
[3, 6–18], both the heart and the lungs are visualized. Therefore in such scans, it
might be possible to identify both cardiovascular disease and COPD.

The aorta and the pulmonary artery are the two largest arteries in the chest.
Changes in the shape and the size of these arteries are associated with several car-
diovascular diseases [19–24] and with the increased risk of severe exacerbations and
mortality in patients with COPD [9, 25, 26]. Assessing abnormalities in the size
and shape of these arteries requires diameter measurements in which measurements
derived from 3D segmentations are most reliable. However, performing such measure-
ments manually is labor-intensive and time-consuming. Therefore fully automated 3D
segmentation and subsequent diameter analysis are desirable.

This thesis focuses on automated image analysis to characterize the shape and
diameters of the aorta and pulmonary artery to facilitate clinical and epidemiological
research, assist in the early-stage diagnosis of aortic aneurysm, and extract risk factors
for the exacerbation of COPD. This chapter provides a background on the anatomy of
the aorta, pulmonary artery, and surrounding structures (Section 1.1). Subsequently,
the disease associated with these vessels (Section 1.2), chest imaging modalities
(Section 1.3), image processing challenges (Section 1.4), and vascular segmentation
techniques (Section 1.5) are discussed, followed by summarizing the contributions and
outlining the contest of this thesis (Section 1.6).

1.1 Anatomy

The aorta and pulmonary artery are the two major arteries in the human body that
carry blood away from the heart. The aorta is the biggest artery and is responsible for
transporting oxygenated blood from the heart’s left ventricle to the rest of the body.
The pulmonary artery is responsible for carrying the deoxygenated blood from the
heart’s right ventricle to the lungs for oxygenation.

The aorta begins at the bulb-shaped root originating from the left ventricle at
the aortic valve level and then courses through the chest and abdomen in a candy
cane–shaped configuration (Figure 1.1). The thoracic aorta is part of the aorta located
in the chest (thorax) and includes the aortic root, ascending aorta, aortic arch, and
descending aorta. The part of the aorta that passes the diaphragm and goes through
the abdomen is called the abdominal aorta. A depiction of the aorta anatomy is
illustrated in Figure 1.1.

The aorta normally has a diameter of approximately 2 cm. It has a slightly larger
diameter at the aortic root. As the aorta descends into the abdomen, it narrows
progressively. The aortic root consists of three sinuses of Valsalva, also known as aortic
sinuses, which give rise to coronary arteries. The junction of the aortic root to the
tubular part of the ascending aorta is called the sinotubular junction. The ascending
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Figure 1.1: Illustration of the aorta and pulmonary artery
anatomy and their position in the body in a 3D view.
source of the images in left: Radiopaedia.org;
source of the image in right: this author.

aorta arises from the sinotubular junction, wherefrom the left side is adjacent to
the pulmonary artery trunk, and arches back over the right pulmonary artery to the
posterior part of the chest and becomes the aortic arch. Normally three major branches
arise from the aortic arch, the brachiocephalic artery, the left common carotid artery,
and the left subclavian artery. These vessels supply blood to the upper body. The
descending aorta extends from the aortic arch and descends downwards towards the
diaphragm. Behind the descending thoracic aorta is the vertebral column.

The pulmonary artery consists of the trunk, left, and right pulmonary arteries,
which are relatively wide and short. The pulmonary trunk or the main pulmonary
artery normally has a diameter of approximately 2-3 cm and is approximately 5 cm
long. The pulmonary trunk originates from the bottom of the heart’s right ventricle
and ascends towards the aortic arch, where it is adjacent to the ascending aorta.
Below the aortic arch, the pulmonary trunk bifurcates in a “Y” shape into the left
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Figure 1.2: Cardiac anatomy. Source: Wikimedia: Diagram of the hu-
man heart. https://commons.wikimedia.org.

and right pulmonary arteries, each of which directs the blood to the corresponding
lung. This main branching (pulmonary bifurcation) is located above the heart to the
left of the ascending aorta. Both left and right pulmonary arteries divide into smaller
branches after they enter the lungs. In this thesis, we will only consider the left and
right pulmonary arteries before their secondary bifurcation and mention them as the
main branching arteries of the pulmonary artery. A depiction of the pulmonary artery
anatomy is illustrated in Figure 1.1.

The aorta and pulmonary artery are surrounded by other structures. Under the
aortic arch, the carina exists, which is the end of the trachea and where the trachea
branches. The pulmonary trunk lies to the left of the carina, and to the right lies
the descending aorta. Behind the descending aorta is the vertebral column. The
descending aorta is located between the vertebral column and the heart with close
proximity to the left atrium of the heart see Figure 1.3. The heart consists of four
chambers; two lower chambers named ventricles, where the aorta and pulmonary
artery arise from, and two upper chambers named atria, where the superior vena
cava and pulmonary veins are connected. From the right atrium superior vena cava
arises to the right of the ascending aorta. On the surface of each atrium, there is a
small muscular flap named auricle, which resembles an ear or earlobe. The auricle
on the upper wall of the left atrium is adjacent to the pulmonary artery trunk and
where it bifurcates to the right pulmonary artery. Figure 1.2 illustrates an overview
of the cardiac anatomy where the valve of the aorta and pulmonary artery and the
surrounding structures in the heart can be seen.

Below the pulmonary artery bifurcation, the pulmonary veins enter the posterior
part of the heart’s left atrium. Besides these anatomical structures, epicardial fat
exists around the heart and its arteries. In an axial view as shown in Figure 1.3 aorta
has almost a circular shape and the pulmonary artery generally has a round-elliptic
shape.
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Figure 1.3: Sagittal and axial view of a non-ECG-gated non-
contrast CT.

1.2 Associated Diseases

Chronic Obstructive Pulmonary Disease (COPD) is a group of lung diseases charac-
terized by chronic airflow obstruction associated with enhanced inflammation in the
airways and lungs. Cardiovascular disease is a general term for conditions affecting the
heart or blood vessels. COPD and cardiovascular disease frequently occur together,
and their coexistence is associated with worse outcomes than either condition alone
[27].

Changes in the size of the aorta may indicate aortic dilatation, aortic aneurysm
[21], and coarctation of the aorta [24]. The aorta is considered dilated if its diameters
exceed the norms for a given age and body size. An aortic aneurysm is a permanent,
localized abnormal dilatation or bulging of the aorta, having at least a 50% increase
in diameter compared with the expected normal diameter [21]. In patients with aortic
aneurysms, the aortic size has a profound impact on the risk of dissection [28, 29].
Most patients with a dilated aorta or aortic aneurysm are asymptomatic, and these
conditions are not often detected by physical examination. The diagnosis usually is
made during screening for aortic aneurysm in the context of positive family history or
by coincidence on imaging examinations performed for other purposes like lung cancer
screening or when a complication occurs, such as aortic dissection or rupture [30, 31].
In this last group of patients, the aortic dissection is often the first presentation and
often results in death. Aortic dilatation and aneurysm are cardiovascular diseases
observed in patients with COPD, with smoking as a common risk factor.

Due to this silent process with high risks associated with aortic aneurysm, detecting
the aortic dilatation at an early stage is desired. Accurate assessment of the aortic
diameter is a key component in detecting aortic aneurysms and guiding therapeutic
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decisions in which the risk of dissection, rupture, and death is estimated [22]. In
addition, aortic diameter is a major criterion for recommending elective operation
where detecting aortic dilatation at an early stage enables preventive surgery, which
might save lives.

Narrowing or constriction of the aorta, typically in the aortic arch or descending
aorta, is called coarctation of the aorta. Coarctation of the aorta is a common
congenital anomaly where long-term complications such as aortic aneurysms can
develop from untreated or treated coarctation [23, 24]. Aortic aneurysm associated
with coarctation in adults could remain asymptomatic for a prolonged time and can
threaten their lives [32]; therefore, early detection of aortic coarctation is important
[33].

Pulmonary hypertension is a common complication of COPD; such a complication is
associated with increased risks of exacerbation and decreased survival [34]. Pulmonary
hypertension represents a chronic condition characterized by increased blood pressure
in the pulmonary circulation, which can cause structural problems like aneurysm or
dissection of pulmonary arteries. Therefore, the location and severity of enlargement
in the diameter of the pulmonary artery on CT play an important role in diagnosis
and guide the clinician in the management of pulmonary hypertension [35].

Dilatation of the main pulmonary artery or its main branching arteries is associated
with a pulmonary aneurysm [36, 37] and is an important metric for the presence of
pulmonary hypertension [19, 20, 35]. Dilatation of the pulmonary artery is often the
first imaging finding to suggest the diagnosis. The dilatation and aneurysm in the
pulmonary artery are rare abnormalities with life-threatening complications such as
pulmonary artery dissection. Like aortic aneurysms, pulmonary artery aneurysms can
frequently be asymptomatic and are incidentally diagnosed on imaging performed for
other reasons [36].

Moreover, the ratio of the diameter of the pulmonary artery to the diameter of the
ascending aorta at the level of pulmonary artery bifurcation (PA:AA) is associated
with the presence of pulmonary hypertension [20] and is shown to be a strong predictor
for severe exacerbation [9, 25], and increased mortality [26] in patients with COPD. It
is shown that PA:AA is a better predictor for pulmonary artery pressure in patients
with primary pulmonary hypertension than only the diameter of the main pulmonary
artery and is used to measure the dilatation of the pulmonary artery [38].

1.3 Thoracic imaging

Medical imaging plays a significant role in disease prevention, early detection, diagnosis,
and treatment. Computed tomography (CT) and magnetic response imaging (MRI)
are the common noninvasive imaging modalities used to visualize cardiac structures.

CT is a projection-based imaging modality that uses tomographic reconstruction
algorithms on X-ray projections to generate 3D images of the body. In CT, cross-
sectional images generated from the combination of multiple X-ray projections acquired
at many different orientations around the body are reconstructed into a 3D image
volume. Based on the attenuation of X-rays in various tissue types, CT provides
detailed gray-scale images and an accurate density of any part of the body, including
the bones, muscles, fat, organs, and blood vessels. These densities are expressed using
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Figure 1.4: CT vs. CTA. (a) Axial slice of a low-dose non-ECG-gated
non-contrast CT scan where the boundaries between the arteries
are blurred with a high noise level. (b) Axial slice of a CTA scan
where the boundary of the arteries is clearly distinguishable.

the Hounsfield Unities (HU), with water with zero HU value. Tissues with a higher
density than water, such as bone (700 to 3000 HU) and blood (45 to 65 HU), have
positive HU and are visualized in brighter colors, while structures with less density
than water such as air (-1000 HU) and fat (-30 to -70 HU) appear darker with negative
HU. Currently, with the use of multi-detector and multi-source CT (MDCT), the
temporal and special resolution of CT imaging has increased [39].

Chest CT often is the imaging modality of choice for diagnosis and follow-up of
patients with aortic pathology and the study of lung disease and pulmonary vasculature.
CT with faster acquisition time, better isotropic spatial resolution, convenience, and
easier access than MRI, is widely used in clinical practice. Despite the vast advantages
of CT imaging, the risk of exposure to ionizing radiation is a potential limitation.
Ionizing radiation can damage cells and slightly increase the risk of developing cancer.
Therefore, current CT imaging and image analysis improvements are often aimed at
significant dose-reduction for providing a safer imaging procedure [40]. Lowering the
dose leads to the reduction of the image quality by increasing the noise level. CT
angiography (CTA) improves the depiction of the vasculature by the administration
of iodinated contrast media. However, though rare, the contrast agent can produce
undesired side effects such as allergic reactions and kidney damage. Therefore, it is
desired to avoid contrast when the vasculature is likely to be visible on non-contrast-
enhanced CT. Low-dose non-contrast CT provides an acceptable image quality with a
lower risk of exposure to ionizing radiation and fewer side effects of contrast agents.

An axial slice of a CTA and a low dose non-contrast CT are shown in Figure 1.4.
In CTA, the anatomical structures are clearly defined and delineated, whereas in the
non-contrast CT, there is more noise and the border between the vessels and the
surrounding structures is unclear.

MRI is an imaging modality that utilizes strong magnetic fields and radiofrequency
waves to construct detailed 3D image volumes of the body. Even though MRI has
no risk of ionizing radiation and provides better soft-tissue contrast, it has a lower
in-plane spatial resolution and is a more expensive modality. Therefore, CT is generally
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Figure 1.5: Intensity distribution in non-contrast CT. (a) Axial slice
at a region close to the heart chamber. (b) Scan overlaid with
manual annotations of the aorta in red, the pulmonary artery in
blue, and the surrounding structures as background in green. (c)
The intensity distribution of voxels in the aorta (red), pulmonary
artery (blue), and background (green).

preferred and widely used in clinical practice.

Many patients with COPD or at risk of developing cardiovascular disease undergo
a low-dose, non-ECG-gated, non-contrast thoracic CT for lung cancer screening.
Electrocardiogram (ECG) gating is the act of monitoring and collecting heart rate
during the scan to ensure scanning only between the heartbeats to achieve a motion-
free scan. However,this procedure requires the acquisition of highly overlapping slices,
which exposes patients to a higher radiation dose. Therefore it is common to perform
low-dose, non-ECG-gated, non-contrast CT for lung cancer screening to reduce the
risk of radiation exposure [6, 18]. With the growing use and widespread availability
of such scans, there is an opportunity to measure the aorta and pulmonary arteries
in such scans to investigate the presence of early-stage cardiovascular disease and/or
predict complications in patients with COPD.
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1.4 Challenges in Quantitative Analysis of the Aorta &
Pulmonary artery

Manual analysis of the vessels in cardiac CT requires clinical expertise to identify and
locate the correct structures. Since the aorta and pulmonary artery are large vessels
that can be affected by pathology at multiple locations along all their length, the entire
vessel in the chest should be imaged and measured. A complete 3D analysis obtains the
most accurate quantification of the aorta and pulmonary artery dimensions. Manual
3D analysis requires drawing the vessel contours in a large number of reformatted slices
perpendicular to the vessel axis. This is a very labor-intensive and time-consuming
process and subject to intra- and inter-observer variability. Also, the human workload
is a limiting factor when performing quantitative measurements in large-scale imaging
studies and clinical practice. Therefore, automated analysis is desirable and could add
significant value in the standardization and repeatability of vessel segmentation and
subsequent diameter analysis.

Automatic segmentation of the aorta and pulmonary artery in non-ECG-gated,
non-contrast CT scans is a challenging task. The main challenge is the unclear vessel
boundaries due to the lack of contrast between blood pool regions, muscle walls,
and fat (see Figure 1.5 ). In addition, the proximity of the aorta and pulmonary
artery to each other and other structures with similar intensity values, such as the
heart, intensifies the difficulty in vessel boundary detection. Figure 1.5 illustrates the
intensity similarity between the vascular area and the surrounding voxels in the region
close to the heart chamber. The obvious overlap of the intensity distributions of the
background and voxels within the aorta and pulmonary artery shows the difficulty in
segmenting the vascular area from the background. Furthermore, the similarity in the
aorta and pulmonary artery intensity distribution and the unclear boundary between
them (Figure 1.5.a) demonstrates the difficulty in detecting the correct border of each
vessel. Additionally, in non-ECG-gated CT scans, the existence of motion artifacts
caused by the heart’s motion during the cardiac cycle at the regions close to the heart
makes the automatic segmentation even more challenging where manual measurements
are difficult even for experienced radiologists.

1.5 Segmentation Methods

Automatic and semi-automatic segmentation of the aorta and pulmonary artery has
been the topic of studies in MRI [41] and CTA [42–52]. Most of these studies obtain
reasonable segmentations in the high contrast scans. However, these methods do
not translate well to non-contrast CT scans where the vessel boundaries are not well
defined in many places. Therefore, relatively few studies can be found on non-contrast
CT scans, mostly on the segmentation of the aorta [53–63] and a few on pulmonary
arteries containing the pulmonary trunk, left, and right pulmonary arteries [64–66].

Different segmentation methods for the aorta and pulmonary artery have been
presented in the literature, such as multi-atlas based models [53], level-set based
methods [60], active shape models [55], and deep learning based methods [61–63, 66].
Among these presented segmentation methods, methods that use shape priors in some
form generally have gained a better performance.
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Also, graph cut methods have been applied to different imaging modalities for artery
segmentation [67, 68] and have obtained promising results in many tasks. Deng et al.
[67] proposed a graph-cut method using random forest based discriminative features
on non-contrast CT for aorta segmentation. They achieved a high segmentation
performance in the abdominal aorta; however, they have not applied their method
to the thoracic aorta and pulmonary artery, which are more challenging to segment.
Another approach is to use graph cut methods with shape priors. Graph cuts can
achieve a global optimum with low processing times, and it is possible to incorporate
shape or smoothness constraints when designing the graph structure. This thesis will
present an optimal surface graph cut approach similar to Petersen et al. [69], initially
proposed for airway segmentation, for pulmonary artery and aorta segmentation. This
method incorporates a shape prior via constructing the graph based on flow lines traced
from an initial, smoothed segmentation. The non-intersecting flow lines guarantee
non-self-intersecting surfaces and make it possible to segment high curvature areas
such as the bifurcation of the pulmonary artery and the aortic arch while guaranteeing
a shape that is similar to the initialization shape.

Besides the high-performing graph-cut techniques for medical image segmentation,
deep learning techniques are being used widely in recent years [51, 61, 62, 66, 70–
72]. Deep learning based algorithms have the advantage of directly learning from
data in an end-to-end fashion using a general-purpose learning procedure. With the
increasing amount of data to learn from, deep learning based algorithms have gradually
outperformed previous methods. Chen et al. [70] have compared current techniques
for segmenting cardiovascular structures in different imaging modalities where deep
Convolutional Neural Networks (CNNs) have achieved remarkable performance and
shown great success in many segmentation tasks. However, few studies are performed
on aorta segmentation on non-contrast CT scans [61, 62, 66], and to the best of our
knowledge, there are no deep learning based algorithms presented for the segmentation
of the pulmonary artery trunk and its major branches on non-contrast CT scans.

CNNs are supervised neural networks that are powerful in extracting local features
and perform good predictions. However, the lack of context information for modeling
interactions and relations between nearby objects can result in poorly segmented
boundaries. To address this challenge, in this thesis, we will present an end-to-
end training method based on the combination of a CNN (such as U-net) with a
Conditional Random Field (CRF). CRFs are probabilistic graphical models that model
the correlations and dependencies among the voxels being predicted. Although it is
common to combine CNN with a CRF to refine the voxel-level predictions made by
CNN, CRF based on predefined features such as intensity similarity was often used as
a post-processing technique. However, intensity-based information alone provides a
low-quality feature space for the CRF due to the intensity similarity between vessels
and surrounding structures. Therefore, in this thesis, the presented end-to-end method
named Posterior-CRF allows the CRF to use features learned by a CNN, optimizing the
CRF and CNN parameters concurrently. In this thesis, the proposed Posterior-CRF is
applied for jointly segmenting the aorta and pulmonary artery on non-contrast CT
scans.
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1.6 Outline and Contributions of this Thesis

This thesis focuses on developing and validating techniques to automatically segment
the aorta and pulmonary artery and, subsequently, measure diameters on non-ECG-
gated, non-contrast CT scans. The main contributions of this thesis can be divided
into methodological and translational contributions:

– Methodological
– Chapter 2, 4 Adapt an optimal surface graph cut approach for segmenting

the aorta and pulmonary artery in non-contrast non-ECG-
gated CT scans.

– Chapter 2, 4 Present a method to fully automatically extract a landmark
for the pulmonary artery bifurcation level and the seed points
of the aorta, including the ascending and descending aorta,
and pulmonary artery including the pulmonary trunk, left and
right pulmonary arteries.

– Chapter 4 Develop a robust, reproducible, and fully automatic 3D volu-
metric diameter measurement technique for PA:AA biomarker
extraction.

– Chapter 5 Develop a new end-to-end trainable algorithm for image
segmentation that uses CNN-learned features in a CRF and
simultaneously optimizes the CRF and CNN parameters.

– Translational
– Chapter 2 develop an automatic tool to measure the aortic diameters

perpendicular to vessel centerline with no human interaction
in several cross-sectional levels.

– Chapter 2 Validate the accuracy of the optimal surface graph cut method
and the repeatability of the aortic diameter measurement
technique on a large cohort from the Danish Lung Cancer
Screening Trial.

– Chapter 3 On longitudinal data, study the sex-specific distribution of the
aortic diameters and the aortic growth in a large population
of current or former smokers.

– Chapter 3 study the association of aortic growth with clinical characteris-
tics regarding smoking status, history of stroke, hypertension
or hypercholesterolemia, and Agatston calcium scores.

The outline and the structure of this thesis are as follows:

Chapter 2 presents a fully automatic method based on optimal surface graph-cuts
for the segmentation of the aorta on non-ECG-gated, non-contrast CT scans.
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The method is developed and evaluated using data from the Danish lung can-
cer screening trial. From the extracted 3D aorta segmentation, the diameter
of the ascending and descending aorta are calculated at cross-sectional slices
perpendicular to the extracted centerline, at multiple, fixed levels relative to the
pulmonary artery bifurcation level. The method’s accuracy is then evaluated by
comparing the automatic 3D aorta segmentation and diameter measurements
with the manual measurements. Finally, the repeatability of the diameter mea-
surements is evaluated on scan-rescan pairs. The results show that this method
is a promising technique to accurately and reproducibly assess subtle signs of
aorta dilatation in non-ECG-gated, non-contrast CT scans without any human
interaction.

Chapter 3 uses the method presented in Chapter 2 to extract aortic diameters to
investigate the growth of the thoracic aorta in a large population. This study
presents longitudinal data on sex-specific growth of the ascending and descending
aorta in a large population of current or former smokers, a subgroup of the
general population. The measured growth rate is 0.1 mm/year for this population,
which is consistent with numbers reported for growth in the general population.
In addition, aortic growth is comparable between current and ex-smokers, and
aortic growth is not associated with pack-years.

Chapter 4 presents a 3D fully automatic method for segmenting the pulmonary
artery and the aorta, extending the method presented in Chapter 2. The method
extracts a landmark for the level of the pulmonary artery bifurcation. With
the 3D volumetric average diameter measurement technique presented in this
chapter, the ratio of the diameter of the pulmonary artery to the diameter of the
ascending aorta at the level of the pulmonary artery bifurcation is automatically
extracted. The diameters extracted by the presented 3D volumetric diame-
ter measurement technique show high scan-rescan repeatability. This chapter
presents the qualitative and quantitative analysis showing that our method
provides robust, accurate, and repeatable measurements of the pulmonary artery
and aorta diameters and the PA:AA ratio.

Chapter 5 presents a deep learning based algorithm called Posterior-CRF that uses
CNN-learned features in a CRF. This method is validated on multiple modalities
and medical image segmentation tasks. The aorta and pulmonary artery are
segmented in non-contrast CT, and white matter hyperintensities and ischemic
stroke lesions are segmented in multi-modal MRI. With high accuracy in all
three segmentation tasks, the segmentation results showed that spatial coherence
or intensity features alone are not sufficient. The CNN features in the last layer,
as presented in Posterior-CRF, are more informative for CRF than the intensity
features in the original images.

Chapter 6 provides a general discussion of the contribution and achievements of this
thesis and presents possible future research directions.
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Abstract

Objectives: To develop and evaluate a fully automatic method to
measure diameters of the ascending and descending aorta on non-ECG-
gated, non-contrast computed tomography (CT) scans.

Material and methods: The method combines multi-atlas regis-
tration to obtain seed points, aorta centerline extraction, and an optimal
surface segmentation approach to extract the aorta surface around the
centerline. From the extracted 3D aorta segmentation, the diameter of
the ascending and descending aorta was calculated at cross-sectional
slices perpendicular to the extracted centerline, at the level of the pul-
monary artery bifurcation, and at 1− cm intervals up to 3cm above and
below this level. Agreement with manual annotations was evaluated
by dice similarity coefficient (DSC) for segmentation overlap, mean
surface distance (MSD), and intra-class correlation (ICC) of diameters
on 100 CT scans from a lung cancer screening trial. Repeatability of
the diameter measurements was evaluated on 617 baseline one-year
follow-up CT scan pairs.

Results: The agreement between manual and automatic segmenta-
tions was good with 0.95/pm0.01 DSC and 0.56/pm0.08mm MSD. ICC
between the diameters derived from manual and automatic segmenta-
tions was 0.97, with the per-level ICC ranging from 0.87 to 0.94. An
ICC of 0.98 for all measurements and per-level ICC ranging from 0.91
to 0.96 were obtained for repeatability.

Conclusions: This fully automatic method can assess diameters
in the thoracic aorta reliably even in non-ECG-gated, non-contrast CT
scans. This could be a promising tool to assess aorta dilatation in
screening and clinical practice.

Key Points:
• Fully automatic method to assess thoracic aorta diameters.
• High agreement between fully automatic method and manual

segmentations.
• Method is suitable for non-ECG-gated CT and can therefore be

used in screening.



2.1. Introduction

2

19

2.1 Introduction

Aortic aneurysm with the risk of acute dissection is an important cause of mortality
in the western world [73]. The prevalence of thoracic aortic aneurysms is estimated at
around 0.3 percent in the normal population [74, 75]. Most patients with a dilated
aorta or aortic aneurysm are asymptomatic. The diagnosis can be made as during
screening in the context of positive family history or by coincidence on imaging
examinations performed for other purposes like lung cancer screening [12]. However,
acute dissection is often the first presentation, in which case over 50% of all patients
die within 30 days [30].

Because of this silent process with high risks, screening programs using non-contrast
computed tomography (CT) could be considered. In patients with aortic aneurysms,
the aortic size has a profound impact on the risk of dissection [28, 29]. Detecting
aortic dilatation at an early stage enables preventive surgery, which might save lives.
CT imaging of the thoracic aorta could become available as part of a comprehensive
assessment of CT imaging performed for screening purposes including also other organs
(lungs, coronary calcium, vertebral bone density, etc.) [12].

By measuring aortic dimensions in such screening cohorts, we will also gain more
information on normal values of aortic diameters, the normal increase in diameters
over time, risk factors for dilatation, and a better insight into prognosis.

Besides its potential in screening, non-contrast CT is frequently used to diagnose
and follow-up patients in clinical practice. It plays a central role in imaging the
thoracic aorta because of the short time required for image acquisition, the ability
to obtain a complete 3D view of the entire aorta, and its widespread availability. In
addition, CT scans can be used for follow-up of patients with dilatation, especially
in cases where echocardiography does not adequately visualize the dilatation. The
ESC Guidelines and ACCF/AHA guidelines [21, 76] describe standard anatomical
landmarks for reporting aortic diameters in CT in clinical practice.

Performing measurements of the aorta manually are labor-intensive and subject to
inter-observer variability. Therefore, to assess aortic dilatation in screening settings
and clinical practice, automated aorta segmentation and subsequent diameter analysis
are desirable. While automatic solutions for aortic measurements in CT angiography
(CTA) exist [42–45, 47], automatic aorta segmentation in non-contrast CT scans is more
challenging due to the lack of contrast between blood pool regions and surrounding
soft tissue [53, 54, 57, 59, 60].

This chapter aims to develop and validate an automatic method to robustly assess
diameters of the ascending and descending aorta in non-ECG-gated, non-contrast CT
without human interaction.

2.2 Materials and Methods

2.2.1 Study Population & Image Acquisition

The CT scans used in this chapter are from the Danish Lung Cancer Screening
Trial (DLCST) [6]. A Multi-Detector CT scanner (M × 8000 IDT 16 row scanner,
Philips Medical Systems) was used to acquire CT scans at 120 kV / 40 mAs at
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Table 2.1: Clinical characteristics of 100 subjects used in valida-
tion. Values are expressed as mean ± standard deviation and
(range).

Validation set (n = 100) Male Female
Number of CT scans (n) 50 50
Age (years) 58.5± 5.4 (50 - 70) 58.3± 4.8 (50 - 70)
Weight (kg) 84.0± 12.0 (60 - 120) 67.6± 12.2 (48 - 103)
Height (cm) 179.8± 6.3 (163 - 195) 167.0± 6.1 (155 - 179)
BMI 26.0± 3.6 (18.7 - 37.0) 24.3± 4.7 (16.2- 41.3)
Agatston score at ascending aorta & arch 231.3± 416.7 (0 - 2190) 193.3± 274.4 (0 - 1128)
Agatston score at descending aorta 53.5± 116.2 (0 - 483) 81.4± 316.4 (0 - 2139)

maximum inspiration breath-hold and without cardiac gating. This protocol leads to
an effective dose of around 1 mSv [77]. The scans were reconstructed with a sharp
kernel (Philips D), in-plane isotropic resolution of 0.78 × 0.78mm, and 1mm slice
thickness. Participants were current or former smokers between 50 and 70 years of age.
For this chapter, 742 participants were randomly selected, which were divided into
three non-overlapping sets: (see supplementary Table 2.A.1 for clinical characteristics
of the entire data)

• baseline scans of 25 subjects for parameter optimization of the proposed method;

• baseline scans of 100 subjects for evaluation of the method’s accuracy (see
Table 2.1);

• baseline and first year follow up scans of 617 subjects to evaluate the repeatability
of the method;

Therefore, aortic diameter measurements were performed in 1334 CT scans in
total.

2.2.2 Manual Annotation

Manual annotations were made using an in-house annotation tool developed in MeVis-
Lab1. 100 CT scans were annotated by a physician (LB) for validation and an
additional 25 scans by an experienced observer (ZSG) for method development. The
annotation tool was similar to that described previously for carotid artery segmentation
in [78]. First, the window level/width was adjusted to 200HU/600HU for all cases.
Then, the aortic centerlines were drawn manually using the axial, coronal, and sagittal
views, starting from the sinotubular junction of the ascending aorta and ending at the
diaphragm level of the descending aorta. Subsequently, the centerlines were checked
and modified in reformatted cross-sectional views perpendicular to the drawn center-
line. The obtained centerlines were used to generate curved multiplanar reformatted

1https://www.mevislab.de/
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images of the entire aorta, with longitudinal views at six different angles equally spaced
every 30ř and cross-sectional views every 1mm along the centerline. Longitudinal
contours were drawn manually, whereupon cross-sectional contours were computed
using spline interpolation through the intersection points of the longitudinal contours
with the cross-sectional planes. Finally, after checking the cross-sectional contours in
all cross-sections and adjusting them if required, the contours were converted to a 3D
binary image using variational interpolation [79]. An example of manual annotation is
shown in Figure 2.1.

To manually locate the pulmonary artery bifurcation level, an experienced physician
(DB) checked the scans in axial view and annotated the pulmonary artery bifurcation
level where the left and right pulmonary arteries and the bifurcation from the pulmonary
trunk were all visible.

2.2.3 Automatic Aorta Segmentation Approach

To extract a full 3D segmentation of the aorta and a landmark point for the pulmonary
artery bifurcation level, we applied a combination of image processing techniques.
First, to avoid the segmentation to attract to the heart-lung or bone borders, we
applied preprocessing as proposed in our previous work [80].

Subsequently, a multi-atlas registration method was applied [81] to localize the
aorta, the pulmonary artery trunk, and the left and right pulmonary arteries. In this
method, 25 preprocessed CT scans were non-rigidly registered to the scan in which the
segmentation was required (target image). From these 25 registered images, ten CT
scans with the highest similarity to the target image were selected. The corresponding
manual annotations of these ten scans were then deformed and combined using a per
voxel majority voting procedure to obtain a coarse initial segmentation of the aorta
and pulmonary arteries. The initial segmentation of the pulmonary arteries was then
skeletonized, and the slice where the main pulmonary artery bifurcates into the left
and right pulmonary arteries was extracted as the pulmonary artery bifurcation level.
This level is used as the landmark level.

To start tracing the centerline of the aorta, aortic seed points were extracted as
the center of mass of the coarse initial aorta segmentation at the axial slice 3 cm
beneath the landmark level for the ascending aorta and 6 cm beneath the landmark
level for the descending aorta. The aortic centerline was then extracted between
these seed points by a minimum cost path tracking algorithm similar to [80]. In this
algorithm, the cost function was based on the maximum output of a multi-radius
medialness filter in coronal and axial views multiplied with a lumen intensity similarity
metric. Next, the centerlines were refined by re-computing the minimum cost path
after curved multiplanar reformatting perpendicular to the previous centerline [82].
Failure in the centerline extraction was automatically detected by using the landmark
level and the initial pulmonary artery segmentation. Centerlines that did not reach
the landmark level or were inside the pulmonary artery segmentation were considered
failed extractions and were excluded.

To obtain a first estimate of the aorta, the extracted centerline was dilated using a
spherical structuring element with its radius defined by the estimated radius of the
aorta obtained from the medialness filter. Subsequently, an optimal surface graph cut



2.2. Materials and Methods

2

23

Figure 2.2: 3D automatic segmentation of the aorta and the corre-
sponding automatic centerline showing cross-sections at the
ascending aorta at the pulmonary artery bifurcation level (0 cm
AA) and 2 cm below this level (-2 cm AA) and the descending
aorta at 3 cm above (+3 cm DA) and below (-3 cm DA) the
pulmonary artery bifurcation level.

segmentation method2 [69], initialized by the dilated centerline, was used to accurately
extract the surface of the aorta. The parameters for atlas registration, centerline
extraction, and graph cut segmentation were tuned to maximize the similarity with
manual annotations on 25 CT scans.

2.2.4 Aortic Diameter Measurement

Aortic diameters were assessed at multiple, fixed levels relative to the pulmonary
artery bifurcation level. Based on the extracted pulmonary bifurcation level, thirteen
cross-sectional slices were defined perpendicular to the extracted aortic centerline,
located at 1-cm intervals around the bifurcation level from 2 cm below this level to
3 cm above for the ascending aorta and from 3 cm above to 3 cm below this level
for the descending aorta. For the ascending aorta, the cross-sectional slice at 3 cm
below the pulmonary artery bifurcation level was sometimes in the aortic root below
the sinotubular junction which the aorta boundaries at the sinus of Valsalva are very

2Available at https://bitbucket.org/opfront/opfront
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unclear due to the lack of gating and contrast. Therefore, no measurements were
performed at this level. Figure 2.2 shows an example of 3D segmentation with the
corresponding centerline and four of the measured cross-sections.

The cross-sectional average aortic diameter at each of the 13 cross-sectional slices
was computed from manual and automatic segmentations. For the manual segmenta-
tions, diameter measurements were performed perpendicular to the manual centerlines
and at levels relative to the manually indicated pulmonary artery bifurcation level. For
the automatic segmentations, the automatically extracted centerlines and pulmonary
artery bifurcation level were used instead.

2.2.5 Validation and Statistical analysis
The method was validated on 100 CT scans with manual annotations. The segmenta-
tion accuracy was assessed by the dice similarity coefficient (DSC) and mean surface
distance (MSD). DSC [83] measures the degree of spatial overlap of the automatic
segmentation with the manual segmentation, and it ranges between 0 and 1, where
higher values indicate higher similarity. MSD shows the symmetric mean surface
distance in millimeters between the manual and automatic segmentation surfaces,
where a lower value is better. The agreement between the manual and automatic
segmentations was assessed from 3cm beneath the landmark level at the ascending
aorta to 6 cm beneath this level at the descending aorta. DSC, MSD, aortic diameters,
and the error in the diameter were expressed as mean ± standard deviation (range).

The error in the extracted landmark level was assessed by the distance between the
manually extracted pulmonary artery bifurcation level and the automatically extracted
level in millimeters. In addition, the aortic centerlines were automatically checked for
failed extractions.

The agreement between the manual and automatic diameter measurements was
assessed by

• Intra-class correlation (ICC) based on a single-rating, absolute-agreement, two-
way mixed-effects model [84];

• R2 Pearson’s correlation;
• Bland-Altman analysis;

The repeatability of the method was assessed by comparing the automatically
extracted diameters of two scans of 617 subjects with a time period of 1 year in
between. Within 1 year, changes in aortic diameters are expected to be small, with
0.1-0.2 mm growth per year in a healthy population [28, 75]. All statistical analyses
were done in MATLAB.

2.3 Results

Figure 2.3 shows examples of segmentation results. Out of all 1334 CT scans only
in two cases, the seed points at the descending aorta were extracted incorrectly.
Centerline extraction further failed in seven cases, all of which were easily detected
automatically. Average DSC for the entire aorta was 0.95± 0.01 (0.92–0.96) and MSD
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Table 2.2: Average aortic diameters from the automatic and manual
segmentations for each measuring level from the 100 CT scans.
Values are expressed as mean ± standard deviation.

Measuring
Level

Female (n=50) Male (n=50)

Automatic Manual Automatic Manual

Ascending
Aorta

-2 cm 33.3± 3.5 34.2± 3.5 36.2± 3.9 37.0± 3.7
-1 cm 34.2± 3.2 35.1± 3.4 36.9± 3.7 37.7± 3.6
0 cm 33.9± 3.3 35.0± 3.3 36.7± 3.5 37.7± 3.5

+1 cm 33.5± 3.0 34.7± 3.2 36.3± 3.6 37.4± 3.5
+2 cm 33.3± 2.7 34.3± 2.9 35.4± 3.3 36.7± 3.2
+3 cm 33.0± 2.9 33.4± 3.1 35.2± 3.0 36.0± 3.2

Descending
Aorta

+3 cm 27.6± 2.6 28.7± 2.5 29.5± 2.4 30.8± 2.5
+2 cm 27.3± 2.5 28.2± 2.4 29.0± 2.3 30.2± 2.1
+1 cm 26.7± 2.3 27.5± 2.2 28.5± 2.1 29.4± 2.0

0 cm 26.3± 2.3 27.1± 2.2 28.0± 2.0 28.9± 1.9
-1 cm 26.1± 2.1 26.9± 2.2 27.7± 2.1 28.9± 1.9
-2 cm 25.8± 2.2 26.9± 2.2 27.6± 2.0 28.6± 1.8
-3 cm 25.5± 2.3 26.7± 2.2 27.4± 2.1 28.3± 2.0

0 cm is the pulmonary artery bifurcation level, where minus is a level below this level and
plus is a level above the pulmonary bifurcation level.

was 0.56± 0.08 (0.43–0.93) mm. The mean absolute distance between the manual and
automatic landmark level of the pulmonary artery bifurcation was 2.55± 1.94 mm,
with almost no bias (mean signed distance 0.45± 3.18 mm).

Box plots for the average manual and automatic diameters for each measuring
level are shown in Figure 2.4. Diameters measured at the different levels, for men and
women separately, are shown in Table 2.2. High agreement between manually and
automatically measured diameters was obtained, with an overall ICC and R2 Pearson’s
correlation of 0.97. The level-wise correlations together with the correlations separated
per gender are shown in Table 2.3 (see supplementary Figure 2.A.1 for scatter plots of
each measuring level).

An average absolute diameter error of 1.09±0.6 mm between manual and automatic
diameters was obtained over all measuring levels, which showed a slight underestimation
of the automated measurements compared to manual measurements (mean signed
error −0.97 ± 0.8 mm). As shown in box plots of the level-wise diameter errors in
Figure 2.5, larger errors (more than 3 mm) were extracted in 8 out of 100 scans.
In four cases, a large error occurred due to motion artifacts at the ascending aorta
(beneath the landmark level), and in three cases, it occurred at the aortic arch due to
branching arteries. In one case, the error was along the entire aorta due to a 6-mm
difference between the automatic and manual landmark levels. Bland-Altman plots of
manual and automated diameter measurements are given in Figure 2.6.

From the 617 subjects used to assess repeatability, 7 subjects had failed centerline
or seed point extraction. From the remaining 610 subjects, ICC between the automatic
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Figure 2.3: Segmentation Examples; Two samples with the best (top two
rows) and the worst (bottom two rows) automatic segmentation
results. The columns from left show the sagittal, coronal, and
axial views, respectively. The right column shows the 3D visual-
ization of the automatic segmentation in red. The first and third
rows are the original CT scans, while the second and fourth rows
show the CT scan with the overlap of the corresponding manual
and automatic segmentations with DSC = 0.96 and MSD =
0.60 mm for the first sample and DSC = 0.92 and MSD = 1.44
mm for the second sample. Orange shows the regions where the
manual and automatic segmentations overlap. Magenta is the
region included in the automatic segmentation, but not in the
manual segmentation, and yellow is the region that is inside the
manual segmentation, but not in the automatic segmentation.
Centerline points are indicated in red and seed points in green.
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Table 2.3: ICC and R2 Pearson’s correlation between the automatic
and manual diameters for the 100 CT scans.

Measuring
Level

ICC
(n=100)

R2 Pearson
(n=100)

ICC female
(n=50)

ICC male
(n=50)

Ascending
Aorta

-2 cm 0.93 0.90 0.89 0.94
-1 cm 0.94 0.94 0.91 0.95
0 cm 0.94 0.95 0.92 0.94

+1 cm 0.92 0.94 0.89 0.92
+2 cm 0.92 0.95 0.91 0.90
+3 cm 0.94 0.93 0.94 0.93

Descending
Aorta

+3 cm 0.88 0.92 0.88 0.85
+2 cm 0.88 0.91 0.88 0.84
+1 cm 0.89 0.92 0.88 0.87

0 cm 0.90 0.93 0.90 0.87
-1 cm 0.89 0.94 0.90 0.83
-2 cm 0.87 0.93 0.86 0.83
-3 cm 0.89 0.95 0.86 0.88

ICC : Intra class correlation;
Measuring levels as in Table 2.2;

diameters of the scan and rescan of each subject is shown in Table 2.4. From these
610 subjects, 72 subjects (12%) had an absolute diameter difference larger than 3
mm between the two time points at any of the measuring levels. In 35 out of 72
cases (48.6%), the segmentations appeared visually correct in both time points. In
17 cases of these 35 cases, a 2- or 3-mm difference between the extracted landmark
level in one of the time points resulted in big diameter differences at 2 cm below the
landmark level at the ascending aorta (in average 3.7± 0.5 mm). This is due to the
aortic anatomy at the sinotubular junction where the aorta below this level is on
average 3 mm larger than above [85]. In 5 out of 35 cases, there was more than 6-mm
difference between the extracted landmark levels from the two time points, leading to
a diameter measurement at very different levels along the entire aorta being compared
(in average 3.4 ± 0.5 mm). The remaining 13 out of 35 cases appeared to have a
slightly larger diameter at one of the time points (in average 3.7± 0.7 mm), possibly
due to the aortic size changes during the cardiac cycle. In 37 out of 72 cases (51.4%),
the average diameter difference (3.6± 0.6 mm) was due to segmentation error which
mainly occurred at the aortic arch which was due to branching arteries, or was at the
ascending aorta below the pulmonary artery bifurcation level which was due to heart
motion artifacts caused by the non-ECG-gated data.

2.4 Discussion

We presented a fully automatic method to segment the thoracic aorta and measure
aortic diameters. In our evaluation on 100 non-ECG-gated, non-contrast CT scans, the
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3D segmentation algorithm performed well with an average segmentation overlap of
0.95± 0.01 and a mean surface distance between manual and automatic segmentations
of less than 1 voxel (0.56 mm).

The agreement with diameters obtained from manual segmentations was high, with
an overall ICC of 0.97 and an average per-level ICC of 0.91± 0.03, which is similar to
the agreement reported between observers in [26] (ICC = 0.94). The manual diameters
were on average approximately 1 mm larger than automatic diameters. This bias
is similar to inter-observer bias reported in [86] for mid-ascending aorta diameter
measurement on CTA. Scan-rescan repeatability was high, with an overall ICC of 0.98
and an average per-level ICC of 0.94± 0.01.

The mean ascending aorta diameters measured at the pulmonary artery bifurcation
level were 36.7± 3.5 mm for males and 33.9± 3.3 mm for females. These values are
similar to those reported by Kalsch et al [75] (37.1± 4 mm for males and 34.5± 4 mm
for females), while they were slightly greater than those reported by Wolak et al [22]
(33.5± 4 mm for males and 31.4± 3 mm for females). These differences may be due to
differences in the study populations, CT scan protocol, and measurement approach.

A significant diameter increase of on average 0.11 ± 1.0 mm was measured in
repeated scans after 1 year. This agrees well with reported natural yearly aortic
diameter growth of 0.1 – 0.2 mm per year in the healthy population [75, 87]. In 12%
of repeat scan pairs (72 subjects), diameter changes larger than 3 mm were observed.
In the majority of these cases (44 subjects), large diameter differences occur at the
ascending aorta beneath the landmark level which is due to the anatomy and the
difficulty of measuring these regions. Due to motion artifacts in the non-ECG-gated
scans, segmentation of the proximal part of the aorta including the aortic root is
difficult even for experienced radiologists. However, although isolated aortic root
aneurysms are seen in patients with Marfan syndrome [76], it is less common than
aneurysms of the ascending aorta more distal to the aortic root. Therefore, the aortic
root segmentation is less important in our application than the ascending aorta. In
the remaining 28 cases, the large diameter difference was either in the aortic arch (15)
or in the descending aorta (8), or at multiple locations due to error in the extraction
of the pulmonary artery bifurcation level (5). Diameters measured at the aortic
arch were visually correct; however, slightly larger diameters were measured at the
location of branching arteries. In descending aorta, the large diameter differences were
mainly due to segmentation error. An example of the diameter profile and absolute
diameter difference profile between the manual and automatic diameters along the
aortic centerline is shown in supplementary Figure 2.A.2.

In contrast with our study in this chapter, in literature, most methods for automatic
aorta segmentation were evaluated on CTA in which the aortic lumen is much more
clearly visible [42–45, 47]. Few methods were proposed to segment the aorta in
non-contrast CT [53, 54, 57, 59, 60]. Compared to these previous works, shown in
Table 2.5, our proposed method is evaluated on a larger dataset and shows better
performance.

We proposed to measure aortic dimensions at fixed intervals with respect to a single
anatomical landmark level, the pulmonary artery bifurcation. In clinical practice,
multiple anatomical landmarks including locations in the aortic arch are used instead
for reporting aortic diameters in CTA [21, 76, 88]. However, consistently extracting
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Table 2.4: Repeatability: ICC between the automatic diameters of the scan
and rescan of 610 subjects.

Ascending aorta Descending aorta
-2cm -1cm 0cm +1cm +2cm +3cm +3cm +2cm +1cm 0cm -1cm -2cm -3cm

ICC 0.91 0.95 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.94 0.93 0.94 0.94
ICC : Intra class correlation;
Measuring levels as in Table 2.2;

Table 2.5: Performance comparison of methods for the aorta seg-
mentation on non-contrast CT. Values are expressed as
mean ± standard deviation.

Author [ref. no.] Evaluation Data
size

DSC Jaccard
coefficient

MSD
(mm)

Kitasaka et al. [57] 7 CT 0.93± 0.03 – 0.90± 0.33
Avila-Montes et al. [54] 45 CT 0.84± 0.10 0.74± 0.13 –
Kurugol et al. [60] 45 CT 0.92± 0.01 0.85± 0.02 0.62± 0.09
Isgum et al. [53] 29 CT – 0.78± 0.04 –
Xie et al. [59] 60 CT 0.93± 0.01 – 1.39± 0.19
Proposed Method 100 CT 0.95± 0.01 0.90± 0.01 0.56± 0.08
DSC : Dice Similarity Coefficient;
MSD : Mean Surface Distance.

these landmarks especially in non-ECG-gated CT is difficult. Moreover, the aorta
diameter is poorly defined at the locations of the brachiocephalic artery, left-common
carotid artery, and left-subclavian artery. Consistent measurements in the arch require
landmark points in between branches that are not affected by this issue; however,
detecting such points automatically and robustly in non-contrast CT scans is difficult.
Furthermore, aortic dilatation is less common in the arch than in the ascending and
descending aorta. Therefore, in this chapter, we focus on the ascending and descending
aortas which clinically are of more interest. In non-contrast CT, diameters have been
mainly measured at the pulmonary artery bifurcation level [22, 74, 75, 89, 90]. The
measuring levels used in this chapter approximately cover the same area used in CTA
[21, 76, 88] but are easier to extract reliably in non-contrast and non-ECG-gated CT.

A limitation of our study in this chapter is that the method was validated only
on a relatively healthy screening population. Further investigation would be required
to evaluate the performance of abnormal aortic shapes or large aneurysms. However,
in all cases with aortic dilatation as indicated in the original radiology reports, the
obtained segmentation was correct. In our data, calcification in the aorta was assessed
by the Agatston score [91]. Visual inspection of the scans with Agatston score higher
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than 1500 for the entire aorta (58 out of 742 subjects) showed that the proposed
method segmented the calcifications correctly inside the vessel wall in all cases.

The proposed automatic method is a promising technique to accurately and
reproducibly assess subtle signs of aorta dilatation in non-ECG-gated, non-contrast
CT scans without any human interaction and could be used for efficient screening for
aortic dilatation as well as for monitoring of aortic change in clinical practice as part
of a comprehensive CT analysis, including lung screening.

Funding
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nology (MSRT), the Netherlands Organisation for Scientific Research (NWO), Dutch
Heart Foundation (The Hague, The Netherlands, grant number: 2013T093), and
Danish Ministry of Interior and Health.
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Figure 2.6: Bland-Altman plots for each measuring level from 2 cm below
the pulmonary artery bifurcation in the ascending aorta (AA)
until 3 cm below this level in the descending aorta (DA). The
measuring level, limits of agreement, and the mean difference
are displayed on the plots.
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Appendix

2.A Supplemental Material

Figure 2.A.1: Scatter plots for each measuring level from 2 cm below the
pulmonary artery bifurcation in the ascending aorta (AA)
until 3 cm below this level in the descending aorta (DA). The
measuring level, ICC, and the R2 Pearson correlation.
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Abstract

Background: Although the descending aortic diameter is larger in
smokers, data about thoracic aortic growth is missing. This chapter
aims to present the distribution of thoracic aortic growth in smokers
and compare it with the literature of the general population.

Methods: Current and ex-smokers aged 50-70 years from the longi-
tudinal Danish Lung Cancer Screening Trial were included. Mean and
95th percentile of annual aortic growth of the ascending aortic (AA)
and descending aortic (DA) diameters were calculated with the first
and last non-contrast computed tomography scans during follow-up.
Determinants of change in aortic diameter over time were investigated
with linear mixed models.

Results: A total of 1987 participants (56% male, mean age 57.4±4.8
years) were included. During a median follow-up of 48 months, mean AA
and DA growth rates were comparable between males (AA 0.12± 0.31
mm/year and DA 0.10± 0.30 mm/year) and females (AA 0.11± 0.29
mm/year and DA 0.13 ± 0.27 mm/year). The 95th percentile ranged
from 0.42 to 0.47 mm/year, depending on sex and location. Aortic
growth was comparable between current and ex-smokers and aortic
growth was not associated with pack-years. Our findings are consistent
with aortic growth rates of 0.08 to 0.17 mm/years in the general popu-
lation. Larger aortic growth was associated with lower age, increased
height, absence of medication for hypertension or hypercholesterolemia,
and lower Agatston scores.

Conclusions: This longitudinal study of smokers in the age range
of 50-70 years shows that ascending and descending aortic growth is
approximately 0.1 mm/year and is consistent with growth in the general
population.

Highlights:
• In current and ex-smokers, the ascending and descending aorta

grows on average 0.1 mm/year
• Aortic growth was comparable between current and ex-smokers

and was not associated with pack-years
• Thoracic aortic growth in smokers is consistent with cross-sectional

data from the general population
• Annual growth did not statistically significantly differ between

males and females
• Based on 95th percentiles, aortic growth of 0.5 mm/year can be

considered the upper limit of normal
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3.1 Introduction

Dilatation of the thoracic aorta is associated with an increased risk of aortic dissection
[87], with high mortality rates of up to 50% in the first 30 days [30]. In addition to the
absolute diameter, the fast growth of 3-5 mm/year is mentioned in the guidelines on the
diagnosis and treatment of aortic diseases as an important risk factor for dissection and
is, therefore, an additional indication to perform preventive surgery [76, 92]. However,
data about risk factors for fast aortic growth is scarce. It has been shown that patients
with a bicuspid aortic valve or Marfan syndrome show larger aortic growth rates than
the general population [93]. Smoking is associated with a larger diameter of the aortic
arch and descending aorta [22, 94, 95] and with larger aortic growth of the abdominal
aorta [96]. Whether smoking is associated with faster thoracic aortic growth is still
unknown. With the use of a large prospective longitudinal cohort study, the Danish
Lung Cancer Screening Trial (DLCST), we aimed to investigate whether aortic growth
is larger in current or former smokers when compared to the available cross-sectional
studies of the general population. With our longitudinal data of the thoracic aortic
growth, we will also be able to identify risk factors for fast growth in this subgroup of
the population.

3.2 Methods

3.2.1 Study Population

Participants were recruited from DLCST (www.ClinicalTrials.gov, registration number:
NCT 00496977), a randomized controlled trial conducted between 2004 and 2010.
Participants in the DLCST volunteered in response to local media advertisements.
Current and former smokers aged 50-70 years with at least 20 pack-years and forced
expiratory volume in the first second (FEV 1) of > 30% of predicted value were
included. Participants with body weight above 130 kg, previous treatment for any kind
of cancer within 5 years, tuberculosis within 2 years, and any serious illness with life
expectancy < 10 years were excluded. The primary aim of this Randomized Control
Trial (RCT) was to investigate the effect of computed tomography screening on lung
cancer mortality. No statistically significant effects of CT screening on lung cancer
mortality were found. The study was approved by the National Ethics Committee
of Denmark (identification no. H-KA-02045, supplementary protocol 20148) and all
participants gave written informed consent. The study design is explained in more
detail before [6].

In the DLCST study, 2052 participants were randomized to the screening group,
which received annual multidetector computed tomography (MDCT) during a 5 year
period. These MDCT scans provided the opportunity to perform a post-hoc analysis
in which the aortic growth was measured over a long period. For this study, we
excluded participants with < 1-year follow-up between the first and last CT scans
(n=65) because this follow-up period was too short to measure growth accurately.
Therefore, overall, 1987 participants were included in the current study.

Clinical characteristics regarding smoking status, history of stroke and ischemic
heart disease, medical treatment for diabetes, hypertension or hypercholesterolemia,
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and Agatston calcium scores (of the ascending aorta + arch and of the descending
aorta) were collected at baseline as previously defined and described [91]. The Agatston
calcium score is a measure of arterial calcium on computed tomography. The calculation
is based on the weighted density score given to the highest attenuation value (HU)
multiplied by the volume of the calcification. The Agatston score of the ascending
aorta, aortic arch, and descending aorta were assessed by one observer using Vitrea
v.6.0 (Vital Images, Inc., MN, USA). A standardized procedure for calcium scoring
with a threshold of 130 Hounsfield units (HU) was used to identify aortic calcifications.

3.2.2 Computed Tomography Imaging

All non-ECG-gated, non-contrast CT scans were performed in a single institution
with a 16-row Philips M × 8000 MDCT scanner, Philips Medical Systems, Eindhoven,
the Netherlands. Scans were performed in supine position after full inspiration in the
caudocranial scan direction including the entire rib cage and upper abdomen with 120
kV and 40 mAs. Scans were performed with spiral data acquisition with the following
parameters: section collimation, 16× 0.75 mm; pitch, 1.5; and rotation time of 0.5
s. The obtained data were reconstructed with a slice thickness of 1 mm and a hard
reconstruction algorithm (Philips D kernel).

3.2.3 Measurements of Aortic Diameter

Aortic diameters were measured with the use of an automatic method, which is
validated in 100 participants showing a good agreement with manual aortic diameter
measurements [97]. The method combines multi-atlas registration to obtain seed
points, aorta centerline extraction, and an optimal surface segmentation approach
[69] to extract the aorta surface around the centerline. From the extracted 3D
aorta segmentation, the average diameters of the ascending aorta and descending
aorta at the level of the pulmonary artery bifurcation were computed from the
cross-sectional area measured at cross-sectional slices perpendicular to the extracted
centerline (Section 3.2.3). The aortic wall with possible calcification was included in
the measurements. In 29 participants, an error occurred in the automatic method for
centerline extraction, and therefore no aortic diameters were automatically computed.
The ascending and descending aortic diameters for these cases were measured manually
by drawing the centerline and cross-sectional vessel contour perpendicular to the
centerline at the pulmonary bifurcation level as described in detail in our previous
work [97]. In the remaining 1958 subjects with accurate centerline extraction, we
visually checked the following cases to identify inadequate measurements as a result
of the automatic method: (1) all outliers of the aortic diameter at baseline and
follow-up defined as 2.7 standard deviation above or beneath the median; (2) all
subjects who showed aortic growth or decline of > 3.5 mm; and (3) a random sample
of 200 images (100 baseline and 100 follow-up scans in the same subjects). From the
randomly selected 200 scans, only 3 (1.5%) at the ascending aorta and 4 (2%) at the
descending aorta showed a slight over or under segmentation. Overall, in 68 subjects,
adequate measurements of the automatic method were not available due to inadequate
segmentation. Also, the aortic diameters for these 68 cases were measured manually
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Figure 1: Measurements of the average ascending and descending
aortic diameter. A 3D image of the automatic tool which ex-
tracts the centerline (blue) and the surface of the aorta (red) to
compute the ascending (AA) and descending aortic (DA) diameters
at the level of the pulmonary artery bifurcation. Cross-sectional
views of the ascending and descending aorta are shown left (AA)
and right (DA). Both cross-sections are overlaid with the auto-
matically extracted aortic area (in red). The average diameter is
computed as Diameter = 2

√
Area/π .

for both the ascending and descending aorta diameter. As a result, ascending and
descending aortic diameters and aortic growth were available in all 1987 participants.

3.2.4 Statistical Analysis
Data are expressed as mean ± SD or as median ± interquartile range in case the distri-
bution was not normal. Data distribution was checked using histograms. Categorical
variables are presented as frequencies with percentages. To present the distribution of
annual aortic growth, the annual growth rate was calculated by subtracting the aortic
diameter measured on the baseline CT scan from the aortic diameter measured on the
last scan during follow-up and subsequently dividing this value by the number of years
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between the baseline and last follow-up scan. The Student’s t-test or Mann-Whitney
test was used to compare means between two groups at baseline. Comparison of
categorical variables was made using the Chi-square test or the Fisher’s exact test.
For the analyses of Agatston scores, we used natural log-transformed values and added
1.0 mm3 to the nontransformed Agatston values (Ln(calcification volume + 1)) to
deal with values of zero. For pack-years, we used the log-transformed values.

To investigate whether change in aortic diameter was associated with baseline
characteristics, linear mixed-effects (LME) models were used. The ascending and
descending aortic diameters were consecutively used as the dependent variable. Time
was entered as a random effect. First, all baseline variables were entered concomitantly
as independent variables to identify whether they were independently associated with
the aortic diameter (while considering that the aortic diameter was measured twice
in each participant by using the LME). All baseline characteristics (i.e. age, height,
weight, sex, medical treatment, medical history, pack-years, Agatston scores) were
deemed clinically relevant based on previous research [22, 95, 98]. Second, interaction
terms of each of the baseline variables with time were entered consecutively into the
multivariable model to assess the independent effect of each of these variables on the
change of aortic diameter over time. We also examined the interaction term between
time and large aortic diameter (ascending aorta > 40 mm and descending aorta > 30
mm) to assess whether participants with larger aortic diameters show larger changes
in aortic diameter over time. All interaction terms that were found to be significant
were presented in the figures. We checked whether the assumptions underlying linear
mixed-effects modeling (linearity and homoscedasticity) were satisfied.

The IBM SPSS® statistics 21.0 software was used to analyze the data, and a
p-value of < 0.05 was considered significant.

3.3 Results

3.3.1 Study population

The baseline characteristics of the 1987 included participants are presented in Table 1
Table 1 for the total group and separately for males and females. The mean age of
our cohort was 57.4± 4.8 years. Antihypertensive medication was used by 14.8% of
the participants.

3.3.2 Aortic Diameters and Aortic Growth

The distribution of the aortic diameters for both males and females can be found in
Supplemental Figure 3.A.1. The ascending and descending aortic diameters at baseline
were significantly larger in males (ascending aorta 36.0± 3.5 mm and descending aorta
28.2± 2.2 mm) than in females (ascending aorta 33.6± 3.2 mm and descending aorta
26.1± 2.2 mm). A baseline aortic diameter of > 40 mm at the ascending aorta was
found in 167 (8%) participants. For the descending aorta, a baseline aortic diameter of
> 40 mm was found in 1 (0%) participant and > 30 mm in 257 (13%) participants. The
distribution of annual aortic growth for both males and females is shown in Figure 2
and was calculated during a median follow-up of 48 months (IQR 47− 50 months).
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Figure 2: Annual growth of the ascending and descending aorta.
Lighter bars represent a decrease in diameter, and darker bars
represent an increase in diameter. No differences were found
between males and females in ascending aortic growth (p = 0.394)
and descending aortic growth (p = 0.087).

Annual growth did not statistically significantly differ between males and females for
the ascending aorta (males 0.12± 0.31 mm/year and females 0.11± 0.29 mm/year)
and descending aorta (males 0.10± 0.30 mm/year and females 0.13± 0.27 mm/year).
In addition, the aortic growth did not differ significantly between current or former
smokers for the ascending aorta (current 0.12± 0.30 mm/year and former 0.13± 0.29
mm/year) and descending aorta (current 0.11± 0.30 mm/year and former 0.11± 0.25
mm/year). In total, 621 (31%) participants showed decrease of the ascending aortic
diameter in time and 604 (30%) of the descending aortic diameter. Eighteen people
(1%) had an aortic growth of > 1 mm/year, which in 9 persons only occurred in the
ascending aorta (2 former and 7 current smokers), in 6 persons only in the descending
aorta (all current smokers) and in 3 persons in both the ascending and descending
aorta (one former and two current smokers). In two people (0.1%) > 2 mm/year (both
descending aorta) was found and only one (0.05%) showed > 3 mm/year.

3.3.3 Determinants of Aortic Growth
The association between the baseline characteristics and the aortic diameter is shown
in Supplemental Table 3.A.1. Higher age, larger height and weight, hypertension, and
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Table 1: Baseline characteristics. Values are presented as mean (SD) or
median (IQR) for continuous variables and N (%) for dichotomous
variables. Missing values were present for age (n=1, 0.0%), weight
(n=2, 0.0%) and Agatston scores of the aorta (n=8, 0.4%).

Total
(n=1987)

Males
(n=1111)

Females
(n=876)

p-value

Age (years) 57.4± 4.8 57.8± 4.8 56.9± 4.8 < 0.001
Height (cm) 173.8± 8.8 179.4± 6.3 166.7± 6.0 < 0.001
Weight (kg) 76.5± 14.2 83.2± 12.1 68.0± 12.0 < 0.001
Medical treatment

Hypertension, N (%) 294(14.8%) 158(14.2%) 136(15.5%) 0.416
Hypercholesterolemia, N (%) 168(8.5%) 109(9.8%) 59(6.7%) 0.014
Diabetes, N (%) 39(2.0%) 30(2.7%) 9(1.0%) 0.008

History of stroke, N (%) 34(1.7%) 24(2.2%) 10(1.1%) 0.082
History of ischemic heart disease, N (%) 40(2.0%) 36(3.2%) 4(0.5%) <0.001
Current smoking, N (%) 491(24.7%) 274(24.7%) 217(24.8%) 0.955c

Pack-yearsa 34 (27-42.5) 36 (29-46) 31 (25.5-39) < 0.001b

Agatston score ascending aorta + archa 36 (0-273) 33 (0-247) 39.5 (0-303.8) 0.795b

Agatston score descending aortaa 0 (0-38) 0 (0-45) 0 (0-25) 0.005b

Baseline ascending aortic diameter 35± 4 36± 3 34± 3 < 0.001
Baseline descending aortic diameter 27± 2 28± 2 26± 2 < 0.001

aNontransformed median score with interquartile range
bMann-Whitney test
cFisher’s exact test

higher Agatston scores were associated with larger ascending aortic diameters, while
female and diabetes were associated with smaller ascending aortic diameters. For the
descending aorta, higher age, height, weight and Agatston scores were associated with
larger aortic diameters, while female and hypercholesterolemia were associated with
smaller aortic diameters.

Figure 3 shows the significance of the interaction terms between baseline variables
and time from the linear mixed-effects models. Larger height was associated with a
larger increase in aortic diameter over time. Higher age, hypertension, hypercholes-
terolemia, and Agatston scores were associated with a smaller increase in ascending
aortic diameter over time. For the descending aorta, higher age, hypertension, and
higher Agatston score of the descending aorta were associated with a smaller change
of the descending aorta over time.

3.4 Discussion

This is the first study presenting longitudinal data on sex-specific growth of the
ascending and descending aorta in a large population of current or former smokers
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Figure 3: Mixed models including interaction terms between base-
line variable and time in years. All models were adjusted
for sex, age, height, weight, hypertension, hypercholesterolemia,
diabetes, history of stroke, history of ischemic heart disease, pack-
years, Agatston score of the ascending aorta and aortic arch, and
the Agatston score of the descending aorta. The continuous vari-
ables age and height were dichotomized at their median value. Age,
height, and Agatston scores were added as a continuous variable
in the interaction terms.
*Interpretation: A higher age is associated with less increase in
the ascending aortic diameter over time (in years).
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with at least 20 pack-years. Males showed a growth of 0.12± 0.31 mm/year for the
ascending aorta and 0.10 ± 0.30 mm/year for the descending aorta. In females, we
found a growth of 0.11±0.29 mm/year for the ascending aorta and 0.13±0.27 mm/year
for the descending aorta. Previous studies showed that smoking is associated with
larger diameter of the aortic arch or descending aorta [22, 94, 95], suggesting faster
growth. As such, it would be expected that the descending aortic growth will also
be faster in our study compared to the general population. Nevertheless, our study
showed comparable or even smaller growth rates than the two largest cross-sectional
cohort studies that reported on the association between age and descending aortic
diameter. Kalsch et al. [75] calculated an increase of 0.17 mm for males and 0.16 for
females per 1-year increase in age. Wolak et al. [22] showed that the descending aortic
diameter was 0.13 mm larger each 1-year increase in age, which is comparable to our
results. Only one study, the Framingham Heart Study [98], measured the thoracic
aortic growth longitudinally in a healthy population, but they solely measured the
growth at the level of the aortic root. In addition, we have also found no association
between pack-years and descending aortic growth. Therefore, we can conclude that
our data do not support the hypothesis that descending aortic growth would be larger
in current or former smokers compared to the general population. Since there is no
association found previously between the ascending aortic diameter and smoking, we
did not expect any effect of smoking on the ascending aortic growth, which was also
confirmed by our results.

The conclusions must be interpreted with caution, consiering the measurement
variability of non-ECG-gated, non-enhanced CT. In previous literature, the mean
intra-observer variation between two measurements of the ascending aorta found in
contrast CT scans is found to be 0.1− 0.3 mm for manual measurements [86, 99, 100].
Possibly for non-contrast CT scans it is larger. The decrease in AA and DA diameter
in 31% and 30% of the participants, respectively, is in part caused by this measurement
variability. However, the absolute mean difference between the first and last CT scan,
not divided by the amount of years in between the two scans, was 0.46 ± 1.05 mm
for the ascending aorta and 0.44± 0.97 mm for the descending aorta. This is higher
than we would expect based on the intra-observer variability of 0.1 − 0.3 mm and
therefore, our change in aortic diameter could not only be explained by measurement
variability. Moreover, the use of identical CT scanners and automated segmentation
for both baseline and follow-up measurements is an important strength of this study
because it prevented us from additional inter-observer and inter-modality variability.

3.4.1 Determinants of Aortic Growth

From previous literature, we know that body measurements are important in the
assessment of aortic diameters [28, 101]. For instance, in Turner patients with typically
a short stature, the use of the aortic size index (ASI) is advised, which corrects for
body surface area [102]. For aortic growth, little data is available on the effect of
body measurements. The Framingham Heart Study [98] included a slightly younger
population (mean age 50± 14 years) with comparable BMI (25.5± 4.4 kg/m2) and
showed that BMI was correlated with change in aortic root diameter over time. We
examined height and weight separately and showed that the effect of body measures
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on the ascending aortic growth is mainly based on height.
Higher age was associated with both less ascending and descending aortic growth.

Aortic remodeling over the adult life is accompanied by reduced aortic elasticity [103]
and reduced tortuosity with increased curvature [104]. Because of these changes,
one may expect that aortic growth will decrease at older age, and aortic diameters
will stabilize. Treatment for hypertension was associated with slower ascending
and descending aortic growth. Since higher blood pressure is associated with larger
descending aortic diameters [95], we would assume that participants with hypertension
would show larger descending aortic growth. However, patients being treated for
hypertension may represent the group with controlled blood pressure, and the group of
patients who are not receiving treatment may contain patients with uncontrolled blood
pressure. Because we had no information about the exact blood pressure, which is a
limitation of this study, we could not verify this assumption. This could also be the case
with hypercholesterolemia because patients with treatment for hypercholesterolemia
showed a smaller increase in aortic diameter. An ascending aortic diameter of > 40
mm or descending aortic diameter of > 30 mm was not associated with change in
diameter over time in our cohort. Although patients with aortic aneurysms show
larger growth rates [105], we may have had too few patients with aortic dilatation in
our cohort to prove this.

A recent systematic review, which included all causes of thoracic aortic aneurysms,
showed a mean growth rate in patients from 0.2 to 2.8 mm/year for ascending aorta
and aortic arch, while those for descending and aorta ranged from 1.9 to 3.4 mm/year
[105]. Detaint et al. [93] observed at the level of the ascending aorta an aortic growth
of 0.12± 1.0 mm/year in Marfan syndrome and 0.42± 0.6 mm/year in bicuspid aortic
valve (BAV). These growth rates of patients with a bicuspid aortic valve or degenerative
aortapathy are larger than found in our cohort with current and ex-smokers. In current
guidelines for thoracic aortic diseases, different definitions are used for extensive growth
(> 3 mm or > 5 mm), which warrants preventive surgery. Our study showed only two
cases with growth > 2 mm/year and only one with > 3 mm/year, which suggests that
extensive growth, defined by the guidelines, is relatively rare in the general smoking
population. Based on our 95th percentiles, annual aortic growth of 0.5 mm is the
upper limit of normal in current or former smokers.

3.4.2 Limitations

One large limitation of our study is that we did not include our own reference group
of healthy subjects. The literature only contained cross-sectional data with the mean
thoracic aortic growth rate of the general population, and therefore we could not
compare the distribution (95th percentile) of aortic growth rates in our group with a
reference group. Another limitation is the lack of information about diseases related
to aortic pathology, such as connective tissue disease and bicuspid aortic valve. This
information was not available because the primary aim of this RCT was to investigate
the effect of computed tomography screening on lung cancer mortality. Because this
study was a post-hoc analysis, thoracic aortic growth was neither a primary nor a
secondary outcome measure of the original trial. The limited age range of 50−70 years
also prevents the generalization of our results to the total population. In addition,
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the limited aortic growth may have limited the power of our analysis. However, our
cohort was large enough to find a significant aortic growth for both the ascending and
descending aorta, and also several determinants were found to be significant associated
with the change in thoracic aortic diameter over time. Another limitation of this study
is the use of non-ECG-gated, non-contrast CT scans. Non-ECG-gated CT scans show
significantly more motion artifacts than ECG-gated CT scans [106], which likely affect
aortic measurements. The use of contrast-enhanced CT is preferred for thoracic aortic
measurements but could cause unnecessary complications. However, both baseline
and follow-up measurements were made in the same manner.

An issue that warrants consideration in our study is the fact that we examined
a total of 13 variables. If we were to account for multiple testing using a Bonferroni
correction, only age would remain statistically significant for the ascending aorta,
while hypertension and Agatston score would remain statistically significant for the
descending aorta. However, our study was not data-driven but hypothesis-driven; the
choice of variables we investigated was based on previous findings from the literature.
These variables were thus already implicated in the disease process by earlier studies.
Correcting for multiple testing in spite of this hypothesis-driven approach could result
in failure to recognize potentially interesting factors. In any case, our findings may be
considered as indicative of a potential association, and these hypothesis generating
findings merit validation in other large studies.

3.5 Conclusion

This longitudinal study of current and ex-smokers shows that the ascending and
descending aorta grows on average 0.1 mm/year in both males and females in the age
range of 50− 70 years. The aortic growth rates are consistent (or even smaller) with
the numbers available in cross-sectional studies of the general population. According
to the 95th percentile, an aortic growth of > 0.5 mm/year can be considered the upper
limit of normal. Larger change of aortic diameters in time was associated with lower
age, increased height, absence of medication for hypertension or hypercholesterolemia,
lower Agatston score, and a large thoracic aortic diameter.
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Appendix

3.A Supplemental Material

Figure 3.A.1: Baseline ascending and descending aortic diameters.
Males show a larger baseline diameter than females for both
the ascending and descending aortic diameters (p < 0.001).
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Table 3.A.1: Mixed models for ascending and descending aortic di-
ameters.

Regression coefficient (95% CI) p-value

A
sc

en
di

ng
A

or
ta

Time of measurement 0.12 (0.11;0.13) < 0.001
Female† -0.94 (-1.35;-0.52) < 0.001
Age, 10 years 1.37 (1.04;1.70) < 0.001
Height, cm 0.06 (0.04;0.09) < 0.001
Weight, kg 0.05 (0.03;0.09) < 0.001
Hypertension 0.61 (0.20;1.03) 0.004
Hypercholesterolemia -0.40 (-0.95;0.15) 0.151
Diabetes -1.30 (-2.32;-0.28) 0.012
History of stroke 0.72 (-0.35;1.79) 0.187
History of ischemic heart disease -0.37 (-1.43;0.69) 0.490
Pack-years‡ 0.03 (-0.41;0.47) 0.894
Agatston score ascending aorta + arch‡ 0.08 (0.02;0.14) 0.012
Agatston score descending aorta‡ 0.09 (0.03;0.16) 0.006

D
es

ce
nd

in
g

A
or

ta

Time of measurement 0.11 (0.10;0.12) < 0.001
Female -0.85 (-1.10;-0.59) < 0.001
Age, 10 years 1.52 (1.32;1.73) < 0.001
Height, cm 0.04 (0.02;0.05) < 0.001
Weight, kg 0.04 (0.03;0.05) < 0.001
Hypertension 0.15 (-0.11;0,41) 0.251
Hypercholesterolemia -0.52 (-0.86;-0.18) 0.003
Diabetes -0.28 (-0.91;0.35) 0.387
History of stroke -0.49 (-0.15;0.17) 0.149
History of ischemic heart disease 0.29 (-0.36;0.95) 0.383
Pack-years‡ 0.10 (-0.18;0.37) 0.487
Agatston score ascending aorta + arch‡ 0.04 (0.00;0.08) 0.048
Agatston score descending aorta‡ 0.12 (0.08;0.16) < 0.001

∗ All baseline variables were entered concomitantly as independent variables to identify
whether they were independently associated with the aortic diameter (while taking into
account that the aortic diameter was measured twice in each participant by using the LME)
† Interpretation: the ascending aortic diameter is on average 0.94 mm smaller in females
than in males.
‡ Log transformed
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Abstract

Purpose: Accurate segmentation of the pulmonary arteries and
aorta is important due to the association of the diameter and the shape
of these vessels with several cardiovascular diseases and with the risk of
exacerbations and death in patients with COPD. We propose a fully
automatic method based on an optimal surface graph cut algorithm to
quantify the full 3D shape and the diameters of the pulmonary arteries
and aorta in non-contrast computed tomography (CT) scans.

Methods: The proposed algorithm first extracts seed points in the
right and left pulmonary arteries, the pulmonary trunk, and the ascend-
ing and descending aorta using multi-atlas registration. Subsequently,
the centerlines of the pulmonary arteries and aorta are extracted by a
minimum cost path tracking between the extracted seed points, with
a cost based on a combination of lumen intensity similarity and multi-
scale medialness in 3 planes. The centerlines are refined by applying
the path tracking algorithm to curved multi-planar reformatted scans
and are then smoothed and dilated non-uniformly according to the
extracted local vessel radius from the medialness filter. The resulting
coarse estimates of the vessels are used as initialization for a graph-cut
segmentation. Once the vessels are segmented, the diameters of the
pulmonary artery (PA) and the ascending aorta (AA) and the PA:AA
ratio are automatically calculated both in a single axial slice and in a
10 mm volume around the automatically extracted pulmonary artery
bifurcation level. The method is evaluated on non-contrast CT scans
from the Danish Lung Cancer Screening Trial. Segmentation accuracy
is determined by comparing with manual annotations on 25 CT scans.
Intra-class correlation (ICC) between manual and automatic diame-
ters, both measured in axial slices at the pulmonary artery bifurcation
level, is computed on an additional 200 CT scans. Repeatability of
the automated 3D volumetric diameter and PA:AA ratio calculations
(perpendicular to the vessel axis) are evaluated on 118 scan-rescan pairs
with an average in-between time of 3 months.

Results: We obtained a Dice segmentation overlap of 0.94±0.02 for
pulmonary arteries and 0.96± 0.01 for the aorta, with a mean surface
distance of 0.62 ± 0.33 mm and 0.43 ± 0.07 mm , respectively. ICC
between manual and automatic in-slice diameter measures was 0.92
for PA, 0.97 for AA, and 0.90 for the PA:AA ratio, and for automatic
diameters in 3D volumes around the pulmonary artery bifurcation level
between scan and rescan was 0.89, 0.95, and 0.86, respectively.

Conclusions: The proposed automatic segmentation method can
reliably extract diameters of the large arteries in non-ECG-gated non-
contrast CT scans such as are acquired in lung cancer screening.
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4.1 Introduction

Cardiovascular diseases and Chronic Obstructive Pulmonary Disease (COPD) are
among the major leading causes of death globally [1]. In the search for early identifi-
cation of individuals at risk of cardiovascular disease in COPD [2, 4], imaging-based
assessments of the shape and size of the pulmonary artery and aorta have rapidly
gained interest. Changes in these two large arteries may indicate cardiovascular dis-
eases including pulmonary hypertension [19, 20], aortic dilatation and aortic aneurysm
[22], and coarctation of the aorta [23]. The pulmonary artery to ascending aorta
diameter ratio (PA:AA) at the level of pulmonary artery bifurcation is shown to be
associated with the presence of pulmonary arterial hypertension [20] and is associated
with poorer health status [107], increased risk of severe exacerbations [9, 25], and
increased mortality [26] in patients with COPD. Performing diameter measurements
manually is labor-intensive and time-consuming and has high intra- and inter-observer
variability. Diameter measurements derived from 3D segmentations are more reliable
but are even more time-consuming to obtain manually. To accurately assess the
pulmonary arteries and aorta, automatic 3D segmentation is therefore desirable.

With the growing use of low-dose non-contrast thoracic CT scans for lung cancer
screening [6, 16, 18], there is an opportunity to measure the pulmonary arteries and
aorta in these scans in order to investigate the presence of early-stage cardiovascular
disease and/or predict complications in patients with COPD. However, in non-contrast
CT, segmentation of the aorta and especially the pulmonary artery is challenging
due to proximity to other structures with similar intensity values. Furthermore, in
non-ECG-gated CT as is commonly used in lung screening, additional challenges are
motion artifacts and unclear vessel boundaries at the regions close to the heart.

In the literature, automated segmentation methods of the pulmonary arteries
and aorta have been presented mainly for Magnetic Resonance Imaging [41] and
contrast-enhanced CT Angiography (CTA) [48, 49] which have high contrast between
vessels, fat, and surrounding muscles. However, these methods do not translate
well to non-contrast CT, where the vessel boundaries are not well defined in many
places. Therefore, relatively fewer studies can be found on non-contrast CT scans,
on the segmentation of the aorta [53–56, 58–63] and especially the pulmonary artery
containing the pulmonary trunk, left, and right pulmonary arteries [64, 65].

Among existing segmentation methods, those using a shape prior [53, 59, 60, 65]
generally obtain good segmentation results on non-contrast CT scans. Xie et al. [59,
65] employed a cylinder matching method to extract the centerline of the pulmonary
artery trunk and aorta. To segment the vessels, they used geometric constraints from
adjacent organs obtained from a pre-computed anatomy label map. Although the
obtained results are good, an anatomy map is not always available. Another approach
is to use graph cut methods with shape priors. Graph cuts can achieve a global
optimum with low processing times and it is possible to incorporate shape constraints
in the graph structure. Graph cut methods have been applied to different imaging
modalities for artery segmentation [67, 68] and have obtained promising results in
many tasks. Deng et al. [67] proposed a graph-cut method using random forest based
discriminative features on non-contrast CT for aorta segmentation. They achieved
a high segmentation performance in the abdominal aorta, however, they have not
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applied their method to the pulmonary artery, which is more challenging to segment.
This chapter presents an optimal surface graph cut-based method to segment the

pulmonary arteries and aorta. We adopt the optimal surface graph cut approach by
Petersen et al. [69], originally proposed for airway segmentation, which incorporates
a shape prior via constructing the graph based on flow lines traced from an initial,
smoothed segmentation. The non-intersecting flow lines guarantee non-self-intersecting
surfaces and make it possible to segment high curvature areas such as the bifurcation
of the pulmonary artery and the aortic arch while guaranteeing a shape that is similar
to the initialization shape.

A preliminary version of the work presented in this chapter is presented in [108]. In
the current work, the proposed method is fully automated and includes a multi-atlas
registration technique to automatically extract seed points and a landmark for the
level of the pulmonary artery bifurcation. At the level of the extracted landmark, the
PA and AA diameters and PA:AA ratio is automatically extracted. The current work
also provides an extensive validation using a larger data set, comparison with manual
measurements, and scan-rescan repeatability assessment. Unlike our previous work in
Chapter 2 focusing on aorta segmentation [97], in this chapter, we segment both the
pulmonary artery and aorta with a more robust landmark detection technique.

4.2 Methods

The main steps of our proposed method are (1) Pre-processing; (2) Automatic seed
point and landmark extraction with multi-atlas registration; (3) Centerline extraction
for vessel localization; (4) Vessel segmentation using an optimal surface graph cut
algorithm; (5) 3D diameter measurement and biomarker extraction. An overview of
our method is shown in Figure 1.

4.2.1 Pre-processing

To reduce the unnecessary computational cost a bounding box is calculated around
the lungs. The lungs are segmented using thresholding and morphological smoothing
similar to Lo et al.[109]. Thereafter, the scans are cropped using a bounding box
around the lungs Figure 2 (a). Then, low and high intensity values are clipped to
prevent the centerline extraction and vessel segmentation attracting to the heart-lung
or bone-lung borders, which often have a higher gradient than the boundary of the
vessels of interest. Truncating intensities higher than 150HU, such as those presented
in bones, or lower than -150HU, generally presented in the lungs, makes the vessel
borders relatively stronger and easier to detect. The gradient magnitude of an axial
slice shown in Figure 2 (b-e) illustrates the effect of pre-processing on enhancing the
edges of the pulmonary arteries and aorta.

4.2.2 Seed point Extraction

Seed points are obtained with a multi-atlas registration method similar to the one
presented in Tang et al. [82]. A set of N atlas images Ai, i = 1, 2, ..., N and their
corresponding label images Lai, Lsi are used. Lai includes the manual segmentation of
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 a)                              b)                  c)                 d)                  e)

Figure 2: CT pre-processing. An axial view of a CT scan with the
bounding box in red is in(a), zoomed-in view in (b), and the pre-
processed scan in (d). The corresponding gradient magnitude of
(b) is in (c), and the gradient magnitude of the pre-processed scan
is in (e). Strong edges at lung and bone borders (b, c) are removed
during pre-processing (d, e). Images are overlaid with the manual
PA (green) and aorta (yellow) annotations.

the pulmonary arteries and aorta and Lsi includes manual seed points at the left and
right pulmonary arteries before the secondary bifurcations, pulmonary artery trunk,
pulmonary artery bifurcation point, ascending aorta at the sinotubular junction, and
descending aorta at the diaphragm level. To address the large variation in the shape
and the size of these arteries N is set to 25 atlases.

The multi-atlas registration approach consists of three stages. First, each of the
atlas images Ai is registered to the target image T using an affine transformation
followed by a nonrigid registration using a B-spline transformation model. Normalized
mutual information is used as the similarity metric. The ten registered atlas images
with the highest similarity (also defined by normalized mutual information) to T are
selected, and the corresponding transformations are applied to Lsi images to propagate
the seed points to T . Finally, deformed Lsi images are combined, and the final seed
points are obtained by averaging the seed point locations per label.

The seed points of the aorta, left, right, and the trunk of the pulmonary artery
are used in the next step to initialize the centerline extraction. The seed point of the
pulmonary artery bifurcation level is the landmark level for measuring the pulmonary
artery and aorta diameters as well as the PA:AA ratio.

4.2.3 Centerline Extraction

We applied a minimum path tracking algorithm to extract the vessel centerlines
between the automatically extracted seed points. For the cost function, we used
a weighted combination of a medialness filter [110], m(x), and a lumen intensity
similarity filter s(x), similar to Tang et al. [82]. Medialness, m : Ω → [0, 1], is a
multi-scale filter which uses the circularity assumption and accumulates edge responses
along different circle sizes, within a defined radius range of [Rmin, Rmax]. This gives
strong responses in the voxels in the center of the vessel and drops rapidly towards
the vessel boundary. Simultaneously, we extracted an estimate of the vessel radius at
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each voxel, r(x) : Ω → [Rmin, Rmax] by extracting the radius of the circle with the
strongest edge response at each voxel location. We applied the medialness filter in the
axial, coronal, and sagittal planes, with a different radius range for the pulmonary
arteries and for the aorta. The medialness for the pulmonary arteries is defined to be
the maximum medialness of axial, coronal, and sagittal medialness filters and for the
aorta, it is defined to be the maximum medialness of axial and coronal medialness
filters.

In regions with unclear vessel boundaries, medialness alone is not sufficient to
ensure correct centerlines. Therefore, to prevent the vessel centerline from moving
outside the vessel lumen, we added a lumen intensity similarity term s : Ω → [0, 1]
defined as:

s(x) =
{

1 (µ− δ) ≤ I(x) ≤ (µ+ δ)

e
−
(
I(x)−µ√

2δ

)2

elsewhere
(4.1)

where I is the intensity of the voxel at position x. Tang et al.[82] defined µ and δ as
the mean and standard deviation of intensity in small regions around the seed points.
In our case, they are selected as the mean and standard deviation of intensity in the
manual annotations of the pulmonary arteries and aorta in 25 CT scans, which is
µ = 52HU and δ = 46HU . Structures with higher intensity, such as bones, or lower
intensity, such as lungs, get a low response.

From both m(x) and s(x) high responses were obtained in the vessel center
and low responses in the background. The cost function C(x) was defined by an
inverted combination of weighted m(x) and s(x) where the factors α and β control the
importance of each term, respectively (C(x) = 1

ε+m(x)αs(x)β ). From the constructed
cost function, the minimum cost path C(x) was obtained by applying Dijkstra’s
algorithm between the automatically extracted seed points for each vessel, i.e. one
path between the endpoints of the aorta and two paths between the two endpoints of
the left and right pulmonary arteries and its trunk.

Finally, to improve centerline accuracy in areas with high curvature, the centerlines
were smoothed with a Gaussian filter with standard deviation σc and then were
refined by re-computing the minimum cost path after curved multi-planar reformatting
(CMPR) perpendicular to the previous centerline [82]. An improved estimate of vessel
radius r(x) was extracted from medialness at the CMPR step. The centerline for
the entire pulmonary was obtained as the union of centerlines for the right and left
pulmonary arteries: CPA = CRP ∪ CLP .

4.2.4 Vessel Segmentation

To segment the vessels, we applied an optimal surface graph cut algorithm [69], that
finds a globally optimal solution of a given cost function. By using non-intersecting
columns based on flow lines from a predefined initial shape, (self)intersecting surfaces
can be avoided and the topology of the prior shape is preserved. This makes seg-
mentation of high curvature surfaces possible. To construct a graph with nodes and
edges, an initial coarse segmentation is used to generate the graph columns. We used a
non-uniform morphological dilation of the vessel centerlines as the initial segmentation.
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Each centerline point was dilated with a spherical structuring element, with a radius
extracted from the radius map r(x). This non-uniform centerline dilation provides
information about the shape of the vessel and results in a more accurate vessel surface
than the uniform centerline dilation used in Arias et al. [68].

Once we computed the initial segmentation, we converted it to a mesh and con-
structed graph columns based on flow lines. The resolution of the initial mesh was
set to 0.5mm × 0.5mm × 0.5mm. The flow lines were obtained by tracing the gra-
dient of a smoothed version of the initial segmentation. A Gaussian kernel with a
standard deviation σ was used to smooth the initial segmentation. The flow lines
were traced from each mesh node, inward in the gradient direction and outward in the
negative gradient direction. Graph nodes were sampled in graph columns at regular
arc length intervals along the flow lines with a sampling interval set to 0.3 mm. The
graph nodes represent the possible image positions the vessel surface can take. A set
of edges which represent the association between nodes connects the nodes in the
graph. The two consecutive nodes in the same column are connected by directed edges
named intra-column edges. The cost of these edges represents local image information
associated with the border location and is chosen as the first-order derivative of the
image intensity along the graph column. In CT scans, the vessels have a higher image
intensity than the background therefore the intensity transitions from high to low and
the cost gets to its minimum in the border.

To encourage a smooth segmentation similar in shape to the initialization, "smooth-
ness penalty" edges (penalizing non-smoothness) were added as in [69]. These inter-
column edges connect the nodes in adjacent columns with a constant cost P , penalizing
solutions that deviate from the original shape. A minimum graph cut, minimizing
the total cost of edges being cut and separating the graph vertices into vessel and
background, provided the final segmentation. This minimization was solved with
a min-cut/max-flow optimization algorithm. Details of the optimal surface graph
segmentation approach can be found in Petersen et al. [69]

4.2.5 Diameter Measurement and PA:AA Ratio

In clinical practice, the diameter of the pulmonary artery (PA) and ascending aorta
(AA) and the PA:AA ratio are measured manually, usually in an axial slice at the
level of pulmonary artery bifurcation. This level is defined as the axial slice where
the pulmonary trunk bifurcates, ideally where the right and left pulmonary arteries
to appear to be of similar size. The selected slice may be one of a few axial slices
that fit this criterion, which is likely to lead to inconsistent measurements between
annotators and also between baseline and follow-up scans. Therefore, to ensure a
consistent measurement, we calculated the diameters from a 3D vessel segment of
10 mm length from the segmented pulmonary artery and aorta. The segment is
selected perpendicular to the vessel centerline from 5 mm before to 5 mm after the
automatically extracted landmark for the level of the pulmonary artery bifurcation.
The average diameter assuming a circular cross-section is computed from this segment
as Diameter = 2

√
0.1×volume

π . Subsequently, from the average diameters, the PA:AA
ratio is calculated. A 3D view of the segmented pulmonary arteries and aorta with
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the 10 mm segment and the cross-sections in the extracted landmark level is shown in
Figure 1.

For a meaningful comparison with diameters measured manually in axial slices, the
automatic diameters were also calculated in the axial slice at the same level and in the
same direction as the manual diameter measurement. Subsequently, the automatically
extracted PA:AA ratio in the axial view was compared to the manually measured
PA:AA ratio in the same view.

4.3 Experiments

4.3.1 Dataset and Manual Annotation

The 471 CT scans used in this study are from the Danish Lung Cancer Screening
Trial (DLCST) [6]. The study was approved by the Ethical Committee of Copenhagen
County and funded by the Danish Ministry of Interior and Health. A Multi-Detector
CT scanner (M×8000 IDT 16 row scanner, Philips Medical Systems) was used to
acquire scans at 120 kV/ 40 mAs at maximum inspiration breath-hold and without
cardiac gating. The scans have an in-plane isotropic resolution of 0.781× 0.781 and 1
mm slice thickness. Participants were current or former smokers between 50 and 70
years of age. Baseline CT scans of 235 participants, randomly selected, were used for
parameter optimization, method development, and method evaluation. In addition,
to assess the repeatability of the proposed method, 118 additional participants were
selected who had a baseline scan and a repeat scan after on average 3 months [minimum
2, maximum 5].

Manual annotations of the centerline and contours of the pulmonary arteries and
aorta were made using an in-house annotation tool developed in MeVisLab1 with a
similar framework as was described previously for carotid artery segmentation [78].
With this tool, first, the centerline of the vessels was drawn manually using the axial,
coronal, and sagittal views to compute a CMPR. Then the centerlines were checked
and modified if needed in the axial view of the CMPR generated every 1 mm along
the centerline. In longitudinal views at six different angles, equally spaced every 30◦,
longitudinal contours of the vessel were drawn manually. Subsequently, cross-sectional
contours were computed using spline interpolation through the intersection points
of the longitudinal contours with the cross-sectional planes. Finally, after checking
the cross-sectional contours in all cross-sections and adjusting them if required, the
contours were converted to a 3D binary image using variational interpolation [79]. The
window level/width for annotation was set to 200 HU/600 HU for all cases. For the
pulmonary arteries, a centerline and binary segmentation image were first created for
the pulmonary trunk + left pulmonary artery and trunk + right pulmonary artery
individually. Then, the segmentation for the entire pulmonary was obtained as the
union of these two segmentations.

With this tool centerlines of 35 CT scans (10 for optimizing the parameters of the
centerline extraction and 25 for full manual segmentation) and volumes of 25 CT scans
were annotated by an experienced observer (ZSG). Besides, an experienced physician

1https://www.mevislab.de/
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(DB) indicated the diameter of the pulmonary artery and ascending aorta at the level
of the pulmonary artery bifurcation in an additional 200 CT scans. This was done in
the axial view, in the slice where both the right and left pulmonary arteries appear to
be of similar size at the axial view.

4.3.2 Parameter Optimization

The centerline extraction parameters were optimized in a grid search on 10 CT scans
with manually drawn centerlines. The objective was to minimize the Mean Centerline
Distance (MCD) between the manual and automatic centerlines. The radius range
of the medialness filter, the cost function weights α and β, and the sigma σc for
centerline smoothing were optimized. From radius range of [5mm, 30mm] we obtained
a medialness radius range of [8mm, 16mm] for pulmonary arteries, and [12mm, 24mm]
for the aorta which agreed well with the radius range reported for these vessels in the
literature [22, 111]. From range [1, 15], the weights α = 4 for pulmonary arteries and
α = 10 for the aorta and β = 2 for both vessels were obtained, with smoothing of
σc = 9 mm for pulmonary arteries, and σc = 11 mm for the aorta.

A five-fold cross-validation on 25 CT scans (independent of those used for centerline
parameter tuning) was performed in which the best parameters determined from 20
CT scans were used to segment the 5 left out scans. In this, the best parameter set was
selected as the parameter set giving the maximum average Dice similarity coefficient
(DSC). The parameters to optimize were σ of the Gaussian Kernel used to smooth
the initial segmentation, and the smoothness penalty P of the optimal surface graph
cuts. From the 5 parameter sets extracted in the cross-validation the most frequent
parameter set was selected for the rest of the experiments. The obtained optimal
parameter set was σ of 4.4 mm and 2.4 mm and P of 32 and 40 for the pulmonary
arteries and aorta, respectively.

4.3.3 Seed point and Centerline Extraction

The centerline and the seed point extraction were validated on 25 CT scans using
Mean Centerline Distance (MCD). MCD is the average symmetric Euclidean distance
of all points of the automatically extracted centerline to the manual centerline.

Seed point extraction was assessed by computing the MCD between the automatic
centerlines traced from manually placed seed points with those traced from automat-
ically extracted seed points. Seed points that were placed on the border or outside
the vessel resulted in a centerline with large MCD compared to the centerlines traced
from manual seed points. We also used the non-parametric Mann-Whitney U test to
assess whether there is a significant difference between the MCD computed between
the manual centerlines and the automatic centerlines traced from manually placed
seed points and MCD between the manual centerlines and the automatic centerlines
traced from automatically extracted seed points.

Failure in the centerline extraction could in all cases (471 CT scans) be automat-
ically detected as follows. For the aorta, centerlines that never reached above the
automatically extracted pulmonary artery bifurcation point, or that went through the
coarse initial pulmonary artery segmentation, were considered as failed extractions.
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For the pulmonary arteries, an additional centerline for only the pulmonary trunk
was traced between the seed points at the pulmonary artery trunk and the pulmonary
artery bifurcation point. Subsequently, the MCD between this centerline and the
main centerlines was extracted and the centerlines that had a large MCD, or the ones
which went through the coarse initial aorta segmentation, were considered as failed
extractions.

4.3.4 Segmentation

The segmentation accuracy was assessed on 25 CT scans by comparing it with manual
segmentations. The Dice similarity coefficient (DSC) was computed to assess the
degree of spatial overlap of the automatic segmentation with the manual segmentation.
The mean symmetric surface distance (MSD) was computed in millimeters between the
manual and automatic segmentation surfaces. For a larger scale, qualitative assessment,
the pulmonary arteries and aorta were segmented on 436 additional CT scans which
had no manual annotations of the full volume. Based on visual inspection, we separated
the segmentations into three groups: high-quality segmentation; segmentation with
minor errors (max 3 mm SD); segmentation requiring correction (more than 3 mm
SD);

4.3.5 Repeatability, Diameters, and PA:AA Ratio

The automatic diameter of the pulmonary artery and the ascending aorta at the level
of the pulmonary artery bifurcation as well as the PA:AA ratio, were computed on 436
CT scans. Out of 436 CT scans, the accuracy of the in-slice diameters and the PA:AA
ratio were assessed on 200 CT scans by comparing them with the in-slice manual
diameters and manual PA:AA ratio.

In the remaining 236 CT scans, the average volumetric diameters and the PA:AA
ratio extracted from the 10 mm segment around the landmark level were computed.
These 118 short-term repeat scan pairs (236 scans) were used for assessing the re-
peatability of the method. Changes of the main pulmonary artery diameters and the
aortic diameters within the three month period are expected to be negligible since
the changes in the main pulmonary artery diameter within 8 months is 0.5± 0.18 mm
[112] and the annual change in aortic diameters is 0.1− 0.2 mm [75].

The diameters were expressed as mean ± standard deviation (range). The repeata-
bility and the agreement between the manual and automatic diameter and the PA:AA
ratio was assessed by the intra-class correlation (ICC) [95% confidence interval], based
on a single-rating, absolute-agreement, two-way mixed-effects model [84]. The quality
of the vessel segmentation on all 436 CT scans was assessed quantitatively with the
visual inspection as explained in Section 4.3.4.

4.4 Results

MCD between the manual and automatic centerlines, for both manual and auto-
matically extracted seed points, are shown in Table 1. The centerlines were always
extracted inside the vessel and close to the vessel center. The average distance was
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Table 1: MCD (mm) between automatic and manual centerlines,
in 25 CT scans for the left (LPA), and right pulmonary arteries
(RPA) starting from pulmonary trunk (PAT), and for the aorta
from both manual and automatically extracted seed points. P-values
are computed using non-parametric Mann-Whitney U test.

PAT to RPA PAT to LPA Aorta
Manual SPa 2.14 ± 0.63 2.38 ± 0.66 1.59 ± 0.51
Automatic SPa 2.46 ± 0.81 2.77 ± 1.41 1.54 ± 0.33
P-Value 0.06 0.27 0.35
a SP : Seed Points

Table 2: Qualitative assessment of the PA and aorta segmentation
of 419 CT scans with a visual inspection. Segmentations are with
no obvious error (high quality), with max 3 mm SD (minor error),
or with more than 3 mm SD (correction required).

Visual Inspection Aorta PA

High Quality 394 (94%) 387 (92%)
Minor Error 18 (4%) 24 (6%)
Correction Required 7 (2%) 8 (2%)

less than 0.5 mm between the automatic centerlines traced from the automatically
extracted seed points and the ones traced from the manually placed seed points. The
non-significant difference in MCD to the manual centerlines between these two sets
infers the reliability of the seed point extraction method.

Out of all 471 CT scans used in this study, centerline extraction failed in only 17
cases (17 out of 942 vessels including the pulmonary artery and aorta (1.8%)) and
all failure cases were detected automatically as described in Section 4.3.3. In 5 cases,
the centerline failure was due to wrong seed point extraction in which the seed points
were extracted in the border or outside of the vessel. In 4 cases, the aortic centerline
made a shortcut through the pulmonary artery, and in the remaining 8 cases, the
pulmonary artery centerline was either at the border of the vessel or made a shortcut
through the background. These failures were mainly due to unclear vessel borders
where the pulmonary artery is adjacent to the aorta or other structures. Scans with
failed centerlines were excluded from subsequent analysis.

The vessel segmentation of the 436 CT scans with no manual annotation, was
quantitatively assessed with visual inspection. Table 2 shows the assessed quality of
the aorta and pulmonary arteries segmentation of the 419 CT scans with no failure in
the centerline extraction.

Box plots of segmentation DSC and MSD, for the pulmonary arteries and aorta
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Figure 3: Box plots of the DSC and MSD between the manual and
automatic PA and aorta segmentation. The plot shows the me-
dian(green), interquartile range(boxes), 99.3% coverage of the
data(whiskers), and the outliers (+ symbol in red).

obtained in 5-fold cross-validation on 25 CT scans with manual segmentation, are
shown in Figure 3, with an average DSC = 0.94±0.02 and averageMSD = 0.62±0.33
mm for pulmonary arteries and DSC = 0.96± 0.01 and MSD = 0.43± 0.07 mm for
the aorta. Figure 5 illustrates 3 examples of segmentation results overlaid with manual
annotations.

From 200 CT scans used to compare manual and automatic in-slice diameters,
11 scans failed the centerline or seed point extraction. High agreement between the
diameters was obtained on the remaining 189 CT scans. The scatter plots of these
diameters are illustrated in the first row of Figure 4. The 3 first rows in Table 3
present the diameters, diameter difference, and ICC between the automatic and manual
measurements.

From 118 subjects used to assess the repeatability, 6 subjects had failed centerline
or seed point extraction. For the remaining 112 subjects (224 CT scans), the automatic
average diameter extraction from 3D volume showed a high correlation between scan
and rescan of each subject with an ICC of 0.89, 0.95, and 0.86 for the pulmonary
artery, aorta, and the PA:AA ratio, respectively. The diameters, diameter difference,
and ICC between the scan-rescan pairs of 112 subjects (224 CT scans) is shown in
the last 3 rows of Table 3 and the scatter plots are illustrated in the second row of
Figure 4.

4.5 Discussion

In this chapter, we presented a fully automatic segmentation and diameter measurement
method to segment the pulmonary arteries and aorta and to measure their diameters
in non-ECG-gated, non-contrast CT scans. Automatic extraction of the level of the
pulmonary artery bifurcation allowed automatic measurement of the PA:AA ratio. We
verified the quality of the segmentations on 25 CT scans, by comparing them with full
3D manual annotations. The segmentation algorithm performed well with an average
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Figure 4: Scatter plots and ICC of the manual and automatic diameters
measured at the axial slice at the level of PA bifurcation (first row),
and of the automated average volumetric diameter estimates in
scan and short term rescans (second row) for, from left to right,
the PA, aorta, and PA:AA ratio.

Dice overlap of 0.93 and 0.96 and mean surface distance of 0.62 mm and 0.43 mm,
less than the in-plane voxel size, for the pulmonary arteries and aorta, respectively.

Visual inspection indicated that 92% of pulmonary arteries and 94% of the aorta
were segmented with high quality and with no obvious error. In the remaining almost
6-8%, segmentation errors mainly occurred in regions close to the heart. In this
region, the pulmonary artery trunk and the aortic root are adjacent and have similar
intensity. This makes the vessel boundaries unclear which results in segmentation errors.
Furthermore, motion artifacts caused by the motion of the heart during the cardiac
cycle increase the ambiguity of the vessel boundaries and make the segmentation
difficult, even for experienced radiologists. Figure 5 shows the 3 cases, where the cases
at row 2 and 3 have the largest segmentation errors. Segmentation errors with respect
to the manual segmentation are visible in an axial slice close to the heart (column b),
whereas the segmentation has high accuracy at the level of the pulmonary bifurcation
(column d).

Table 4 presents comparative segmentation results on the methods proposed in the
literature to segment the pulmonary artery and aorta on non-contrast CT scans. We
report higher Dice overlap and lower mean surface distance than previous methods for
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Table 4: Segmentation results compared with literature.

Method DSC MSD
P

A Xie et al.[65] 0.88 - -
Presented Method 0.94 ± 0.02 0.62 ± 0.33

A
or

ta

Isgum et al.[53] 0.87 ± 0.03 - -
Avila-Montes et al.[54] 0.88 ± 0.05 - -
Dasgupta et al.[55] 0.88 ± 0.06 - -
Tahoces et al.[56] 0.95 - -
Xie et al.[59] 0.93 ± 0.01 1.39 ± 0.19
Kurugol et al.[60] 0.92 ± 0.01 0.62 ± 0.09
Trullo et al.[62] 0.89 ± 0.04 - -
Noothout et al.[61] 0.91 ± 0.04 1.32 ± 0.85
He et al.[63] 0.95 - -
Sedghi Gamechi et al.[97] 0.95 ± 0.01 0.56 ± 0.08
Presented Method 0.96 ± 0.01 0.43 ± 0.07

both arteries. Compared to our work in Chapter 2, in this chapter besides segmenting
the pulmonary arteries, we evaluate the method on a larger region for the aorta, from
the diaphragm level at the descending aorta to the aortic root.

We achieved a high agreement between the automatic and manual diameters for
the pulmonary artery, aorta, and PA:AA ratio in axial slices, with an ICC of 0.92,
0.97, and 0.90 respectively. This is higher than the inter-observer agreement reported
by Terzikhan et al. [26] of 0.91 and 0.94 for the pulmonary artery and aorta diameter.
Table 3 indicates that the manual diameters are slightly (on average 0.5 mm) larger
than automatic diameters for both pulmonary artery and aorta. This may be explained
by the fact that observers do not necessarily choose the point of maximum intensity
gradient as the boundary. The difference between the automated method and observer
annotations is similar to the inter-observer bias of 0.4 mm reported by Tonelli et al.
[112] for pulmonary artery diameter on non-contrast CT scans, and inter-observer bias
of 0.5 mm reported by Quint et al. [86] for mid-ascending aorta diameter on CTA
scans.

The manual PA:AA diameter measurements such as presented in [20, 25, 26, 107]
are subjective based on slice location. Measurements that are further away from the
bifurcation show smaller diameters than the ones close to the pulmonary bifurcation.
Linguraru et al. [49] show that a small shift along the pulmonary artery centerline
can lead to diameter changes up to 20%. Moreover, the orientation of the vessels
with respect to the patient and with respect to the axial plane may vary, leading
to variability in axial diameter measurements. Also, determining the bifurcation
level is difficult and is prone to variability. Therefore, the 3D volumetric average
diameter measurement in segments perpendicular to the vessel centerlines as proposed
in Section 4.2.5 is less subjective and is a more robust and reproducible technique
than diameter measurement in 2D axial slices, which potentially decreases discordant
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measurements. The diameters extracted by the presented 3D method showed high
scan-rescan repeatability (Figure 4).

Considering that lung cancer screening with non-contrast CT is becoming more
common, our method can be used to screen for (mild) pulmonary artery and aortic
dilatation as biomarkers of cardiovascular disease in the same populations.

A limitation of this study is that the method is evaluated on data from a single
scan protocol and a relatively healthy screening population. For application in data
from very different scan protocols, parameters may need to be adjusted. However,
we have successfully applied the same method, with identical parameter settings, on
other data including CTA scans of patients with abnormal aortic shape due to Turner
syndrome (see supplementary Figure 4.A.1).

4.6 Conclusion

A fully automatic method is presented to segment the pulmonary arteries and aorta on
non-ECG-gated, non-contrast CT scans. Qualitative and quantitative analysis demon-
strates that our method provides robust, accurate, and reproducible measurements
of the pulmonary artery and aorta diameters and the PA:AA ratio. Automatically
extracting a full 3D shape and size of the vessel, the vessel diameters, and biomarkers
with high accuracy, in non-ECG-gated non-contrast CT scans such as are acquired in
lung cancer screening, can provide important prognostic information and enable the
early-stage diagnosis of cardiovascular disease and provide factors for risk assessment
in patients with COPD.
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Appendix

4.A Supplemental Material

Figure 4.A.1: Example of the presented method applied on CTA scan with
an abnormal aorta shape due to Turner syndrome. The top
row illustrates the 3D aorta segmentation and the axial view
of the arch. the lower row shows the coronal and sagittal
view.
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Abstract

Conditional Random Fields (CRFs) are often used to improve the
output of an initial segmentation model, such as a convolutional neural
network (CNN). Conventional CRF approaches use manually defined
features, such as intensity to improve appearance similarity or location
to improve spatial coherence. These features work well for some tasks,
but can fail for others. For example, in medical image segmentation
applications where different anatomical structures can have similar inten-
sity values, an intensity-based CRF may produce incorrect results. As
an alternative, we propose Posterior-CRF, an end-to-end segmentation
method that uses CNN-learned features in a CRF and optimizes the
CRF and CNN parameters concurrently. We validate our method on
three medical image segmentation tasks: aorta and pulmonary artery
segmentation in non-contrast CT, white matter hyperintensities segmen-
tation in multi-modal MRI, and ischemic stroke lesion segmentation in
multi-modal MRI. We compare this with the state-of-the-art CNN-CRF
methods. In all applications, our proposed method outperforms the
existing methods in terms of Dice coefficient, average volume difference,
and lesion-wise F1 score.
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5.1 Introduction

After the breakthrough of deep learning in computer vision [113–115], deep convolu-
tional neural networks (CNNs) and their variants [116–118] quickly started to dominate
medical image segmentation, outperforming traditional machine learning methods in
many applications [119–122]. To refine the prediction from the CNN, it is common to
combine CNN with a conditional random field (CRF) [123]. By modeling pairwise
relationships and interactions between voxel-wise variables over the whole image, the
CRF can improve the coherence of the segmentation. In previous work, CRFs based
on predefined features such as intensity similarity and spatial coherence have been
used as an efficient post-processing technique or trained in an end-to-end manner in a
recurrent neural network to refine the CNN outputs [71, 118, 124, 125].

Most often, a CRF uses a combination of voxel intensity and voxel location as
pairwise potentials. Although this works well in several computer vision applications
[125, 126], there can be challenges in other applications. The approach assumes that
voxels that have similar intensity and are close to each other in the image are likely
to belong to the same class. There are many applications among others in medical
image analysis in which this assumption does not hold. For example, the intensity-
based features of the CRF are not sufficient for problems where the intensity is not
informative enough to identify object boundaries, such as the artery segmentation
problem in Figure 2.a. The spatial component of the CRF, on the other hand, requires
extra careful tuning when the CRF is applied to data with isolated small objects, such
as the white matter hyperintensities in Figure 2.b, which may be erroneously removed
by excessive smoothing. In stroke lesion segmentation, a large appearance difference
between lesion objects of the same class also goes against the CRF assumption that
the same class objects should have similar intensity (see Figure 2.c).

In this chapter, we propose Posterior-CRF, a new learning-based CRF approach for
image segmentation that allows the CRF to use features learned by a CNN, optimizing
the CRF and CNN parameters concurrently. The learning-based CRF makes the CNN
features update to work best with CRF in an end-to-end manner. During training, the
CRF inference works in the CNN feature space, which is likely to be more informative
for segmentation than the original intensity values of the image.

We demonstrate our method in three medical image analysis applications. Our first
application is the segmentation of the aorta and pulmonary artery in non-ECG-gated,
non-contrast chest CT scans. In these images, the aorta and the pulmonary artery
share similar intensity values, which goes against the CRF assumption that similar
classes should share similar intensity [59, 108]. The boundaries between the objects are
not recognizable by intensity alone, making a standard CRF less effective (Figure 2.a).
Our second application is the segmentation of white-matter hyperintensities in brain
MRI. These small objects are sparsely distributed in the brain (see Figure 2.b) and may
be removed by the CRF, which optimizes for the spatial coherence of segmentation.
Our third application is the segmentation of ischemic stroke lesions in brain MRI,
which have very heterogeneous intensities and shapes within the same lesion class
(Figure 2.c).
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Input 3D 
CNN

Posterior 
Probability maps CRF

CRF reference map                 

Output

Input 3D 
CNN

Posterior 
Probability maps CRF

CRF reference map                 

Output

Input 3D 
CNN

Posterior 
Probability maps CRF

CRF reference map                 

Output

End-to-end training

CRF with predefined features

CRF with learned features

Unary network

(a)

(b)

(c)

Figure 1: Different CRF-based approaches For each graph: (a) Post-
processing CRF [118, 124]; (b) End-to-end training CRF with
predefined features [125]; (c) Proposed Posterior-CRF, which uses
CNN feature maps as CRF reference maps.

Contributions

1. We present a new end-to-end trainable algorithm for image segmentation called
Posterior-CRF using learnable features in CRF pairwise potentials. We explore
how the proposed method affects CNN learning during training.

2. We compare the performance of a fully-connected CRF in several settings: post-
processing, end-to-end training with predefined features, and end-to-end training
with learned features. Ablation experiments are conducted to investigate the
influence of CRF parameters and which level of the CNN feature maps are more
informative for the CRF inference. We found that the features in the last CNN
feature maps provide a more consistent improvement than features in early CNN
layers and predefined intensity features.

3. We evaluate our methods in three applications: aorta and pulmonary artery
segmentation in non-contrast CT, which can be used to compute important
biomarkers such as the pulmonary artery to aorta diameter ratio [108]; white
matter hyperintensities segmentation in multi-sequence MRI, which is of key
importance in many neurological research studies [121]; and ischemic stroke lesion
segmentation in multi-sequence MRI, which can provide biomarkers for stroke
diagnosis [122]. In the experiments, the proposed Posterior-CRF outperforms
CNN without CRF, post-processing CRF, end-to-end intensity-based CRF, and
end-to-end spatial-based CRF.

A preliminary version of this work, focused on a single application and with less
validation, appeared as an extended abstract in [127].
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5.2 Related Work

End-to-end Training of CRF and CNN. CRF is widely used as an efficient post-
processing method to refine the output of CNN segmentation models (for example, [71,
118, 124]). However, applying a CRF as post-processing means that the CNN is not
able to adapt its output to the CRF. Zheng et al. [125] proposed to optimize CNN and
CRF jointly by reformulating the CRF inference as a recurrent neural network (RNN)
operation, such that the CRF weights can be learned together with the CNN. This
approach makes the unary potentials and the kernel weights in pairwise potentials
trainable, which saves the computational cost of grid search for other approaches to
tune these weights, although the CRF still works in the predefined fixed feature space.
In this chapter, we focus on a new CRF approach where the CRF inference works in a
learning-based CNN feature space.

Locally-connected CRFs with Learned Potentials. While conventional CRFs
use predefined Gaussian edge potentials, the potentials can also be learned through a
neural network. Vemulapalli et al. [128] learn the pairwise potentials of a Gaussian
CRF in a bipartite graph structure. This approach uses a simpler continuous CRF
model which provides better convergence of mean-field inference than the conventional
discrete CRF models. In this chapter, we focus on the most widely used discrete CRF
model which is a natural fit for the dense segmentation problem. Lin et al. [129] and
Li et al. [130] learn pairwise CRF potentials to model patch-wise relationships. The
patch-wise potentials provide a better ability to model the semantic compatibility
between image regions and have different effects compared to our approach, where
we do not consider patch-wise relationships. Our method uses traditional Gaussian
edge potentials [123] similar to Zheng et al. [125] which are easier to compute in
a fully-connected manner. Unlike Zheng et al., we derive the potentials from the
feature space learned by a CNN. This allows us to model global interactions between
voxel-wise variables using learning-based features.

Other Methods Related to CRF. Next to CRF, there are several other approaches
that aim to model interactive relationships or add global information to neural networks.
Graph neural networks (GNN) [131, 132] model interactions between variables by
applying graph convolution filters, which allow them to learn global relationships
between voxels. We further address GNN in the Discussion. The recently proposed
non-local CNN [133] uses layer-wise self-attention [134–136] to make each layer in
the network focus on the areas that encoded the most non-local information in the
preceding layer. While this allows non-local CNNs to model long-range dependencies,
they are unable to model the interactions that can be learned by a CRF or GNN. In
this chapter, we focus on the fully-connected CRF model which is an efficient approach
of modeling both interactive relationships and global information.

5.3 Methods

Our method consists of two parts that are optimized jointly: 3D CNN and 3D CRF.
In Section 5.3.1, we describe the CNN model, which provides unary potentials for
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the CRF inference as well as features for the pairwise potentials for the proposed
Posterior-CRF. Then we introduce the CRF in Section 5.3.2. We show two previously
proposed ways to perform CRF inference using predefined features: post-processing
(Section 5.3.3.1) and end-to-end training with predefined features (Section 5.3.3.2).
Our proposed end-to-end training with learned features is presented in Section 5.3.4,
followed by Section 5.3.4.1 about the back-propagation of the proposed learning-based
CRF. The mean-field inference algorithm used in the proposed method is explained in
Appendix in Section 5.A.

5.3.1 CNN Model
Our CNN model is based on UNet [116], the most widely used network architecture
for medical image segmentation. It has a multi-scale design with skip-connections that
connect the encoding and decoding parts of the network, which allow the decoding
path to use the early, high resolution feature maps without losing information through
pooling. We use 3D UNet as the basic CNN architecture to provide the unary potentials
for CRF inference as well as features for the pairwise potentials for the proposed
Posterior-CRF. Details of the network layout used in our experiments are given in
Figure 3.

5.3.2 Conditional Random Fields
In this section, we describe the CRF as proposed in [123]. In image segmentation,
a CRF models voxel-wise variable xi taking values in {1, ..., C} as a set of random
variables X = {x1, ..., xN}, where C is the number of classes and N is the number of
voxels in the image. During training, xi is converted into a soft classification vector of
length C, indicating for each class the probability that the ith voxel belongs to that
class, with the L1 norm |x| = 1. xi obey a Markov property conditioned on a global
observation, the image I consisting of variables I = {I1, ..., IN}. In this chapter, I
is the observed 3D CT/MRI scans, with its length given by the number of imaging
modality channels M times the number of voxels per channel N .

Consider a fully-connected pairwise CRF model (X,I) characterized by a prior
Gibbs distribution:

P (X|I) = 1
Z(I)exp(−

∑
c∈Cζ

φc(Xc|I)) (5.1)

where ζ = (V, E) is an undirected graph describing the random field X. Each clique
c in a complete set of unary and pairwise cliques Cζ in ζ, and φ is the potential for
each clique. We seek a maximum a posteriori probability (MAP) estimation x that
minimizes the corresponding Gibbs energy E(X = x|I):

E(X = x|I) =
∑
i

ϕu(xi|I) +
∑
i<j

ϕp(xi, xj |I) (5.2)

MAP (P (X|I)) : x∗ = argmin
x

E(X = x|I) (5.3)

where i and j range from 1 to N . The first term ϕu(xi) in Equation 5.2 is the unary
potential, which in our case is the current C length vector of voxel i representing the
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class probabilities in the CNN posterior probability maps. The second term ϕp(xi, xj)
is the pairwise potential:

ϕp(xi, xj) = µ(xi, xj)
K∑
m=1

ωmkm (5.4)

where µ(xi, xj) is the label compatibility function that describes the interactive
influences between different pairs of classes, ωm is the linear combination weight of
different pre-defined kernels km and K is the total number of kernels. Each km is a
modified Gaussian kernel with specific feature vector f :

k(fi, fj) =
S∏
s=1

exp(−1
2(fsi − fsj )TΛs(fsi − fsj )) (5.5)

The feature vector f is defined from S arbitrary feature spaces. Λ is a symmetric
positive-definite precision matrix that defines the shape of each kernel. In semantic
segmentation, typically a combination of intensity (I) and position features (p) has
been used [118, 123, 125]:

ϕp(xi, xj) =µ(xi, xj)[ω1exp(−|pi − pj |
2

2θ2
α

− |Ii − Ij |
2

2θ2
β

)

+ ω2exp(−|pi − pj |
2

2θ2
γ

)]
(5.6)

where the first kernel controlled by ω1 is called appearance kernel and the second
kernel controlled by ω2 is called smoothness kernel. The parameters θα, θβ and θγ
control the influence of the corresponding feature spaces. The appearance kernel is
inspired by the observation that nearby voxels with similar intensity are likely to be
in the same class, while voxels that are either further away or have larger intensity
difference are less likely to be in the same class. The smoothness kernel can remove
isolated regions and produce smooth segmentation results [118, 123]. Note that the
position feature appears in both appearance kernel and smoothness kernel, where
spatial information has different contributions to each of the two kernels, depending
on the spatial standard deviations θα and θγ .

5.3.3 CRF with Predefined Features
Conventional CRFs use predefined features, such as the image intensity and spatial
position shown in Equation 5.6. These features are commonly used in CRFs to
encourage intensity and spatial coherence, based on the assumption that voxels that
have a similar intensity or are close together are likely to belong to the same class.

We evaluate two state-of-the-art approaches to combine CRFs with predefined
features with a CNN:

1. Apply the CRF as post-processing to refine the CNN outputs ( Section 5.3.3.1);

2. Implement the CRF as a neural network layer that can be trained together with
the CNN in an end-to-end manner (Section 5.3.3.2).
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5.3.3.1 CRF as Post-processing

After we train a CNN model and get its predictions, we can apply CRF as a post-
processing method to refine the results [124]. We refer to this method as Postproc-CRF
( Figure 1.a).

5.3.3.2 End-to-end Training CRF

The CNN and CRF can be combined more elegantly by optimizing them together in
an end-to-end manner [125] (Figure 1.b), which allows the CRF to influence the CNN
optimization. The end-to-end CRF uses the same pairwise potentials as that in the
post-processing CRF (Equation 5.6). We refer to this variant as Intensity-CRF.

To investigate the spatial term in the end-to-end CRF, we can also use only the
position features as the CRF feature space, which means that the CRF layer will only
encourage nearby voxels to have the same class. We implement this CRF by setting
the weight of the appearance kernel ω1 to zero and make it not trainable. We refer to
this method as Spatial-CRF.

5.3.4 Proposed CRF with Learning-based Features
Our proposed CRF uses a learning-based feature space. We replace the intensity
feature vector I in the CRF kernel (Equation 5.6) with the new feature vector F (I)
from the CNN feature maps. The information in these CNN feature maps differs per
level: in the first level of UNet the feature maps contain information close to the
intensity, while in the last level of the UNet they contain more context for each voxel
and potentially more class-discriminative information.

We refer to the CRF that uses features learned by CNN as feature-learning-based
CRF (see Figure 1.c) and refer to the specific form of CRF using the features in the
last CNN softmax layer as Posterior-CRF (see Figure 3).

Unlike the CRFs with predefined features, our CRF takes CNN feature maps as
the reference maps and updates the random field X based on F (I) instead of on I
directly. Compared to the original CRF pairwise potential in Equation 5.6, the feature
I is replaced with F (I) and the new pairwise potential becomes:

ϕp(xi, xj) =µ(xi, xj)[ω1exp(−|pi − pj |
2

2θ2
α

−

|Fi(I)− Fj(I)|2
2θ2
β

) + ω2exp(−|pi − pj |
2

2θ2
γ

)]
(5.7)

5.3.4.1 Back-propagation of the Learning-based CRF

The back-propagation of the proposed end-to-end feature-learning-based CRF is shown
in Figure 4. There are five steps within one optimization iteration. Steps 1∼3 are the
forward process that generates the output of the CNN. In the 4th step, CRF weights
will adapt to the outputs calculated by the reference maps and unary maps, both given
by CNN feature maps before back-propagation. In the 5th step, CNN weights are
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Input

CNN

CRF 

CNN features
as reference maps

CNN features 
as unary maps

Output

Forward without trainable weights

Forward with trainable weights

Backward with gradient

1

2

2

3 4

5

1 5~ Step of optimization in one iteration

Figure 4: One end-to-end optimization iteration of the proposed
CRF method. Best viewed in color with zoom.

updated to provide new unary maps and reference maps for CRF for the next iteration.
When the optimization converges, both CNN and CRF weights become stable close
to their optimal values. Note that the mean-field inference in CRF happens in the
forward process (after step 2 and before step 3) and thus contributes to the gradient
updates of both CNN and CRF weights. The derivation of the mean-field inference
gradient is omitted due to the length of this chapter and can be found in Section 4.2
of the paper by Zheng et al. [125].

5.4 Experiments

In this section, we present experiments to evaluate the proposed method and compare
it to the baseline methods: 3D UNet, Post-processing CRF, Intensity-CRF, and
Spatial-CRF. Implementation details are discussed in Section 5.4.1, followed by the
experimental settings (Section 5.4.2), the description of the datasets and pre-processing
(Section 5.4.3), data augmentation and training details (Section 5.4.4) and evaluation
metrics (Section 5.4.5).

5.4.1 Implementation

5.4.1.1 CNN Implementation

We implement all the algorithms in the TensorFlow framework. The detailed CNN
architecture for the experiments is shown in Figure 3. All convolution layers use ReLU
as the activation function except for the last output layer, which uses softmax to
produce the final probability maps. For a fair comparison, all the methods in Table 3
use the same CNN architecture and hyperparameters.
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We use the Dice coefficient as our segmentation loss function during training:

L(q) = 1−
2|
∑N
i=1
∑C
j=1 pi,jqi,j |∑N

i=1
∑C
j=1 pi,j +

∑N
i=1
∑C
j=1 qi,j

(5.8)

where qi,j is the predicted probability that voxel i belongs to the jth class. pi,j is the
true label. The loss is minimized using the Adam optimizer [137].

5.4.1.2 CRF Implementation

In CRF, mean-field approximation can be used to calculate the maximum a posteriori
probability (MAP) of the inference. We use an efficient approximation algorithm for
mean-field inference [123, 138] built on a fast high-dimensional filtering using the
permutohedral lattice [139] that allows voxel-wise fully-connected CRF to be iteratively
computed in linear time. For a fair comparison, all the CRF methods in this chapter
are implemented in 3D fully-connected manner.

5.4.2 CRF Settings

5.4.2.1 Post-processing CRF

For Postproc-CRF, we fix the label compatibility µ in Equation 5.6 to the identity
matrix, which means that the CRF does not model label-specific interaction. In the
case of multi-modal input, each imaging modality has a specific θβ to control the
strength of the intensity term.

5.4.2.2 End-to-end CRF with Predefined Features

We consider two forms of end-to-end CRFs with predefined features: Intensity-CRF
uses intensity of the input image I and position information as its feature space.
Spatial-CRF uses only the position information (the smoothness term in Equation 5.6).
The label compatibility is a C×C parameter matrix which is optimized during training
to allow the CRF to learn the label compatibility automatically. The weights ω1 of
the appearance kernel for Intensity-CRF and ω2 of the spatial kernel for Spatial-CRF
are C × C matrices, which we restrict to diagonal matrices because the relationship
between classes is already covered by the label compatibility matrix. Inner product is
calculated by multiplying the matrices. For simplicity, only one θβ is applied for all
modalities.

5.4.2.3 End-to-end CRF with Learned Features

The proposed Posterior-CRF uses the last softmax layer of the CNN as its reference
map. The hyperparameters are the same as end-to-end CRF with predefined features.
Note that Posterior-CRF is a special case of the feature-learning-based CRF. We
can also use early CNN feature maps as CRF reference maps. An ablation study
investigating other CRF variants can be seen in Section 5.5.4.
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Table 1: Post-processing CRF parameters for each dataset. Search
range indicates the range of parameter values explored during grid
search.

Datasets CT Arteries WMH ISLES Search range
ω1 6.39 3.85 9.75 (0.1, 10)
θα 4.09 4.46 8.74 (0.1, 10)
θβ for CT 1.10 - - (0.1, 10)
θβ for T1 - 7.01 9.26 (0.1, 10)
θβ for T2 - - 9.73 (0.1, 10)
θβ for FLAIR - 2.64 2.36 (0.1, 10)
θβ for DWI - - 6.85 (0.1, 10)
ω2 3.40 1.41 2.34 (0.1, 10)
θγ 4.83 0.11 1.35 (0.1, 10)
Iterations 3 1 2 (1, 5)

Table 2: Initial end-to-end CRF parameters for each dataset.

Methods ω1 θα θβ ω2 θγ Iterations
CT Arteries

Spatial-CRF - - - 3.40 4.83 3
Others 6.39 4.09 1.10 3.40 4.83 3

WMH
Spatial-CRF - - - 1.41 0.11 1
Others 3.85 4.46 4.83 1.41 0.11 1

ISLES
Spatial-CRF - - - 2.34 1.35 2
Others 9.75 8.74 7.05 2.34 1.35 2

5.4.2.4 CRF Parameters

Parameters in the post-processing CRF for each dataset were obtained by grid search
on the validation set and are shown in Table 1. We computed results with 500 different
configurations of Postproc-CRF on each dataset for grid-search. Parameters in the
end-to-end CRFs (Intensity-CRF, Spatial-CRF, Posterior-CRF) are initialized with
the same values as were used in post-processing CRF. Although the end-to-end CRF
approaches have the ability to learn CRF weights automatically during training, we
initialize all CRF approaches in the same way to facilitate visualization of the evolution
of CRF parameters during training (see Figure 5). We study the sensitivity to different
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CRF parameter initializations in Section 5.5.3.
The initial label compatibility matrix is set to an identity matrix and can be

optimized during training. In the multi-modality case, the initial value of θβ is
averaged over all modalities. The initial values for each dataset are shown in Table 2.

5.4.3 Datasets and Preprocessing

We evaluate the proposed method on three segmentation problems: CT arteries,
MRI white matter hyperintensities, and MRI ischemic stroke lesions. We chose these
problems to study the generalizability of the method as these applications differ a
lot in object shapes and appearances, imaging modalities, and suffer from different
problems (see Figure 2).

5.4.3.1 CT Arteries Dataset

We use 25 non-contrast lung CT scans from 25 different subjects enrolled in the Danish
Lung Cancer Screening Trial (DLCST) [6]. The aorta and pulmonary artery were
manually segmented by a trained observer (ZSG). Images have an anisotropic voxel
resolution of 0.78mm× 0.78mm× 1.00mm and are of size 512× 512 with on average
336 slices (range 271-394). The 25 scans are split into three parts of 10, 5, and 10
scans for training, validation, and testing respectively. Due to the limitation of GPU
memory, we first crop the original CT images and only keep the axial central part
of 256 × 256 voxels for all slices. Then, 3D patches of the size 256 × 256 × 16 are
extracted from the cropped images. All training patches have 80% overlap in z-axis
between neighboring patches to mitigate border effects. In total, there are 840 3D
patches for training. We use the original CT intensities without normalization.

5.4.3.2 MRI White Matter Hyperintensities (WMH) Dataset

The White Matter Hyperintensities (WMH) Segmentation Challenge [121] provided
images from 60 subjects (T1 and FLAIR) acquired from three hospitals and manually
segmented for background and white matter hyperintensities. We randomly split these
in 36 subjects for training, 12 for validation, and 12 for testing. For each subject, we
cropped/padded MRI images into a constant size 200×200×Z, where Z is the number
of slices in the image. We use Gaussian normalization to normalize the intensities
inside the brain mask in each image to zero mean and unit standard deviation. We
extract training patches of size 200 × 200 × 16 with 80% overlap in z-axis between
patches. In total, there are 528 3D patches for training.

5.4.3.3 MRI Ischemic Stroke Lesions (ISLES) Dataset

The ISLES 2015 Challenge [140] is a public dataset of diverse ischemic stroke cases.
There are 4 MRI sequences available for each patient (T1, T2, FLAIR, and DWI).
We use the sub-acute ischemic stroke lesion segmentation (SISS) dataset (28 subjects)
with the lesion labels for experiments and randomly split them as 14 for training,
7 for validation and 7 for testing. The images are cropped/padded to the size
200× 200× Z. Gaussian normalization is applied for normalizing the intensities in



5.4. Experiments

5

89

: c
om

pa
tib

ili
ty

 m
at

rix
: b

ila
te

ra
l w

ei
gh

ts
: s

pa
tia

l w
ei

gh
ts

In
te

ns
ity

-C
R

F
S

pa
tia

l-C
R

F
P

os
te

rio
r-

C
R

F

F
ig
ur
e
5:

C
R
F
pa
ra
m
et
er
s
du

ri
ng

tr
ai
ni
ng

in
W
M
H

da
ta
se
t.

T
he

in
iti
al

va
lu
es

of
th
e
C
R
F

pa
ra
m
et
er
s

ca
n
be

fo
un

d
in

Ta
bl
e
2.

B
es
t
vi
ew

ed
in

co
lo
r
wi
th

zo
om

.



90 Chapter 5. Posterior-CRF an end-to-end segmentation approach

each image. Training patches of the size 200× 200× 16 with 80% overlap in z-axis are
extracted. In total, there are 560 3D patches for training.

5.4.4 Data Augmentation and Training Details

The network is trained on all mini-batches (each mini-batch contains one 3D patch).
For each 3D patch in the current mini-batch we apply 3D random rotation sampled
from ([-5,5],[-5,5],[-10,10]) degrees, shifting ([-24,24],[-24,24],[-7,7]) voxels, as well as
random horizontal (left and right) flipping. We stopped training when the validation
loss is not decreasing anymore and chose the model that achieved the best validation
performance. The experiments are run on an Nvidia GeForce GTX1080 GPU. The
average training time is 5∼10 hours for one CNN baseline model and 1∼2 hours more
when the CRF layer is added.

5.4.5 Evaluation Metrics

We use four voxel-wise metrics of segmentation quality: Dice similarity coefficient
(DSC), indicating the relative overlap with the ground truth (larger is better); 95th

percentile Hausdorff distance (H95), showing the extremes in contour distance from
ground truth to the prediction (smaller is better); Average volume difference (AVD) as
a percentage of the difference between ground truth volume and segmentation volume
over ground truth volume (smaller is better), and Recall score (larger is better). For
the lesion segmentations (WMH and ISLES), we additionally assess accuracy of lesion
detection by computing the lesion-wise Recall and lesion-wise F1 score (larger is better).
The lesion-wise metrics use the 3D connected components, while the voxel-wise metrics
do not use 3D connected components. The correct detection of a lesion is determined
by the overlap (at least one voxel) of the 3D components. F1 score is equivalent
to lesion-wise Dice score and is calculated by 2*(precision*recall)/(precision+recall),
where precision is calculated by true positives/(true positives+false positives).

5.5 Results

5.5.1 Segmentation Results

Table 3 shows the segmentation results for all three datasets. In most metrics,
Posterior-CRF had the best performance in all datasets. For all datasets, CNN
without CRF provides good baseline results, which indicates that 3D UNet is an
efficient architecture to extract useful features for segmentation in these applications.
Intensity-CRF performed worse on DSC than Posterior-CRF (statistically significant in
aorta segmentation and WMH segmentation), which reveals the limitation of intensity
features. Among all end-to-end CRF methods, Spatial-CRF performs worst for all
datasets except ISLES. From these results, we conclude that spatial coherence alone
is not sufficient and often detrimental to segmentation accuracy, and that the CNN
features in the last layer are more informative for CRF than the intensity features in
the original images.
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CRFs that depend strongly on intensity-based features have difficulties detecting
objects that are similar in intensity. Examples of this problem can be observed in
the segmentations for the CT arteries and ISLES datasets (Figure 6). In CT arteries
segmentation, the aorta and pulmonary artery have very similar intensities, which
causes most of the methods in our experiments to sometimes misclassify part of the
aorta as pulmonary artery. This is especially true for Post-processing CRF but also
for Intensity-CRF.

Posterior-CRF achieves a DSC segmentation overlap of 95.4% and an H95 lower
than 2.87 mm in aorta segmentation, which is significantly better than all other
methods on this dataset. We argue that this is because the features from the last
CNN feature maps are more informative than the intensity-based features, which
allows the CRF inference to focus on refining the object boundary without expanding
into neighboring class voxels with similar intensities. The Posterior-CRF also gives a
performance improvement in the segmentation of the pulmonary artery, but this is
not always statistically significant. One reason is that the blurred boundary between
the aorta and pulmonary artery often results in the oversegmentation of pulmonary
artery, the errors in pulmonary artery are emphasized because the overall pulmonary
artery volume is lower. Another reason could be the curved shape of the pulmonary
artery, which makes the results vary a lot between patients.

We see similar behavior on the ISLES dataset. The intensity boundaries of the large
ischemic stroke lesions are ambiguous and their appearance varies a lot between lesions.
Most of the methods fail to segment the boundaries accurately (see Figure 6 ISLES).
Post-processing CRF hardly solves the problem and performs slightly worse than
CNN. Posterior-CRF achieves better (while less significant due to the large prediction
variance between samples) segmentation performance on DSC, AVD, lesion-wise F1.

A properly tuned spatial component of the post-processing CRF can benefits CT
arteries and ischemic stroke lesion segmentation (Appendix in Section 5.B, Figure 5.B.1
(a) and (c)). However, it can cause problems to white matter hyperintensities no
matter how we try to tune it (Appendix in Section 5.B, Figure 5.B.1 (b)), where
we can see a positive ω2 always leads to a decreased performance since the spatial
smoothing contributes to remove both isolated true positives and false positives if
they are small enough. The complete SHAP analysis will be discussed in Appendix in
Section 5.B.

The negative effect of the spatial smoothing results in the low average lesion-wise
recall score in WMH segmentation for Postproc-CRF (34.8%) and can be observed in
the WMH segmentation results (see Figure 6). In this case, Postproc-CRF is always
worse than vanilla CNN (within our grid-search range). This is because the scenario
where post-processing CRF has no influence (with both ω1 and ω2 set to zero) was
not included in the grid search range (0.1,10). Intensity-CRF has a higher lesion-wise
average recall than CNN baseline (68% to 64.8%) but a lower (not significantly)
voxel-wise recall (77.5% to 79.8%): although it detects more correct lesions than CNN
due to the intensity features, its use of spatial features causes it to undersegment
individual lesions (see Figure 6). Spatial-CRF also suffers from this problem, with a
high lesion-wise recall of 68.8% but low lesion-wise F1 of 65.7%.
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5.5.2 Optimization of the End-to-end CRF

We show the evolution of the trainable CRF parameters in one data split of WMH
dataset in Figure 5. For the four parameters in the 2 × 2 compatibility matrix µ
and the two diagonal spatial kernel weights ω2, Spatial-CRF falls into different local
optimal values compared to other CRF methods, probably because different parameter
scaling due to the lack of the appearance kernel. In contrast, Intensity-CRF and
Posterior-CRF converged to similar optimal values for µ and ω2. For the two diagonal
bilateral kernel weights in ω1 that control the appearance kernel, Intensity-CRF and
Posterior-CRF converged to two different optimal values. This suggests that different
CRF feature spaces contribute mostly through the appearance kernel and less through
the compatibility matrix or the spatial kernel. Interestingly, for the second diagonal
bilateral weight ω(2)

1 , there is a different trend of Posterior-CRF compared to Intensity-
CRF, which may indicate that at the early training stage Posterior-CRF uses similar
feature space like that in Intensity-CRF, but at the later stage it finds and learns
another set of features that may help categorize the lesion class better, which are more
reliable than the original intensity features.

5.5.3 Influence of CRF Hyperparameters

We conduct experiments to investigate the influence of CRF hyperparameters on both
end-to-end CRF with predefined features and the proposed CRF with learned features.

Trainable CRF parameters. The CRF weights µ, ω1, and ω2 in the end-to-end
CRF learning can be automatically updated together with CNN weights. We run
Intensity-CRF and Posterior-CRF using WMH datasets with five different initializa-
tions of CRF weights randomly sampled from the search scale with all other parameters
the same as in Table 2. The CNN initializations are the same for all experiments. The
results in Table 4 show that Intensity-CRF and Posterior-CRF converge to similar
optimal points across different initializations. Spatial-CRF shows higher variances
across experiments and is less stable to the change of initializations. Posterior-CRF is
more robust to changes in initialization, achieving higher average performance and
smaller standard deviations compared to Intensity-CRF and Spatial-CRF.

Empirically tuned parameters. The CRF standard deviation parameters θα and
θγ , controlling the spatial terms, and θβ controlling the appearance term, were tuned
empirically to give the best results for post-processing CRF. We here test, for WMH
segmentation, five different values of θα, θβ , and θγ for Intensity-CRF and Posterior-
CRF and five different values of θγ for Spatial-CRF within the search scale. All
other parameters are the same as in Table 2. The results are shown in Figure 7. We
can see that Posterior-CRF is more robust to θα and θβ and has consistently better
performance than Intensity-CRF within the search scale, suggesting that Posterior-
CRF parameters are more easy to tune. All CRF methods degenerate performance
when θγ becomes larger and show the best performance when using a similar value as
that in the grid search for post-processing CRF. Spatial-CRF is more robust to θγ
compared to other CRF methods and has similar performance as CNN baseline with
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Table 4: Performance (Dice score) across 5 different initializations
of CRF weights on WMH dataset.

Methods Intensity-CRF Spatial-CRF Posterior-CRF
Mean (std) 0.7570 (0.008) 0.7507 (0.02) 0.7833 (0.003)

larger θγ . This indicates that large θγ reduces the CRF effect and the spatial term
may introduce more incorrect segmentation when there is also an appearance term in
the end-to-end CRF like Intenity-CRF and Posterior-CRF.

5.5.4 Influence of Hierarchical CNN Features as CRF Reference
Maps

We conduct experiments to investigate which level of features – earlier or deeper in
the network – are more useful for the feature-learning-based CRF. We implement nine
variants of feature-learning-based CRF with different levels of CNN feature maps as
reference maps in the same 3D UNet architecture. For example, the method FL-CRF-
e-1 indicates the feature-learning-based CRF using the level 1 feature maps in the
UNet encoder path as CRF reference maps. The implementation detail of FL-CRF-e-1
is shown in Figure 3. To reduce the computational cost and keep the same layer
capacity as Posterior-CRF, the 32-channel (or more in deeper layers) feature maps
are encoded into C-channel feature maps and go through a softmax layer as the CRF
reference maps. Since there is no gradient flowing back through the reference map
path, we optimize the softmax layer with the segmentation loss directly in order to
preserve as much semantic information as possible. Note that for CRF methods that
use deeper CNN layers as reference maps, such as FL-CRF-e-2 to FL-CRF-d-2, we
upsample the reference maps to the original image scale and optimize them with the
segmentation loss, similar to FL-CRF-e-1.

The results are shown in Figure 8. Note that if we use the CNN input as CRF
reference maps, it turns into Intensity-CRF; if we use the last CNN layer as CRF
reference maps, it turns into Posterior-CRF. In the figure, we can see that all feature-
learning-based CRF approaches (including Posterior-CRF) outperform Intensity-CRF
and the overall Dice performance in the decoder path is better than that in the encoder
path, indicating that CNN learned features are more useful to the CRF inference
than intensity is and later CNN features are more useful than early features. The
performance degenerates towards the middle part of the UNet (from FL-CRF-e-1 to
FL-CRF-e-5 and FL-CRF-d-1 to FL-CRF-d-4) but fluctuates at the 2nd/3rd level.
We argue that this may be due to the pooling effect which enables CNN to extract
higher-level features but loses the spatial information at the same time. Posterior-CRF
achieves the best performance among all variants and we argue that this is because the
last CNN layer are more likely to contain more useful information for CRF inference
and it still keeps the same spatial scale as the original image.
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Figure 7: Dice performance of varying θ for CRF methods on
WMH dataset. CNN result is shown as the black dash line.
Purple crosses indicate the values used in Table 4. Best viewed in
color with zoom.

5.5.5 Evolution of CNN and CRF Outputs
The concurrent optimization of CNN and CRF in our end-to-end models allows the
CNN and CRF to interact during training. We observed that this has a strong effect
on what the CNN learns in the early training epochs. Figure 9 shows the evolution of
CNN and CRF outputs for three typical examples. The baseline CNN without CRF
converges quickly and focuses on the large lesions, already producing a fairly sparse
output after the first epoch. The end-to-end models converge more slowly, and in this
case the output of the CNN is influenced by the choice of CRF mostly in the early
stage of training. For example, the CNN in the Intensity-CRF model initially tends
to highlight voxels with similar intensity as the foreground (1 to 20 epoch), while
the CNN in the Spatial-CRF model preserves the spatial coherence between voxels
and outputs many small groups of voxels (5 epoch). The CNN in the Posterior-CRF
model first focuses on the coarse area that might contain the target lesions (1 to 5
epoch) and then refine the prediction gradually to the ground truth (5 to 20 epoch).
Eventually, all models converge to a result close to the ground truth.

5.6 Discussion

In this chapter, we explored efficient methods to combine the global inference capa-
bilities of a CRF with the feature extraction from a CNN. Our end-to-end approach
optimizes the CRF and CNN at the same time, and allows the two components of
the approach to cooperate in learning effective feature representations. This gives
our method an advantage over traditional CRFs that only use the original image
intensities and position information. Intensity-based features can be suboptimal for
problems where the intensity does not provide sufficient information to find the object
boundaries, for example because the contrast between objects is too small.

Unlike other CRF methods, our Posterior-CRF uses adaptive learning-based fea-
tures that are learned by the CNN and can combine spatial and appearance information
in a way that suits the CRF. The results show our method can achieve stable, good
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Intensity-CRF:
0.7604

FL-CRF-e-1:
0.7782

FL-CRF-e-2:
0.7680

FL-CRF-e-3:
0.7788

FL-CRF-e-4:
0.7736

FL-CRF-e-5:
0.7708

FL-CRF-d-4:
0.7833

FL-CRF-d-3:
0.7855

FL-CRF-d-2:
0.7842

FL-CRF-d-1:
0.7863

Input layer

Encoder path

Decoder path

Posterior-CRF:
0.7877

Last CNN layer

Figure 8: Dice performance of end-to-end CRFs using different
CNN feature maps in an independent run on WMH
dataset. Different blocks indicate different level of CNN fea-
ture maps used as CRF reference maps. Best viewed in color with
zoom.

performance across a range of segmentation applications and imaging modalities.
FL-CRF variants that use early CNN features in Section 5.5.4 achieve in-between
performance between Intensity-CRF and Posterior-CRF, using learning-based features
that range from more similar to intensity to more similar to posterior probability
maps. Finally, we found that integrating learned features into the CRF model reduces
the need to fine-tune CRF parameters, making the method easier to apply than CRF
methods with predefined features.

5.6.1 Interaction between CRF and CNN

Figure 9 leads to the counter-intuitive observation that, at least initially, the CNNs in
end-to-end models seem to imitate the CRF instead of complementing it. For example,
the CNN output in Intensity-CRF highlights the ground truth, but also finds areas
with similar intensities, producing something that looks very similar to the original
image (20 epoch). The CNN output in Spatial-CRF selects the ground truth but also
includes clusters of voxels in other areas (5 epoch).

This effect can be explained by the way the CNN and CRF interact during training.
In Intensity-CRF and Spatial-CRF, the only interaction between CRF and CNN takes
place through the unary map ( Figure 4, step 5, green arrow). For example, consider
how this works in the Intensity-CRF. In WMH segmentation, the ground truth is
usually high-intensity area. However, for the voxels with high intensities but not
the target lesions, it is difficult to get both low pairwise CRF potentials and low
segmentation loss, since labeling them as non-lesion goes against the CRF assumption
that voxels with similar high-intensities are more likely to be the lesion class. For
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convenience, we call these voxels as hard voxels, indicating the voxels that do not fit
the CRF assumption. In order to keep the correctly segmented lesions and reduce
the CRF effect on the hard voxels at the same time, the CNN tends to provide unary
maps that 1) highlight the ground truth area for lower segmentation loss, and 2)
look similar to the CRF reference maps on the hard voxels for lower pairwise CRF
potentials. In the later stage of training, CNN is encouraged to push the confidence
of its outputs even further to minimize unary potentials and thus prevent CRF from
undoing segmentation improvement on the hard voxels. From Figure 9, we can see that
there are many hard voxels in Intensity-CRF (1 to 20 epoch, areas that look like the
original image) and Spatial-CRF (5 epoch, clusters of voxels that do not belong to the
ground truth) which may harm the segmentation. This indicates that the predefined
features may not be the optimal feature space for the end-to-end CRF.

In the Posterior-CRF model, the CRF inference happens within the CNN feature
space, which can improve the interaction between CNN and CRF. First, the features
learned by CNN during training may contain information that is more useful for
segmentation than that in the predefined features, which makes CRF benefit most
from the CNN features. Second, using the learning-based features as CRF reference
maps avoids the CRF assumption of the predefined features which may introduce
many hard voxels, e.g., Intensity-CRF and Spatial-CRF, as discussed in the previous
paragraph. With fewer hard voxels, the CNN in Posterior-CRF may provide better
unary maps for the CRF inference.

5.6.2 Posterior-CRF vs. Mean-field Network

The mean-field approximation (MFA) in Posterior-CRF is somewhat similar to that
in Mean-field networks (MFN) [141], since both methods use it to get the posterior
probabilities of the variables. Therefore, MFN could be a promising alternative to the
MFA process in our method. MFN has the advantage that it utilizes each layer of the
network as an iteration of MFA, which has the advantage of allowing more relaxation
on parameters and provides some efficiency improvements. This makes the idea of
formulating Posterior-CRF as a feed-forward network like MFN very attractive. There
are, however, a few limitations that would need to be solved.

The first limitation is in training. MFN is designed to provide a faster and more
flexible way to obtain the prediction of MFA, by fitting a powerful function that
predicts the real MFA result. To train an MFN, we first need to acquire the ground
truth calculated by conventional mean-field iterations, which takes time during training
but saves time during inference. On the other hand, Posterior-CRF provides a flexible
and adaptive feature space for the conventional MFA, speeding up the procedure by
applying Gaussian convolution in the message passing updates. As a result, the thing
Posterior-CRF does is difficult to replicate with a MFN because the feature space of
a Posterior-CRF changes during training, while MFN requires a predefined feature
space to get the ground truth.

The second limitation is the tradeoff between dense inference and computation
cost in the MFN. In its feed-forward network implementation, the computation cost
increases exponentially when more neighbor nodes and number of layers are included,
which limits its ability to model dense prediction problems such as segmentation tasks.
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5.6.3 Posterior-CRF vs. Graph Neural Networks
The proposed Posterior-CRF shares some similarities with graph neural networks
(GNN) [131, 132]: both approaches aim to model interactions between variables within
a graph model. The difference is that Posterior-CRF pre-defines the global relationship
between variables through the mean-field assumptions and solves the maximum a
posteriori problem, whereas GNN learns the global variable relationship by applying
graph convolution filters and mapping the input graph to the output graph [132].

It could be interesting to combine the global view of the Posterior-CRF and the
more local view of the GNN. The Posterior-CRF might benefit from using a GNN
to replace its CNN component for feature extraction. The graph-based network may
extract better features for Posterior-CRF than a CNN, which is not designed to extract
unary and pairwise features for a graphical model. Similarly, the GNN may benefit
from the efficient message passing of the Posterior-CRF, which would allow it to use
the local graph-based features as CRF features for global interactive modeling in a
computationally efficient way.

5.6.4 Limitations
In this chapter, we show that the proposed Posterior-CRF method has benefits in
the three medical imaging applications. Considering the medical imaging datasets
are usually small largely because the manual annotations are very expensive to make,
difference between Posterior-CRF and UNet may be smaller in larger training sets. But
we know from literature that Intensity-CRF helps in some computer vision applications
with large training sets (e.g., 10k 2D images or even more), it would be promising to
test our method on these datasets. This is considered as our future work.

In Section 5.5.3, we show that Posterior-CRF is robust to different CRF initializa-
tions and hyperparameters. However, the standard deviation parameters still require
careful tuning, especially for θγ in the spatial term. θγ is sensitive to the image scale
of different datasets and the size of the target object in different applications. The
optimal value from the grid search on post-processing CRF can be a good reference
for the value used in the end-to-end CRF setting. Posterior-CRF is more robust to
θα and θβ compared to Intensity-CRF, which facilitates exhaustive tuning of these
parameters.

The computational expense of the CRF also restricts the choice of applications.
Compared to UNet, there is around 20% training time increased in average when
applied CRF layer on top of the network. Given that Posterior-CRF uses posterior
probability maps as its reference maps, it can become computationally expensive in
multi-class segmentation problems. For a similar reason, Intensity-CRF and Postproc-
CRF can become expensive when there are too many imaging modalities in the input
channels M .

In the experiments, we use a plain 3D UNet as the backbone network for all methods.
The training pipeline and hyperparameters are determined empirically and kept the
same for all datasets, which could be suboptimal compared to elaborate automatic
configuration strategies like nnU-Net [142]. On the WMH dataset we therefore checked
the performance of nnU-Net (3D version without ensembling). Average Dice score
of nnU-net (0.77) was slightly higher than our CNN baseline (0.76, difference not
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statistically significant) but lower than the proposed posterior CRF using the CNN
baseline as a backbone (0.79), which performed significantly better than the CNN
baseline (see Table 3). Though our experiments have been limited to a standard
3D U-net architecture, We expect that posterior CRF can improve results of other
segmentation architectures and other hyperparameter settings (such as nnU-net) as
well.

5.7 Conclusions

In conclusion, we present a novel end-to-end segmentation method called Posterior-
CRF that uses learning-based, class-informative CNN features for CRF inference. The
proposed method is evaluated in three medical image segmentation tasks, including
different MRI/CT imaging modalities and covering a range of object sizes, appearances
and anatomical classes. In the quantitative evaluation, our method outperforms
end-to-end CRF with early CNN features, end-to-end CRF approaches with predefined
features, post-processing CRF, as well as a baseline CNN with similar architecture.
In two of the three applications, our method significantly improves the segmentation
performance. The qualitative comparison demonstrates that our method has good
performance on segmenting blurred boundaries and very small objects.

Acknowledgment

The author would like to thank Raghavendra Selvan, Gerda Bortsova for their construc-
tive suggestions for this chapter, Dr. Zaigham Saghir from DLCST for providing us
with the chest CT scans, and organizers of WMH 2017 and ISLES 2015 Challenges for
providing the public datasets. This work was partially funded by Chinese Scholarship
Council, Iranian Ministry of Science, Research and Technology (MSRT), and The
Netherlands Organisation for Scientific Research (NWO).



102 Chapter 5. Posterior-CRF an end-to-end segmentation approach

Appendix

5.A Mean-field Inference

Mean-field inference is an efficient approximation to computing distribution Q(X)
instead of the real CRF distribution P (X), which could be done in an iterative
algorithm 1 (see also Figure 5.A.1). X is the random field w.r.t the current 3D image
patch I.

There are three main steps inside the inference iteration. First is message passing,
which is the most calculation-intense step that could be expressed as a convolution
operation on all the pairwise kernels k and the initialized Q(X). An efficient way to
perform high-dimensional convolution is using permutohedral lattice algorithm [139].
In compatibility transform as the second step, all the convolution results Q̂(m)

i (xi) are
weighted by ω(m) in different sort of kernels and shared between labels to a varied
extent, depending on the compatibility µ between these labels. At last, Q(X) will
be updated by the calculated pairwise potential and used as the input for the next
iteration.

5.B SHAP Analysis of Post-processing CRF

We conduct SHAP (SHapley Additive exPlanations) [143] analysis on the post-
processing CRF grid search results to investigate the contribution of each individual
CRF parameter to the segmentation performance. With this analysis, we show that it
is difficult to tune traditional CRF parameters to achieve a consistent performance
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Figure 5.A.1: Mean-field approximation in the end-to-end CRF
layer. There are two inputs of the CRF layer, where U
is the CNN probability maps as the unary maps and the pair-
wise distribution are calculated by the initialized distribution
Q and the reference map I. The updated distribution Y is
the output of the layer at the end of the iteration.
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Algorithm 1 Mean-field inference in fully-connected CRF
Qi(xi)←Ui(xi), i = 1, 2, ..., N . Initialize Q(X)
while not reach max iteration number do

Q̂
(m)
i (xi)←

∑
j 6=i

k(m)(fi, fj)Qj(xi) for all m . Message Passing
Q̂

(m)
i (xi)←

∑
l∈L µ

(m)(xi, l)
∑

m
ω(m)Q̂

(m)
i (l) . Compatibility Transform

Qi(xi)← exp
{
− ϕu(xi)− Q̂i(xi)

}
. Local Update

normalize Qi(xi)
end while

improvement on different applications, and our proposed method does not require
tuning parameters. Moreover, the analysis shows the importance of each modality to
each dataset, which can be automatically adapted in the proposed method but not in
traditional methods. The model is trained using XGBoost [144] for 100 iterations using
a learning rate of 0.5, 0.01, and 0.01 for CT Arteries, WMH, and ISLES respectively.
Note that the SHAP analysis results can only be explained under the assumption of
the current parameter search scales and XGBoost models.

The results are shown in Figure 5.B.1. The summary plot in the left sub-graph
shows an overview of all parameter sets with the most important parameters on top
of the list. For each dataset, the best and worst parameter settings are shown in the
right sub-graph. For all datasets, the post-processing quality is affected most by the
spatial parameters ω2 and θγ , and less by the intensity parameters per modality θβ .

The results on the CT arteries data (Figure 5.B.1a left) are more stable (with
smaller SHAP values) than the results for WMH and ISLES, indicating that the
post-processing CRF can hardly change the CNN output of the artery segmentation
(see Figure 6 as an example).

In the WMH dataset, looking at independent parameter contributions, low values
for spatial parameters ω2, θγ (less smoothing), and a smaller number of iterations lead
to an improved performance. This is not unexpected, because white matter lesions are
sparsely distributed and spatial smoothing tends to remove small lesions. Too strong
spatial correlations (either large weight ω2 or small θγ) will remove true positives as
well (see Figure 6). The summary plot (Figure 5.B.1.b left) shows, as expected, that
the FLAIR image has a larger impact on the model than the T1 image. Table 1 also
shows a smaller θβ selected (corresponding to higher influence) for FLAIR.

Similar trends can be found for the ISLES dataset (Figure 5.B.1.c). Spatial
parameters ω2 and θγ are important to tune and high values can strongly harm the
performance. The summary plot shows that the DWI image has a larger impact on the
model than T1, T2, and FLAIR. In Table 1, θβ for FLAIR and DWI are smaller than
θβ for T1 and T2, which means that FLAIR and DWI images are more informative
for the segmentation of ischemic stroke lesions.
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Figure 5.B.1: SHAP analysis of the grid search results. See Section 5.B for an explanation. Upper sub-graphs:
summary plots of all parameter sets evaluated during grid search. Positive SHAP values indicates
a positive contribution to the performance and vice versa. The legend (feature value bar) shows the
search range for each parameter. This reveals for example that lower values of ω2 lead to better
segmentation performance for all datasets. Lower sub-graphs: the best (1st row) and worst (2nd
row) parameter sets for each dataset. Red bar represents positive contribution to the performance
and blue bar is negative contribution. Base value is the average DSC of all grid search results
and output value is the DSC in the parameter set depicted. Best viewed in color with zoom.
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6.1 Summary

Measurement of the dilatation of large blood vessels such as the aorta and pul-
monary artery requires accurate delineation of the vessel anatomy. The most accurate
quantification of their dimensions requires a full 3D analysis. Compared to manual
measurement, automated 3D vessel segmentation and diameter measurement methods
have the potential to objectively quantify vessel enlargement and provide a means
of early-stage diagnosis. In this thesis, I develop and evaluate fully automatic meth-
ods for segmenting the aorta and pulmonary artery and measure their diameters in
non-ECG-gated, non-contrast CT scans.

The presented segmentation methods in this thesis can be divided into two cate-
gories: optimal surface graph-cut based segmentation method presented in Chapter 2
and Chapter 4, and a deep learning based method presented in Chapter 5. This
thesis also provides techniques for automatic diameter measurement in Chapter 2
and Chapter 4. Chapter 3 investigates the aortic growth rates in a population of
current and ex-smokers using the automatic segmentation and diameter measurement
technique presented in Chapter 2. This chapter summarizes the main contributions of
our work and provides future research directions.

6.2 Optimal Surface Graph Cut based Segmentation Method

Chapter 2 and Chapter 4 present an optimal surface graph cut segmentation method to
provide a 3D segmentation of the aorta and pulmonary artery. In these chapters, the
method’s accuracy and robustness are investigated on non-ECG-gated, non-contrast
CT scans. Since graph cuts have the ability to achieve a global optimum in relatively
short processing times, and they allow the incorporation of shape or smoothness
constraints in the graph structure, a graph is constructed with non-intersecting graph
columns based on flow lines generated from a predefined initial coarse segmentation.
These graph columns resulted in non-self-intersecting surfaces and preserved the
topology of the initial shape. In addition, smooth segmentation similar in shape to
the initialization are encouraged by adding the “smoothness penalty” edges to the
graph. This results in smooth segmentation even in the presence of motion artifacts
caused by the motion of the heart during the cardiac cycle. To obtain an initial coarse
segmentation providing information about the vessel’s shape, the initial segmentation
is defined as the non-uniform morphological dilation of the vessel centerlines based on
a radius estimation map extracted by a multi-scale medialness filter.

Chapter 2 performed a 3D quantitative evaluation on 100 non-contrast CT scans
for segmenting the aorta and obtained an average Dice Similarity Coefficient (DSC)
of 0.95± 0.01 and an average mean surface distance (MSD) of 0.56± 0.08 mm. 3D
quantitative evaluation on 25 non-contrast CT scans for the pulmonary artery and
aorta segmentation presented in Chapter 4 resulted in a DSC of 0.94 ± 0.02 and
0.96±0.01 with an MSD of 0.62±0.33 mm and 0.43±0.07 mm, respectively. Although
unclear vessel boundaries and the similarity in the vessel intensities on non-contrast
CT scans made the aorta and pulmonary artery segmentation a challenging task, the
presented segmentation method performed well with a high segmentation accuracy.
Additional qualitative assessment of the aorta and pulmonary artery segmentation on
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419 non-contrast CT scans demonstrated the robustness of the presented method: 92%
of the aorta and 94% of the pulmonary artery were segmented with very high quality
and with no obvious errors, 4% of the aorta and 6% of the pulmonary artery had
minor errors with a maximum 3 mm surface distance, and only 2% of both the aorta
and pulmonary artery required corrections with errors larger than 3 mm. Chapter 4
showed that even though there are sometimes segmentation errors, these occur mainly
in the pulmonary trunk or at the aortic root due to the presence of motion artifacts
and adjacency of the vessels to each other and the surrounding structures. The method
also has good segmentation accuracy in high curvature areas such as the pulmonary
artery bifurcation, resulting in accurate diameter measurements of the pulmonary
artery and aorta in the pulmonary artery bifurcation level and subsequently accurate
measurements of the PA:AA ratio.

In Chapter 4, the accuracy of the aorta segmentation is improved by improving
the landmark and seed point extraction accuracy compared to Chapter 2. In this
chapter, the multi-atlas registration method is directly applied for seed point and
landmark extraction, whereas in Chapter 2, the multi-atlas registration technique
is used to extract a coarse segmentation of the pulmonary artery and the accuracy
of landmark and seed points are dependent on the quality of this segmentation. In
Chapter 4, the seed point for the descending aorta is extracted at the diaphragm level,
whereas in Chapter 2, it is extracted 6 cm below the level of the pulmonary artery
bifurcation. Having the seed point extracted at the diaphragm level resulted in larger
aorta segmentation, which covers a larger part of the aorta anatomy and, therefore, is
useful for diagnosing the descending aorta dilatation or aneurysm. Furthermore, the
extracted seed points did no longer depend on the location of the extracted landmark
for the level of the pulmonary artery bifurcation, which improved the reliability.
The evaluation of seed point and centerline extraction on 942 vessels, including the
pulmonary artery and aorta (471 CT scans), with 98.9% accurate vessel centerlines,
demonstrated the accuracy and robustness of the method.

The advantage of this method, besides the smooth accurate segmentation result, is
that it requires no human interaction for seed point or landmark placement, and thus
the entire method is fully automated.

6.3 Posterior-CRF Segmentation Method

In the methods presented in Chapter 2 and Chapter 4, the aorta and pulmonary artery
are segmented separately. With supervised neural networks such as Convolutional
Neural Networks (CNN)s it is possible to convert the segmentation problem to a
classification problem and segment the vessels jointly by a voxelwise classification.
CNNs are powerful in extracting local features and perform good predictions. How-
ever, the lack of using context information for modeling interactions and relations
between nearby objects can result in poorly segmented boundaries. To overcome this
challenge and refine the prediction from the CNN, in Chapter 5, CNN is combined
with a Conditional Random Field (CRF), where CRF models the correlations and
dependencies among the voxels being predicted. It is common to use CRFs based on
predefined features such as intensity as an efficient post-processing technique, based
on the assumption that voxels with a similar intensity or close adjacency are likely to
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belong to the same class. However, for adjacent vessels wiht similar intensities and
unclear vessel boundaries in non-contrast CT scans, only intensity-based features of
the CRF are not sufficient for identifying the vessel boundaries.

To address these challenges, in Chapter 5, a new end-to-end deep learning based
segmentation technique, named Posterior-CRF, is presented that allows the CRF to
use features learned by a CNN, optimizing the CRF and CNN parameters concurrently.
During training, the CRF inference works in the CNN feature space, which is likely to
be more informative for segmentation than the original intensity values of the image.
The proposed Posterior-CRF method consists of two parts that are optimized jointly:
3D CNN and 3D CRF. A 3D UNet is used as the basic CNN architecture to provide
unary potentials for the CRF inference as well as features for the pairwise potentials
for the proposed Posterior-CRF. Posterior-CRF takes the last softmax layer of the
UNet feature maps as the reference maps and updates the random field based on this
new feature vector from the UNet feature maps instead of intensity features in the
CRF kernel directly.

The proposed method is demonstrated and evaluated on three medical image
analysis applications: segmentation of the aorta and pulmonary artery on non-ECG-
gated, non-contrast chest CT scans; segmentation of white-matter hyperintensities
on brain MRI; segmentation of ischemic stroke lesions on brain MRI. These three
segmentation problems vary in object shape appearance, imaging modalities and pose
different challenges such as isolated small objects in white matter hyperintensities or
similar intensity values in adjacent arteries in non-contrast CT. Therefore validating
the method on these three different applications presents the generalizability of the
method.

The accuracy of the proposed network is compared with that of a baseline UNet,
a postprocessing CRF, and two forms of end-to-end CRFs with predefined features:
Intensity-CRF, which uses the original image intensities and position information,
and Spatial-CRF, which uses only the position information. Among these networks,
the proposed Posterior-CRF obtained a DSC of 0.95 for the aorta and 0.89 for the
pulmonary artery, outperforming the baseline and other three networks. The DSC
obtained with the proposed Posterior-CRF for the segmentation of white-matter
hyperintensities and segmentation of ischemic stroke lesions in MRI also outperformed
the other networks.

The presented method in Chapter 5 showed that spatial coherence or intensity
features alone are not sufficient and often are detrimental to segmentation accuracy
and that the CNN features in the last layer as presented in Posterior-CRF are more
informative for CRF than the intensity features in the original images. In addition,
this chapter showed that integrating learned features into the CRF model reduces
the need to fine-tune CRF parameters, making the method easier to apply than CRF
methods with predefined features.

6.4 Diameter Measurement

It is essential to provide precise, reliable, and reproducible aortic diameter measure-
ments in almost all stages of the management of aortic pathologies as they are used
in predicting the risk of rupture or decision-making for intervention. However, it is
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very time-consuming to manually measure diameters at multiple levels perpendicular
to the vessel centerline. Therefore automatic diameter measurement techniques are
desired. In Chapter 2, an automatic method for aorta segmentation is presented.
With this method, a 3D aorta segment is driven, and from that, aortic diameters
are automatically measured at multiple, fixed levels relative to the landmark level
extracted at the level of the pulmonary artery bifurcation. To improve the robustness
of the diameter measurements, cross-sections are extracted at every 1 mm along the
extracted aortic centerline, and subsequently, the average diameter from the segmented
cross-sectional area is computed. Average aortic diameters are assessed at 13 cross-
sections located at 1-cm intervals around the bifurcation level from 2 cm below this
level to 3 cm above for the ascending aorta and from 3 cm above to 3 cm below this
level for the descending aorta. The accuracy of the method is validated on 100 CT
scans where high agreement between the manual and automatic aortic diameters is
obtained with an overall intra-class correlation (ICC) of 0.97 and an average per-level
ICC of 0.91± 0.03. The accuracy of the extracted landmark level of the pulmonary
artery bifurcation is also compared to manual landmarks, and the method achieved a
low mean absolute distance of 2.55 ± 1.94 mm, with almost no bias. Repeatability
of the method is assessed by comparing the automatically extracted diameters of
scan-rescan pairs of 617 subjects with a period of 1 year in between and achieved a
per-level ICC of 0.94± 0.01. The results from the proposed automatic method in this
chapter showed that it is an accurate and reliable technique to assess subtle signs
of aorta dilatation or aortic diameter changes without any human interaction and,
therefore, can be used in clinical practice.

The accuracy of the presented method in Chapter 2 led us to apply the presented
method on a larger cohort to measure thoracic aorta diameters and assess the aortic
growth rate in a subgroup of the general population, namely smokers. Therefore in
Chapter 3, the ascending and descending aorta diameters are automatically measured
at the level of the pulmonary artery bifurcation on the first and last non-contrast CT
scan during the follow-up of almost 2000 current or former smokers from the Danish
Lung Cancer Screening Trial (DLCST). A growth rate of approximately 0.1 mm/year
in both males and females is found from the measured diameters, which is consistent
with aortic growth rates of 0.08 to 0.17 mm/years measured in cross-sectional studies
of the general population. Furthermore, with the presented 95th percentiles of aortic
growth ranged from 0.42 to 0.47 mm/year, we show that an aortic growth of > 0.5
mm/year can be considered the upper limit of normal.

With the growing use and widespread availability of non-contrast CT scans, such
as those presented for lung cancer screening, there is an opportunity to measure the
diameters of the aorta and pulmonary arteries to identify the presence of early-stage
cardiovascular disease and/or predict complications in patients with COPD. The ratio
of the diameter of the pulmonary artery to the diameter of the aorta at the level
of the pulmonary artery bifurcation (PA:AA) has shown to be a strong predictor
for severe exacerbations in patients with COPD and is associated with increased
mortality. Clinically standardizing the measurement of the diameter of the main
pulmonary artery is difficult since clinicians mainly measure the greatest diameter of
the pulmonary artery in an axial slice, which the orientation of the vessels with respect
to the patient and with respect to the axial plane may vary, leading to variability
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in axial diameter measurements. Furthermore, measurements that are further away
from the bifurcation show smaller/larger diameters than those close to the pulmonary
bifurcation, leading to subjective measurements based on slice location. Determining
the exact level of bifurcation is also difficult and is prone to variability. Therefore, in
Chapter 4, a 3D volumetric average diameter measurement technique is presented,
where the diameters are measured in 3D segments along the vessel centerlines around
the extracted pulmonary artery bifurcation level. This proposed technique is less
subjective and is more robust and reproducible than diameter measurement in 2D
axial slices. We validated the repeatability of the presented measurement technique
on scan-rescan pairs of 112 subjects (224 CT scans) with an average period of three
months in between. Changes to the pulmonary artery and aorta diameters are expected
to be negligible within three months. We obtained ICC of 0.89, 0.95, and 0.86 for the
pulmonary artery, aorta, and the PA:AA ratio, respectively.

Besides the presented 3D volumetric diameter technique, for validating the accuracy
of the method in 2D axial diameter measurement, the manual and automatic diameters
of the pulmonary artery and aorta in axial slices at the level of pulmonary artery
bifurcation are compared. A high agreement between the manual and automatic
diameters is obtained with ICC of 0.92, 0.97, 0.90 for the pulmonary artery, aorta, and
PA:AA ratio in axial slices. The extracted high agreements for both in-slice diameters
and 3D volumetric diameters show the accuracy and repeatability of the segmentation
and measurement method.

6.5 General Discussion & Future Directions

This thesis contributed to accurately and fully automatically segmenting the aorta and
pulmonary artery and measuring their diameters. In this discussion, I compare the
presented methods with each other, summarize the limitations, and present possible
future directions for methodological improvements and translation to clinical practice.
Chapter 2 and Chapter 4 proposed a fully automatic segmentation method based
on optimal surface graph cuts. Due to the need for accurate aortic diameters, a
fully automatic diameter measurement technique is presented in Chapter 2, and this
method is applied on a large cohort in Chapter 3. Chapter 3 studied the aortic
growth rate in current and ex-smokers. In Chapter 5, a deep learning-based method
is proposed, named Posterior-CRF, to jointly segment the aorta and pulmonary artery.

The optimal surface graph cut segmentation method proposed in Chapter 2 and
Chapter 4 requires an initial segmentation prior to the vessel segmentation method.
To this end, a multi-atlas registration technique is utilized for seed point and landmark
detection, and a path-tracking algorithm is applied for centerline extraction followed
by a morphological dilatation to construct an initial segmentation. Furthermore, the
aorta and pulmonary artery are segmented separately, and to achieve the segmentation
of both, two optimal surface graph problems are evaluated. This results in a relatively
slow segmentation technique. Therefore, although this method’s high accuracy and
reliability make it suitable for clinical study, the relatively long processing time may
limit the uptake of the method in clinical practice.

The learning-based Posterior-CRF segmentation method proposed in Chapter 5,
once trained, can perform a joint segmentation of the aorta and pulmonary artery
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in less than 10 seconds. However, note that only the vessels are segmented in this
method, and no landmarks and centerlines are extracted for automatic diameter
measurement and subsequent biomarker extraction. Therefore, although it has a
minimal processing time for vessel segmentation, another study addressing landmark
and biomarker extraction, validation, and adoption of the method to a large cohort, is
still required for drawing a strong conclusion on the desired tool for clinical practice.

Besides the advantage of fast segmentation in the Posterior-CRF method, unlike
the segmentation results from the optimal surface graph cut, the segmentation results
do not suffer from overlapping areas. In the Posterior-CRF method, the segmentation
problem is converted to a classification problem where the voxels are classified into
one of the three classes of the aorta, the pulmonary artery, or the background and
it is not possible to classify one voxel in more than one class. This results in having
non-overlapping segmentations for the aorta and pulmonary artery. However, since
the network has no prior information of the geometry of the vessels and no explicit
shape constraints have been incorporated, in regions with very unclear boundaries, the
method can classify a part of the aorta as pulmonary artery or vice-versa, resulting in
unrealistic/incorrect surfaces.

The advantage of the optimal surface graph cut method is incorporating the
topology constraints into the graph structure and defining “smoothness-penalty” edges
to encourage a smooth segmentation similar in shape to the initialization. These
constraints restrict the final segmentation to plausible vessel surfaces. However, the
vessels are segmented separately. Therefore in regions where the vessels are adjacent
and boundaries are unclear, such as the aortic root, the segmented aorta and pulmonary
artery might slightly overlap.

In general, the segmentation accuracy of deep learning based methods is largely
dependent on the size and quality of the ground truth dataset (manual annotations)
used in its training. The number of samples and quality of the ground truth also
affect parameter tuning of the optimal surface graph cuts method in Chapter 4. The
ground truth used to train the Posterior-CRF in Chapter 5 consists of only 10 CT
scans. These scans are from relatively healthy subjects with no abnormalities in the
vessels’s shape and size, such as dilatation. This may reduce the generalizability of
the methods. Comparing the Posterior-CRF method and the optimal surface graph
cuts method on the same dataset shows that both methods have similar accuracy
for the aorta segmentation with DSC of 0.953 and 0.959, respectively. However, for
the pulmonary artery, the Posterior-CRF method achieves a DSC of 0.910, which
is lower than that for the optimal surface graph cuts method with a DSC of 0.934
on the same dataset. This can be due to the small ground truth used for training
the Posterior-CRF method. The errors mainly occur in the pulmonary artery trunk,
where the vessel can have an ellipsoid or a circular shape. It is also important to note
that segmenting the pulmonary artery in regions close to the heart chamber is more
complicated than the aorta due to the complex anatomy of the pulmonary artery
in this region. The ground truth is created by only one observer, where in regions
close to the heart with very unclear boundaries, human error might exist. Although
the process of manual annotations has a high cost, having more than one observer
could help the methods to learn the correct boundaries even in regions difficult for
experienced radiologists.
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In this thesis, vessel centerline extraction is an essential step for analyzing the vessel
geometry, and as an input for segmentation and diameter measurement. Chapter 4
extracted the centerline of the left and right pulmonary artery separately without
considering any interaction between these two arteries and any prior information
about the pulmonary artery bifurcation level. Our proposed method in Chapter 4
showed only less than 1% (8 out of 942) failures in the centerline extraction of the
left and right pulmonary arteries, indicating the robustness of the method. The failed
centerlines either were very close to the border, or the centerline of the right pulmonary
artery made a shortcut through the ascending aorta and the aortic arch. Therefore,
extracting both centerlines jointly and incorporating an extra seed point at the level
of the pulmonary artery bifurcation as presented in [145] might result in no failures in
centerline extraction.

Chapter 2 measured the aortic dimensions at fixed intervals with respect to a
single anatomical landmark level, the level of the pulmonary artery bifurcation. In
clinical practice, multiple standard anatomical landmarks as described in the ESC and
ACCF/AHA guidelines [21, 76] are used instead for reporting aortic diameters. As a
future perspective, it would therefore be interesting to design a method to automatically
and robustly extract anatomical landmarks for aortic diameter measurements. However,
consistently extracting these landmarks, especially on non-ECG-gated CT, is difficult.
Although Chapter 2 and Chapter 4 proposed a landmark detection based on a
multi-atlas registration technique, developing a deep learning-based technique for
landmark detection may be a better approach. Since it is expected that a deep
learning-based method is much faster than a multi-atlas registration technique and
therefore, is more suitable for applying in clinical practice.

Chapter 2 also showed that the anatomical landmark at the level of pulmonary
artery bifurcation, a standard landmark according to the ESC and ACCF/AHA
guidelines, could be extracted reliably. Therefore Chapter 3 proposed to measure the
ascending and descending aorta diameters in this landmark on a larger cohort with
both baseline and last year follow-up scans. Although we had enough information
to find aortic growth rates with these two measured diameters, quantifying local
changes to the surface of the entire thoracic aorta in a longitudinal study could provide
more information such as the changes in the arch and the aortic root. Furthermore,
longitudinal analysis of the vessel centerlines could provide information, such as the
changes in the angle of the arch or the pulmonary artery bifurcation. This thesis only
segmented the first, and last-year follow-up scans out of the five-year screening scans
in DLCST. Longitudinally studying the surface of the aorta and pulmonary artery
and their centerlines at all-time points simultaneously, not just at one landmark level,
but locally at any point on the surface can provide more detailed in-time information.
This can be an interesting topic to be considered in future studies.

Chapter 4 proposed a 3D volumetric diameter measurement technique and subse-
quently measured the PA:AA ratio. Although the robustness and repeatability of this
technique are validated, the automatically measured PA:AA ratio is not validated as
an imaging biomarker, for instance as a predictor metric for exacerbation in patients
with COPD. With the segmentation and diameter measured methods presented in this
thesis, the full 3D shape, volume, and diameters of the aorta and pulmonary artery
can be considered to extract novel imaging biomarkers for COPD and cardiovascular
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disease. This can be a good direction for future research.
In the non-contrast CT scans, the relatively high noise level and the motion artifacts

caused by the non-ECG-gated data intensifies the difficulty of vessel segmentation. For
improving the segmentation quality in such scans, one approach can be to denoise the
scans and improve the image quality with techniques such as presented in [146–148],
prior to the segmentation method. Another approach can be to reduce the aortic
motion artifacts [149, 150]. In this thesis, noise and artifact reduction techniques are
not considered, whereas it would be interesting to apply noise and motion reduction
techniques as a pre-processing step and thereafter investigate their effect on the
proposed segmentation methods.

A limitation of the studies proposed in this thesis is that the methods are evaluated
on data from a single scan protocol (Chapter 2 and Chapter 4) and a relatively
healthy screening population(Chapter 2, Chapter 4, and Chapter 5). For ap-
plication in data from different imaging and scanning protocols or in scans with
abnormalities in the vessel shapes, parameters may need to be adjusted, or the net-
work may need to be retrained. However, the optimal surface graph cut method is
successfully applied, with identical parameter settings, on other data including CTA
scans of patients with abnormal aortic shape due to Turner syndrome. A sample of
this segmentation result is shown in the appendix of Chapter 4.

6.6 Conclusion

In conclusion, in this thesis, fully automatic segmentation and diameter measurement
techniques are developed and validated to quantify the shape and size of the aorta
and pulmonary artery in non-ECG-gated, non-contrast CT scans. The methods
presented robust and reproducible results and are proven to be of sufficient accuracy
and reliability for use in the clinical study. I hope this work will be continued in
further studies, thereby contributing to future incorporation into clinical practice and
facilitating clinical and epidemiological research, for the final goal of accurate diagnosis
of silent disease in an early stage contributing to improved everyday healthcare.
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Lay Summary (English Summary)

Cardiovascular diseases and Chronic Obstructive Pulmonary Disease (COPD) are
among the major leading causes of death globally. In the search for early identification
of individuals at risk of cardiovascular disease in COPD, imaging-based assessments
of the shape and size of the aorta and pulmonary artery have rapidly gained inter-
est. Changes in these two large arteries may indicate cardiovascular diseases such
as pulmonary hypertension and aortic aneurysm. Furthermore, the ratio of the di-
ameter of the pulmonary artery to ascending aorta at the level of pulmonary artery
bifurcation is shown to be associated with an increased risk of severe exacerbations
and increased mortality in patients with COPD. Therefore, it is essential to have an
accurate delineation and quantification of the aorta and pulmonary artery anatomy.
With the growing use of low-dose non-contrast thoracic CT scans for lung cancer
screening, there is an opportunity to measure the aorta and pulmonary artery in these
scans. However, performing diameter measurements manually is labor-intensive and
time-consuming; therefore, automatic 3D segmentation and measurement techniques
are desirable.

This thesis aims to develop and validate fully automatic segmentation and diame-
ter measurement techniques to quantify the shape and size of the aorta and pulmonary
arteries in CT scans.

Chapter 1 provides a background on the aorta and pulmonary artery anatomy
and thoracic imaging and introduces the diseases associated with these vessels and the
challenges associated with automatic vessel segmentation. The main challenges for
the segmentation of the aorta and pulmonary artery in non-contrast CT scans are the
unclear vessel boundary and intensity similarities with adjacent vessels. Additionally,
in non-ECG-gated CT scans, the existence of motion artifacts caused by the motion
of the heart during the cardiac cycle increases the ambiguity of the vessel boundaries
and makes segmentation a more challenging task.

Chapter 2 develops and validates a fully automatic aorta segmentation and di-
ameter measurement technique based on an optimal surface graph cuts method. This
3D segmentation algorithm is evaluated on 100 non-ECG-gated, non-contrast CT
scans and performs well with high overlap between the full 3D manual and automatic
segmentations. Besides the 3D segmentation, the aortic centerline and a landmark for
the level of the pulmonary artery bifurcation are extracted, which made the diameter
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measurements at cross-sections perpendicular to the vessel centerline at a standard
landmark level possible. Subsequently, the aortic diameters are assessed at multiple,
fixed levels relative to the extracted landmark level, and a high agreement between
the manual and automatic diameters is achieved. This study shows that the proposed
automatic method is a promising technique to accurately and robustly assess aorta
diameters and is a valuable method for both clinical practice and study purposes.

The automatic aorta segmentation and diameter measurement method evaluated
in Chapter 2 is then applied in Chapter 3 to study the aortic growth rate in a
large cohort. This cohort consists of current and former smokers of 50- to 70-year-old
adults from the Danish Lung Cancer Screening Trial. In this subgroup of the general
population (smokers), the ascending and descending aorta diameters are measured
at the level of the pulmonary artery bifurcation of almost 2000 participants. An
aortic growth rate of approximately 0.1 mm/year for both males and females is found,
consistent with numbers reported for growth in cross-sectional studies of the general
population. In addition, it is found that larger changes of aortic diameters in time are
associated with lower age, increased height, absence of medication for hypertension or
hypercholesterolemia, lower Agatston score, and a large thoracic aortic diameter.

Since it is shown that the ratio of the diameter of the pulmonary artery to the
diameter of the ascending aorta at the level of the pulmonary artery bifurcation
(PA:AA) is associated with increased risk of severe exacerbations and increased mor-
tality in patients with COPD, measuring the PA:AA ratio is important for patient
management. In Chapter 4, a fully automatic optimal surface graph cut based
method is applied to segment and measure the diameters of the pulmonary artery
and aorta on non-ECG-gated, non-contrast CT scans. The segmentation method is
validated by comparing the automatic segmentations with full 3D manual annotations
and achieved high accuracy. Diameters and the PA:AA ratio measured in the axial
plane at the level of the pulmonary artery bifurcation show a high agreement with
manual diameters measured in the same slice. Chapter 4 also presents a 3D volu-
metric diameter measurement technique that is less subjective and is a more robust
and reproducible technique than diameter measurement in 2D axial slices. The 3D
volumetric diameters of the aorta and pulmonary artery and the PA:AA ratio are
measured in 10 mm segments along the vessel centerlines around the level of the
pulmonary artery bifurcation and show high scan-rescan repeatability.

The methods in Chapter 2 and 4 segment the aorta and the pulmonary artery
separately. In Chapter 5, an end-to-end deep learning method based on the com-
bination of a Convolutional Neural Network (CNN) with a Conditional Random
Field (CRF), named Posterior-CRF, is proposed to jointly segment the aorta and
pulmonary artery. Posterior-CRF refines the voxel-level predictions made by CNN
by encouraging spatial coherence. In non-contrast CT, intensity-based information
alone provides a low-quality feature space for the CRF due to the intensity similarity
between vessels and surrounding structures. Therefore, the Posterior-CRF presented
in Chapter 5 uses adaptive features that are learned by CNN. The high accuracy
achieved by the Posterior-CRF network compared with other networks in Chapter 5
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and the qualitative comparisons demonstrate that the method has good performance
on segmenting unclear vessel boundaries.

Finally, in Chapter 6, the contributions of this thesis towards the development
and evaluation of fully automatic segmentation and diameter measurement techniques
for the aorta and pulmonary artery are discussed.

The methods proposed in this thesis presented robust and reproducible results
of sufficient accuracy and reliability for use in the clinical study. I hope this work
will be continued in further studies, thereby contributing to future incorporation into
clinical practice and facilitating clinical and epidemiological research, for the final
goal of accurate diagnosis of silent disease in an early stage contributing to improved
everyday healthcare.





Samenvatting (Dutch Summary)

Hart- en vaatziekten en chronische obstructieve longziekte (COPD) behoren wereldwijd
tot de belangrijkste doodsoorzaken. Ten behoeve van een vroege identificatie van
COPD-patiënten met een risico op hart- en vaatziekten is er toenemende interesse
voor een op beeldvorming gebaseerde beoordeling van de vorm en diameters van de
longslagaders en de thoracale aorta. Veranderingen in deze twee grote slagaders kunnen
wijzen op hart- en vaatziekten zoals pulmonale hypertensie en een aneurysma van de
thoracale aorta. De verhouding tussen de diameter van de longslagader en de opgaande
aorta ter hoogte van de vertakking van de longslagader blijkt geassocieerd te zijn met
een verhoogd risico op ernstige exacerbaties en verhoogde mortaliteit bij patiënten met
COPD. Daarom is het essentieel om een nauwkeurige afbakening en kwantificering
van de anatomie van de aorta en longslagader te hebben. Het toenemende gebruik
van CT-thorax scans voor longkankerscreening biedt de mogelijkheid om de aorta
en longslagaders in deze scans te meten. Omdat het arbeidsintensief en tijdrovend
is om deze metingen handmatig te verrichten, zijn automatische 3D-segmentatie en
meettechnieken gewenst.

Dit proefschrift richt zich op de ontwikkeling en validatie van volautomatis-
che segmentatie- en meettechnieken waarmee de vorm en grootte van de aorta en
longslagaders kunnen worden gekwantificeerd in CT-scans.

Hoofdstuk 1 geeft achtergrondinformatie over de anatomie van de aorta en
longslagaders, thoracale beeldvorming, de aandoeningen die met deze vaten geasso-
cieerd zijn en over de uitdagingen van automatische vaatsegmentatie. De belangrijkste
moeilijkheden voor de segmentatie van de aorta en longslagader zijn de onduideli-
jke bloedvatgrenzen die worden veroorzaakt door het gebrek aan contrast tussen
bloedvaten en hun omgeving en door de bewegingsartefacten in niet-ECG-getriggerde
CT-scans zonder contrastmiddel.

Hoofdstuk 2 ontwikkelt en valideert een automatische techniek voor het seg-
menteren en meten van de aorta, op basis van “optimal surface graph cuts”. Dit
3D-segmentatie-algoritme is geëvalueerd op 100 niet-ECG-getriggerde CT-scans zonder
contrastmiddel, waarbij een grote overeenkomst werd gemeten tussen de automatische
en handmatige 3D-segmentaties. Naast de 3D-segmentatie bepaalt het algoritme
het niveau van de vertakking van de longslagader en de aortamiddellijn, waardoor
het mogelijk is om de diameter loodrecht op de middellijn van het vat te meten.
Hierop volgend wordt de aortadiameter gemeten op een aantal niveaus ten opzichte
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van het vertakkingsniveau van de longslagader. De automatisch gemeten diameters
kwamen op alle 13 meetniveaus in hoge mate overeen met de handmatige metingen.
De voorgestelde automatische methode is een veelbelovende techniek waarmee aortadi-
ameters nauwkeurig kunnen worden bepaald en is zodoende waardevol voor zowel de
klinische praktijk als voor onderzoeksdoeleinden.

De methode uit Hoofdstuk 2 wordt vervolgens toegepast in Hoofdstuk 3 om de
groeisnelheid van de aorta te bestuderen in een groot cohort van huidige of voormalige
rokers uit de groep van 50- tot 70-jarigen in het Deense onderzoek naar longkanker-
screening (DLCST). In deze subgroep van de algemene populatie (rokers) hebben we
de aortadiameters op het niveau van de longslagadervertakking van alle bijna 2000
deelnemers van DLCST gemeten. We vonden een aorta-groeisnelheid van ongeveer
0,1 mm per jaar voor zowel mannen als vrouwen, wat overeenkomt met de cijfers
die eerder zijn gerapporteerd voor aortagroei in de algemene bevolking op basis van
transversale onderzoeken. Grotere veranderingen van aortadiameter in de tijd waren
geassocieerd met een lagere leeftijd, hogere lichaamslengte, afwezigheid van medicatie
voor hypertensie of hypercholesterolemie, lagere Agatston-score en een grotere thora-
cale aortadiameter.

Omdat is aangetoond dat de verhouding van de diameter van de longslagader tot de
diameter van de het stijgende deel van de aorta (PA:AA ratio) geassocieerd is met een
verhoogd risico op ernstige verslechtering en een verhoogde mortaliteit bij patiënten
met COPD, is het meten van deze ratio belangrijk. Hoofdstuk 4 presenteert een
volautomatische methode op basis van optimal graph cuts voor het segmenteren en
meten van de diameter van longslagaders en de aorta in niet-ECG-getriggerde CT-
scans zonder contrast. Deze segmentatiemethode is gevalideerd door de automatische
segmentaties te vergelijken met volledig handmatige 3D-segmentaties en geeft een hoge
nauwkeurigheid. In dit hoofdstuk worden de diameters en de PA:AA ratio gemeten
in het axiale vlak op het niveau van de longslagadervertakking, waarbij een grote
overeenkomst wordt bereikt met handmatig gemeten diameters en PA:AA-verhouding
in hetzelfde vlak. Het is lastig om de meting van de longslagaderdiameter klinisch te
standaardiseren. Hoofdstuk 4 presenteert daarom een 3D-volumetrische techniek die
minder subjectief is en een robuustere en reproduceerbare techniek is dan diameter-
meting in axiale coupes. De 3D-volumetrische diameters van de aorta en longslagader
en de PA:AA-verhouding zijn gemeten in segmenten van 10 mm langs de middellijnen
van het vat rond het niveau van de longslagadervertakking en deze vertoonden een
hoge reproduceerbaarheid.

In de methodes uit Hoofdstuk 2 en Hoofdstuk 4 worden de aorta en de longsla-
gaders afzonderlijk gesegmenteerd. In Hoofdstuk 5 wordt een nieuwe methode
voorgesteld, gebaseerd op de combinatie van een Convolutional Neural Network (CNN)
met een Conditional Random Field (CRF), de zogeheten “Posterior-CRF”, die de
aorta en de longslagaders gelijktijdig segmenteert. Posterior-CRF geeft een beter
resultaat dan een CNN door in de voorspelling van de CNN de ruimtelijke coheren-
tie te verbeteren met behulp van een CRF. Vanwege de vergelijkbare intensiteiten
van vaten en omliggende structuren in CT zonder contrastmiddel, geeft intensiteit
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onvoldoende informatie voor de CRF. De Posterior-CRF die wordt gepresenteerd in
Hoofdstuk 5 gebruikt daarom beeldeigenschappen die adaptief worden geleerd door
de CNN als input voor de CRF. Zowel de kwantitatieve als de kwalitatieve vergelijking
van de resultaten van het Posterior-CRF-netwerk met die van andere netwerken in
Hoofdstuk 5, tonen aan dat de methode goede prestaties levert bij het segmenteren
van onduidelijke vaatgrenzen.

Ten slotte worden in Hoofdstuk 6 de bijdragen van dit proefschrift aan de
ontwikkeling en evaluatie van volautomatische technieken voor segmentatie en diame-
termetermetingen voor de aorta en longslagader besproken.

Onze methoden geven nauwkeurige en reproduceerbare resultaten en zijn daarmee
bewezen voldoende betrouwbaar voor gebruik in klinische studies. Ik hoop dat dit werk
in verdere studies zal worden voortgezet en in de toekomst kan worden geïntegreerd
in de klinische praktijk, zodat klinisch en epidemiologisch onderzoek kan worden
vergemakkelijkt, met als einddoel een nauwkeurige diagnose van stille ziekte in een
vroeg stadium en een verbeterde dagelijkse gezondheidszorg.
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