137 research outputs found

    A Review on OFDMA and MU-MIMO MAC Protocols for upcoming IEEE Standard 802.11ax

    Get PDF
    IEEE introduced a new standard IEEE 802.11ax for the next generation WLANs.As we know,the current throughput is very low because of the current Media Access Control(MAC) in present wireless area networks.So,the concept of Orthogonal Frequency Multiple Access(OFDMA) to facilitate multi user access is introduced.The main challenges of adopting OFDMA areoverhead reduction and synchronization.To meet these challenges this paper revised an OFDMA based OMAX protocol.And due to various various bandwidth consuming applications and devices today’s WLANs have become stressed and low at throughput.To handle this problem MU MIMO is used to improve the performance of WLANs.This paper surveys uplink/downlink mutli user MAC protocols for MIMO enabled devices.It also identifies the key requirements of MAC protocol design

    An OFDMA-based Hybrid MAC Protocol for IEEE 802.11ax

    Get PDF
    Two types of MAC mechanisms i.e., random access and reservation could be adopted for OFDMA-based wireless LANs. Reservation-based MAC is more appropriate than random access MAC for connection-oriented applications as connectionoriented applications provide strict requirements of traffic demands. On the other hand, random access mechanism is a preferred choice for bursty traffic i.e., data packets which have no fixed pattern and rate. As OFDMA-based wireless networks promise to support heterogeneous applications, researchers assume that applications with and without traffic specifications will coexist. Eventually, OFDMA-based wireless LAN will deploy hybrid MAC mechanisms inheriting traits from random access and reservation. In this article, we design a new MAC protocol which employs one kind of hybrid mechanism that will provide high throughput of data as well as maintains improved fair access policy to the medium among the terminals. The protocol works in two steps, where at step 1 sub-channels are approximately evenly distributed to the terminals and at step 2 terminals within in a subchannel will contend for medium randomly if the total number of terminals of the system is larger than the number of sub-channels. The details of the protocol is illustrated in the paper and we analyze the performance of our OFDMA-based multi-channel hybrid protocol using comprehensive computer simulations. Simulation results validate that our proposed protocol is more robust than the conventional CSMA/CA protocol in terms of throughput, collision reduction and fair access. In addition, the theoretical analysis of the saturation throughput of the protocol is also evaluated using an existing comprehensive model

    LTE Optimization and Resource Management in Wireless Heterogeneous Networks

    Get PDF
    Mobile communication technology is evolving with a great pace. The development of the Long Term Evolution (LTE) mobile system by 3GPP is one of the milestones in this direction. This work highlights a few areas in the LTE radio access network where the proposed innovative mechanisms can substantially improve overall LTE system performance. In order to further extend the capacity of LTE networks, an integration with the non-3GPP networks (e.g., WLAN, WiMAX etc.) is also proposed in this work. Moreover, it is discussed how bandwidth resources should be managed in such heterogeneous networks. The work has purposed a comprehensive system architecture as an overlay of the 3GPP defined SAE architecture, effective resource management mechanisms as well as a Linear Programming based analytical solution for the optimal network resource allocation problem. In addition, alternative computationally efficient heuristic based algorithms have also been designed to achieve near-optimal performance

    Medium access control and network planning in wireless networks

    Get PDF
    Wireless Local Area Networks (WLANs) and Wireless Metropolitan Area Networks (WMANs) are two of the main technologies in wireless data networks. WLANs have a short range and aim at providing connectivity to end users. On the other hand, WMANs have a long range and aim at serving as a backbone network and also at serving end users. In this dissertation, we consider the problem of Medium Access Control (MAC) in WLANs and the placement of Relay Stations (RSs) in WMANs. We propose a MAC scheme for WLANs in which stations contend by using jams on the channel. We present analytic and simulation results to find the optimal parameters of the scheme and measure its performance. Our scheme has a low collision rate and delay and a high throughput and fairness performance. Secondly, we present a MAC scheme for the latest generation of WLANs which have very high data rates. In this scheme, we divide the stations into groups and only one station from each group contends to the channel. We also use frame aggregation to reduce the overhead. We present analytic and simulation results which show that our scheme provides a small collision rate and, hence, achieves a high throughput. The results also show that our scheme provides a delay performance that is suitable for real-time applications and also has a high level of fairness. Finally, we consider the problem of placing Relay Stations (RSs) in WMANs. We consider the Worldwide Interoperability for Microwave Access (WIMAX) technology. The RSs are used to increase the capacity of the network and to extend its range. We present an optimization formulation that places RSs in the WiMAX network to serve a number of customers with a pre-defined bit rate. Our solution also provides fault-tolerance by allowing one RS to fail at a given time so that the performance to the users remains at a predictable level. The goal of our solution is to meet the demands of the users, provide fault-tolerance and minimize the number of RSs used

    Performance Enhancement of IEEE 802.11AX in Ultra-Dense Wireless Networks

    Get PDF
    IEEE 802.11ax, which is one emerging WLAN standard, aims at providing highly efficient communication in ultra-dense wireless networks. However, due to a large number of stations (STAs) in dense deployment scenarios and diverse services to be supported, there are many technical challenges to be overcome. Firstly, the potential high packet collision rate significantly degrades the network efficiency of WLAN. In this thesis, we propose an adaptive station (STA) grouping scheme to overcome this challenge in IEEE 802.11ax using Uplink OFDMA Random Access (UORA). In order to achieve optimal utilization efficiency of resource units (RUs), we first analyze the relationship between group size and RU efficiency. Based on this result, an adaptive STA grouping algorithm is proposed to cope with the performance fluctuation of 802.11ax due to remainder stations after grouping. The analysis and simulation results demonstrate that our adaptive grouping algorithm dramatically improves the performance of both the overall system and each STA in the ultra-dense wireless network. Meanwhile, due to the limited RU efficiency of UORA, we adopt the proposed grouping scheme in the Buffer State Report (BSR) based two-stage mechanism (BTM) to enhance the Uplink (UL) Multi-user (MU) access in 802.11ax. Then we propose an adaptive BTM grouping scheme. The analysis results of average RU for each STA, average throughput of the whole system and each STA are derived. The numerical results show that the proposed adaptive grouping scheme provides 2.55, 413.02 and 3712.04 times gains in throughput compared with the UORA grouping, conventional BTM, and conventional UORA, respectively. Furthermore, in order to provide better QoS experience in the ultra-dense network with diverse IoT services, we propose a Hybrid BTM Grouping algorithm to guarantee the QoS requirement from high priority STAs. The concept of ``QoS Utility is introduced to evaluate the satisfaction of transmission. The numerical results demonstrate that the proposed Hybrid BTM grouping scheme has better performance in BSR delivery rate as well as QoS utility than the conventional BTM grouping

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic
    • 

    corecore