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Abstract

IEEE 802.11ax, which is one emerging WLAN standard, aims at providing highly ef-

ficient communication in ultra-dense wireless networks. However, due to a large number of

stations (STAs) in dense deployment scenarios and diverse services to be supported, there are

many technical challenges to be overcome. Firstly, the potential high packet collision rate sig-

nificantly degrades the network efficiency of WLAN. In this thesis, we propose an adaptive

station (STA) grouping scheme to overcome this challenge in IEEE 802.11ax using Uplink

OFDMA Random Access (UORA). In order to achieve optimal utilization efficiency of re-

source units (RUs), we first analyze the relationship between group size and RU efficiency.

Based on this result, an adaptive STA grouping algorithm is proposed to cope with the per-

formance fluctuation of 802.11ax due to remainder stations after grouping. The analysis and

simulation results demonstrate that our adaptive grouping algorithm dramatically improves the

performance of both the overall system and each STA in the ultra-dense wireless network.

Meanwhile, due to the limited RU efficiency of UORA, we adopt the proposed grouping

scheme in the Buffer State Report (BSR) based two-stage mechanism (BTM) to enhance the

Uplink (UL) Multi-user (MU) access in 802.11ax. Then we propose an adaptive BTM grouping

scheme. The analysis results of average RU for each STA, average throughput of the whole

system and each STA are derived. The numerical results show that the proposed adaptive

grouping scheme provides 2.55, 413.02 and 3712.04 times gains in throughput compared with

the UORA grouping, conventional BTM and conventional UORA, respectively.

Furthermore, in order to provide better QoS experience in the ultra-dense network with

diverse IoT services, we propose a Hybrid BTM Grouping algorithm to guarantee the QoS

requirement from high priority STAs. The concept of “QoS Utility” is introduced to evaluate

the satisfaction of transmission. The numerical results demonstrate that the proposed Hybrid

BTM grouping scheme has better performance in BSR delivery rate as well as QoS utility than

the conventional BTM grouping.

Keywords: IEEE 802.11ax, Uplink OFDMA Random Access (UORA), Buffer Status Report

(BSR), Target Wake Time (TWT), Adaptive Grouping, QoS, Utility function, Latency.
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Chapter 1

Introduction

1.1 Overview

The ever-evolving wireless technologies and their ongoing convergence with vertical in-

dustries are fundamentally transforming our society through diverse applications and services

enabled by Internet-of-Things (IoT). The fast transformation of our industry and society al-

so raise many new challenges to current wireless communication techniques. According to

the industrial report from Huawei, due to the falling cost of IoT devices, there will be 40

billion smart devices expected to be deployed worldwide by 2025 [1]. Meanwhile, most of

the wireless devices are deployed in the urban area, according to [2]. With a rising number

of IoT devices deployed in the limited urban area, the future IoT network is expected as the

“ultra-dense” deployed network, which becomes a critical challenge to current wireless com-

munication techniques. The ultra-dense scenario will become more and more common with the

rising urbanization rate. According to the United Nations, 54 percent of the world’s population

lives in urban areas, this proportion is expected to increase to 66 percent by 2050 [3].

In addition to the device density, the provisioning of diverse IoT services is another ma-

jor challenge to the IoT network in the future. With the developing of Artificial Intelligence

(AI) technique, it is expected to be widely implemented in IoT network in the future[4]. AI

technique provides smart IoT devices more capacity to judge and comprehend the environment

based on sensed or gathered information, and allows smart IoT devices to operate more person-

alized and diverse IoT services. On the one hand, AI can be adopted to manage and schedule

1



2 Chapter 1. Introduction

the ultra-dense deployed IoT networks [5]; On the other hand, most of the AI techniques re-

quire enormous of data or cases for environment sensing and machine-learning model training

[6, 7]. Meanwhile, the ultra-dense deployed IoT network has high capability to generate data

for AI. According to the industrial report from Cisco, IoT devices will generate more than 847

zettabytes (1021) data by 2021 [8]. Supported by the data generated in the IoT networks, AI op-

erated on each device are able to generate their personalized transmission demand the enhance

the IoT service experience.

Currently, there are many existing wireless communication techniques. While accord-

ing to Cisco, the percentage of Wi-Fi (Wireless Fidelity) transmission will keep increasing

and reach 63 percent of total transmission by 2021. Wi-Fi is playing an “expanding role”

to facilitate the upcoming IoT era [9], while it also face so challenges such diversity of QoS

requirements and ultra-dense deployment in future IoT network, as is shown in Figure 1.1.

a

b

g

n

ac

ax
High Data Rate

Low Latency

Reliability

Ultra-dense

Deployment 

Figure 1.1: Evolving Wi-Fi design objectives for better wireless communication in the future.

Since the Institute of Electrical and Electronics Engineers Standards Association (IEEE-

SA) initiated the wireless local area network (WLAN) standard - IEEE 802.4L in 1988, the

IEEE WLAN standard has evolved over 30 years [10]. In 1990, this standard was firstly re-

named as IEEE 802.11, which is also called Wi-Fi nowadays. The first “legacy”IEEE s-

tandard 802.11 was published in 1997, supported by direct-sequence spread spectrum (DSSS)

technique with maximum 2 Mbps data rate working at 2.4GHz. The DSSS was improved in

802.11b with 11Mbps data rate [11]. In 2003, IEEE 802.11g standard firstly adopted Orthog-
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onal frequency-division multiplexing (OFDM) at 2.4 GHz with maximal 54Mbps data rate.

Even though the OFDM was firstly adopted at 5GHz in IEEE 802.11a in 1999, it is not widely

adopted because of the shorter transmission range [12, 13]. In the 802.11n, which is published

in 2009, the multiple-input multiple-output (MIMO) antennas technique is firstly included, the

maximum data rate is extended to 600Mbps as well [14]. In 802.11ac, the Multi-user MI-

MO (MU-MIMO) is adopted in the Wi-Fi [15], this version standard also provides a boarder

bandwidth (80MHz), more spatial stream and higher level of modulation scheme (256-QAM)

[16, 17]. These features improve the maximum data rate of 802.11ac to 1300Mbps [18]. In

2014, the High Efficiency WLAN (HEW) task group start working on the next generation

WLAN standard, IEEE 802.11ax, which aims at supporting at least 4 times improvement in

the average throughput in dense deployment scenarios [19, 20].

1.2 Thesis Motivations

Even though the IEEE 802.11 standard has developed near 20 years and the 802.11ax

proposed new features for more flexible resource allocation and more efficient access in ultra-

dense network, there are still two existing challenges.

One challenge is the ultra-dense deployment of Wi-Fi stations (STAs). Even though the

next generation Wi-Fi standard 802.11ax involves new PHY layer technique, Orthogonal Fre-

quency Division Multiple Access (OFDMA), to improve the ultra-dense networks performance

and flexibility to serve diverse transmission requirements. Nevertheless, the ultra-dense perfor-

mance of 802.11 ax still degrades as STAs number rises, which is further explained in Section

3.2.

The other challenge is the increasing diversity of transmission demands due to the rising

number of IoT devices and more applications of IoT services, such as Industry 4.0 [21], smart

city [22], smart home [23], smart advertising [24] and so on. Different services have different

quality of service (QoS) performance requirements. In conventional system design, the QoS

enhancement force more on the particular performance indicator, such as throughput, latency,

reliability, etc. However, these absolute value of QoS performance may not properly express

the true experience of services. For instance, communication for both industrial control and live
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video stream have high requirement on latency[21, 25]. In the industrial control area, the high

latency cannot be tolerated because the delay of control information may cause serious loss,

the importance of latency is higher than other performance when evaluating the transmission

experience, or we can say the communication for industrial control prefers the latency more.

While in the transmission of live video stream, both throughput and latency are important

to the transmission experience, their importance is similar. If we regard these two services

as the same, normalize the sum of the “weight factor” of all requirement for each service,

and allow each service freely allocates the “weight factor” to different QoS performance, the

latency weight factor of industrial control should be higher than the weight of live video stream,

even if they have the same latency requirement. This difference leads to different results in

network access and resource allocation. Therefore, considering diverse IoT services operated

on massive IoT devices, how to properly schedule the access and resource allocation in the

ultra-dense network with different QoS performance becomes a meaningful topic.

In order to address these two challenges, a more adaptive Wi-Fi access and resource allo-

cation scheme is required.

1.3 Research Objectives

In order to address the challenges of the upcoming IoT era, including the system and STA

performance in ultra-dense network and the diverse QoS requirement, this thesis are mitigating

these challenges with following sub-objectives:

Maintaining the RU efficiency and throughput in ultra-dense network: The IEEE

802.11ax standard adopts OFDMA in PHY layer to enhance the ultra-dense network perfor-

mance. By dividing channels into smaller sub-channels, called resource units (RUs), OFDMA

allows Access Points (APs) simultaneously access multi-users (MUs) in one channel and flex-

ibly allocate these RUs to satisfy diverse demands of user devices. However, due to the high

collision rate in the ultra-dense network, the performance of existing access mechanism in

802.11ax still decreases. Uwai et al. and Lanante et al. proposed proposed and simplified an

adaptive backoff-parameter adjusting mechanism to optimize the throughput and channel effi-

ciency [26], [27], based on the number of access STAs. But the performance of this mechanism
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still declines in the ultra-dense network, which will be illustrated in Section 3.2. Therefore, the

first objective of this thesis is that proposing a scheme to ease the influence of collision in ran-

dom access and maintain the system performance of Uplink (UL) MU access mechanism of

802.11ax in the ultra-dense network.

Improve the Utility of QoS from different users with different requirement: Gener-

ally different IoT devices have different requirement of QoS performance, as is mentioned in

section 1.2. This thesis describes different requirements of these QoS performances by “weight

factor”, which is involved in the “QoS Utility” function to numerically evaluate the transmis-

sion experience. Note that the “utility” is widely adopted to describe the performance of both

overall system and each user in the network with multiple services [28], [29]. In this thesis,

we use the latency as the example to value the utility of QoS in 802.11ax, and propose a new

hybrid scheme to further improve the utility of latency in the ultra-dense network of 802.11ax.

1.4 Technical Contributions of the Thesis

In this thesis, an adaptive Uplink OFDMA Random Access (UORA) grouping scheme

is proposed at first, based on the analyzed function relationship between RU utilize efficiency

and STA number, including their closed-form expression and two propositions. By adaptively

adjusting the number of simultaneous access STA along the time domain, the proposed scheme

effectively copes with the high collision problem and maintains the optimal performance of

UORA in the ultra-dense networks. Furthermore, an adaptive UORA grouping algorithm is

proposed to cope with the performance fluctuation due to remainder STAs after grouping. In

the adaptive UORA grouping algorithm, the adaptive grouping range is derived by the analyzed

function relationship between channel efficiency and STA number. By diminish the influence

of remainder STAs, the RU utilize efficiency and throughput of adaptive grouping scheme are

much higher than conventional UORA in the ultra-dense network.

Due to the low efficiency of random access, we also study the performance of adaptive

grouping scheme in the BSR-based two-stage mechanism (BTM), which reserves the advan-

tages of UORA as well as maintains the channel efficiency. The relationship between system

performance of BTM and STA number is analyzed. The numerical results present that the
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throughput of adaptive BTM grouping scheme has 2.55, 413.02 and 3712.04 times gains com-

pared with the UORA grouping, conventional BTM and conventional UORA, respectively.

Not only the normal performance indexes are considered, we also propose a hybrid BT-

M grouping scheme with both random and scheduled access mechanism to improve the QoS

performance and STA utility. The latency is selected as an example and studied. The utili-

ty function is used to value the STA utility. A group allocation scheme for hybrid BTM is

analyzed with the functional relationship. Considering different dimensions of environment

features, the numerical results demonstrate that the hybrid BTM grouping scheme has much

better QoS performance than conventional method.

1.5 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 introduces some new features of 802.11ax in both PHY and MAC layers in-

volved in this thesis;

In Chapter 3, the relationship between the system performance of UORA and STA number

is studied, a grouping UORA scheme is proposed to ease the high collision rate in the ultra-

dense networks. Meanwhile, an adaptive group size grouping scheme is proposed to address

the performance fluctuation after grouping. The performance of proposed grouping scheme is

evaluated by the numerical results;

The property of BTM is studied and the proposed grouping scheme is adopted in BTM to

enhance the performance, which is also evaluated by the numerical results in 4.

In Chapter 5, we propose and study a Hybrid BTM Grouping scheme, which allows STAs

access in either random or scheduled scheme. In order to provide better QoS experience in the

ultra-dense network with diverse IoT services, we proposed a Hybrid BTM Grouping algorithm

to guarantee the QoS requirement from high priority STAs. The performance of proposed

scheme is evaluated by the numerical results with different dimensions of performances and

considering diverse factors that influence these performances.

Chapter 6 concludes the works of this thesis and illustrate some possible research direc-

tions in the future.



Chapter 2

Operation Principle of IEEE 802.11ax

2.1 Overview

The wide application of IoT and the increasing number of IoT devices lead to more de-

ployment of dense wireless networks. The growing rate of urbanization and limited range

of urban area will further exacerbate the conflict between limited communication capability

of current wireless standard and increasing demand of ultra-dense networks. Therefore, the

High-Efficiency WLAN (HEW) task group is working on the next generation WLAN stan-

dard, IEEE 802.11ax, which was approved by the IEEE-SA in 2014. The scope of the IEEE

802.11ax is to“enable at least at least four times improvement in the average throughput per

station (measured at the MAC data service access point) in a dense deployment scenario, while

maintaining or improving the power efficiency per station”[20]. In order to achieve this s-

cope, IEEE 802.11ax firstly includes several new features like Orthogonal Frequency-Division

Multiple Access (OFDMA), trigger frame, UORA and target wake time (TWT) and so on [30].

Meanwhile, a new control frame, ”trigger frame”, is proposed in the IEEE 802.11ax MAC

layer, in order to synchronize and control the access of MU. Trigger frame contains the resource

allocation information for multiple STAs access and the standard also defines the operation

rules after STAs received the trigger frame. As the de-facto random access mechanism, UORA

is one of these rules for MU transmission. UORA is defined as a trigger-based random access

mechanism for MU UL transmission in IEEE 802.11ax, which is initialized and synchronized

by a trigger frame, and utilizes random access as the contention mechanism [30]. Even though

7
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the efficiency of UORA is not high and also influenced by STAs number, it can be directly

adopted for MU access when AP has no information about these STAs, which is suitable for

information soliciting before data transmission, or data transmission in the dynamic network.

Here the “dynamic”means STAs leave and join the network frequently [31]. For more

efficient access and resource allocation in the ultra-dense networks with diverse demand of

STAs, it is better to schedule the resource allocation scheme after solicited reliable information

about following transmission. Therefore, IEEE 802.11ax defines Buffer Status Report (BSR)

frame to carry the status information in each STA’s buffer. The buffer of each STA storages the

pending package for transmission. BSR frame is sent from STA to AP, which contains the QoS

label and the size of the following data frames from each STA. The transmission of BSR frame

indicates that this STA has data frames to transmit, AP can schedule the resource allocation

for accessed STA based on this and information in the BSR frame. Even though some details

of operation rules have not been decided yet, the basic principle of BSR mechanism is clear.

The AP solicits the BSR frames from STAs through UORA mechanism at first, then the AP

responses the resource allocation scheme to accessed STA and receives the data frames from

these STAs without contention.

The details of these features will be introduced in the following subsections one by one.

Because this thesis forces on the UL transmission in the ultra-dense networks, the rest new

features of IEEE 802.11ax will not be included in the following chapters.

2.2 Physical Layer of IEEE 802.11ax

2.2.1 Overview

IEEE 802.11ax firstly adopts the OFDMA as Physical (PHY) layer technique. In the

conventional OFDM system, one OFDM symbol is assigned to one STA. In the OFDMA sys-

tem, the OFDM symbol is divided into smaller blocks and can be assigned to multiple STA

simultaneously [32], which also leads to several remarkable changes in the PHY layer of IEEE

802.11ax. The rest of this section will introduce: The details of OFDMA; The minimal unit

that can be allocated to one STA, Resource Unit (RU); The modulation and coding scheme in
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OFDMA; The PHY data packet operated on the OFDMA.

2.2.2 Orthogonal Frequency-Division Multiple Access (OFDMA)

Orthogonal Frequency-Division Multiple Access (OFDMA) is an OFDM-based multi-

ple access scheme. Similar to the widely used OFDM technique in conventional versions of

802.11 standard, the OFDMA also employs multiple subcarriers. But OFDMA furtherly di-

vides each subcarrier into multiple smaller subchannel, called Resource Unit (RU). Comparing

with conventional OFDM, adopting OFDMA allows the access point (AP) simultaneously sup-

ports UL or downlink (DL) MU transmission, which reduces the preamble and channel access

overhead. Meanwhile, the smaller sub-channel bandwidth provides higher flexibility for gran-

ularized resource allocation and diverse QoS provisioning in IoT networks. The difference

between OFDM with OFDMA is illustrated in Figure 2.1.
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Figure 2.1: Typical applications of wireless sensor networks.

As is shown in Figure 2.1, in conventional OFDM, each subcarrier can only access one

user in one time slot, while the OFDMA can access multiple users simultaneously. Because

in OFDMA, the channel is divided into several RUs in the frequency domain, AP can allocate

these RUs to different users in one time slot to achieve function of multi-user access.

2.2.3 Resource Unit (RU) Types in OFDMA

In IEEE 802.11ax, the minimal subcarrier bandwidth is 78.125kHz, which is called“tone”

in the standard [30]. In order to satisfy diverse transmission demand in the ultra-dense network,
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802.11ax defines different types of RU, which contains different number of tones, including 26,

52, 106, 242, 484, 996 or 2x996 tones. Meanwhile, compared with legacy 802.11 standard,

802.11ax supports wider bandwidth choice including 20, 40, 80, 80+80 and 160MHz. The

allocation of different types of RU is shown in Figure 2.2-2.4.

26 26 26 26 26 26 26 2626 26 26 2613 13

52 52 13 52 5213
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7DC
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Central 26-

tone RU

26 26 26 26 26 26 26 2613 13

52 52 13 52 5213

106 10613 13

242

7DC

3DC

6 Guard 5 Guard
Central 26-

tone RU

Figure 2.2: RU types in 20 MHz channel.

As is shown in Figure 2.2-2.4, the RU allocation in different bandwidth channel is illus-

trated. For instance, a 20MHz channel can contain nine 26-tone RUs, or four 52-tone RUs with

one 26-tone RU, or two 106-tone RU with one 26-tone RU, or one 242-tone RU. The maximum

number of RUs allocation in different bandwidth’s channel is presented in Table 2.12.1. In this

thesis, we are studying an ultra deployed of the IoT network, the data payload is not high and

the network is expected to support as many users as possible. Meanwhile, the preamble is

duplicated in each 20 MHz subchannel within the transmission band [33]. Therefore, we only

consider a single 20MHz channel with 9 of 26-tone RUs in this thesis.
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26 26 26 26 26 26 26 2626 26 26 2626

52 52 52 52

106 106

242

12 Guard

26

26

26 26 26 26 26 26 26 2626 26 26 2626

52 52 52 52

106 106

242

26

26

484

Central 26-

tone RU

26 26 26 26 26 26 26 2626 26 26 2626

52 52 52 52

106 106

242

26

26

26 26 26 26 26 26 26 2626 26 26 2626

52 52 52 52

106 106

242

26

26

484

11 Guard

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

7 DC

5 DC

996

26 26 26 26 26 26 26 2626

52 52 52 52

106 106

242

12 Guard

26

26

26 26 26 26 26 26 26 2626

52 52 52 52

106 106

242

26

26

484

Central 26-

tone RU

26 26 26 26 26 26 26 2626

52 52 52 52

106 106

242

26

26

26 26 26 26 26 26 26 2626

52 52 52 52

106 106

242

26

26

484

11 Guard

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

7 DC

5 DC

996
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Table 2.1: Maximum RU number for each channel
RU type 20MHz 40MHz 80MHz 160(80+80)MHz
26-tone 9 18 37 74
52-tone 4+1 8+2 16+5 32+10

106-tone 2+1 4+2 8+5 16+10

242-tone 1 2 4+1 8+2

484-tone N/A 1 2+1 4+2

996-tone N/A N/A 1 2
2*996-tone N/A N/A N/A 1

2.2.4 Modulation and Coding Scheme of OFDMA

The Modulation and Coding Scheme (MCS) index reflects the information of modula-

tion, coding [18]. In conventional 802.11, devices in the network can dynamically adjust the

index of MCS based on the channel status. The MCS index range from 0-9, which represent

the modulation scheme including BPSK, QPSK, 16-QAM, 64-QAM, and 256-QAM and the

coding rate including 1/2, 2/3, 3/4, and 5/6. When the communication channel has high Signal

Noise Ratio (SNR), AP or STAs can choose high MCS index for higher transmission data rate.

But if the channel condition is not good, such as high fading rate, high level of interference or

noise, AP or STAs may choose lower MCS index to increase the transmission reliability. The

transmission of some management frame or control frames will also choose low MCS, in order

to improve the reliability of these critical transmissions.

The following table 2.2 shows who MCS index define the modulation scheme and coding

rate in conventional 802.11 standard [18]. The conventional 802.11 standard support maximal

MCS 9, which adopting 256-QAM and 5/6 coding rate. 802.11ax firstly extend the MCS index

to 10 and 11, which is represent adopting 1024-QAM modulation scheme with 3/4 and 5/6

coding rate respectively. But MCS 10 and 11 only available in the RU that has 242 tones or

more [30]. In this thesis we only consider 26-tone RU in 20MHz bandwidth channel, which

maximally supports MCS 9.
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Table 2.2: MCS index and its represented modulation and coding scheme
MCS index Modulation Coding rate

0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16-QAM 1/2
4 16-QAM 3/4
5 64-QAM 2/3
6 64-QAM 3/4
7 64-QAM 5/6
8 256-QAM 3/4
9 256-QAM 5/6

10 1024-QAM 3/4
11 1024-QAM 5/6

2.2.5 Format of Physical Layer Data Packet in IEEE 802.11ax

The High-Efficiency trigger-based Presentation Protocol Data Unit (HE TB PPDU) is one

type of the High-Efficiency PPDU proposed in the IEEE 802.11ax, which is adopted for up-

link data transmission in through the RU. In conventional 802.11 standard, the data packet for

Physical Layer Convergence Procedure (PLCP) is called Presentation Protocol Data Unit (PP-

DU). However, in 802.11ax, due to the application of OFDMA, channel is divided into several

RUs. In order to support the new feature, there are several types of new PPDUs presented in

802.11ax for different transmission mechanism, such as the data frame for single-user, multi-

user, and extended range transmissions scenarios [19]. In this thesis, we will focus on the HE

trigger-based PPDU (HE TB PPDU). The HE TB PPDU is mostly used for UL MU data trans-

mission, which is transmitted as the response of a Trigger Frame. The format of HE TB PPDU

is presented in Figure. 2.5.

L-STF L-LTF

L
-S

IG HE-SIG-A

R
L

-S
IG

H
E

-S
T

F

H
E

-L
T

F

H
E

-L
T

F

Data PE

Preamble

Legacy HE

Figure 2.5: Format of HE TB PPDU
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The L-STF, L-LTF, L-SIG fields are legacy PHY preamble, and the RL-SIG, HE-SIG-A,

HE-STF and HE-LTF are HE preamble for 802.11ax. In the data field of HE TB PPDU, there

is a PLCP Service Data Unit (PSDU), which is also the MAC Protocol Data Unit (MPDU).

The structure of MPDU will be introduced in the next subsection.

2.3 MAC of IEEE 802.11ax

Medium access control (MAC) sublayer is part of the data link layer, which mainly re-

sponses to control the channel access and data transmission. In 802.11ax, the major function

of MAC layer includes: queuing management, access control, carrier sensing control, frame

control, resource scheduling and transmission control [34]. This section will mainly introduce

two parts of MAC layer of 802.11ax, including the format of MAC frame and some access

mechanisms presented in this thesis.

2.3.1 MAC Frame Format

Generally, a frame in MAC layer contains three basic parts: a MAC header, a length-

variable frame body and a Frame Check Sequence (FCS). The MAC frame format of is shown

as Figure. 2.6
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Figure 2.6: MAC frame format of IEEE 802.11ax

In the MAC header, the basic control information is presented in the Frame Control sub-

field. The Frame Control subfield presents the information such as the protocol version, type

of the frame, the frame transmitter and receiver and so on. There are majorly four types of

the frame in 802.11 standard, including management frame, control frame, data frame and ex-

tension frame. These frame types are defined by Type subfield in the Frame Control subfield.
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More specifically, the particular frame type is defined by the Subtype subfield in the Frame

Control subfield. The details of frame types and its definition is illustrated in Table 2.3.

Note that Trigger frame is the new frame defined in 802.11ax.The system model of this

thesis will involve the frames including:

1) Management frame :

Beacon frame

2) Control frame:

Trigger frame

Muti-BlockAck frame (one type of BlockAck frame)

3) Data frame:

QoS Data frame (included in the HE TB PPDU for data transmission)

QoS Null frame (used for Buffer Status Report)

The details of these frame structures will be illustrated in the following subsection and the

application of these frames will be presented in the Section 2.3.2.

2.3.1.1 Trigger Frame

Trigger frame is a control frame sent by access point (AP) to STAs. By requiring S-

TAs to response a frame after they received the trigger frame waiting for a short inter-frame

space (SIFS). Trigger frame provides a time synchronization for distributed UL transmission

from multiple STAs [35]. The application of trigger frame also simplifies the MU resource

allocation process in WLAN, and facilitates to achieve improved network efficiency and re-

liability, compared to the conventional carrier-sense multiple access with collision avoidance

(CSMA/CA) mechanism. A trigger frame contains information for allocation the following

parallel HE TB PPDU transmissions in a channel. The transmissions of HE TB PPDU wait for

a SIFS after STAs received the trigger frame. The frame structure of trigger frame is presented

in the Figure 2.7.
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Table 2.3: Combinations of type and subtype
Type value Type description Subtype value Subtype description

00 Management 0000 Association Request
00 Management 0001 Association Response
00 Management 0010 Reassociation Request
00 Management 0011 Reassociation Response
00 Management 0100 Probe Request
00 Management 0101 Probe Response
00 Management 0110 Timing Advertisement
00 Management 0111 Reserved
00 Management 1000 Beacon
00 Management 1001 ATIM
00 Management 1010 Disassociation
00 Management 1011 Authentication
00 Management 1100 Deauthentication
00 Management 1101 Action
00 Management 1110 Action No Ack
00 Management 1111 Reserved
01 Control 0000–0001 Reserved
01 Control 0010 Trigger[802.11ax]

01 Control 0011 TACK[802.11ah]

01 Control 0100 Beamforming Report Poll
01 Control 0101 VHT/HE NDP Announcement
01 Control 0110 Control Frame Extension
01 Control 0111 Control Wrapper
01 Control 1000 Block Ack Request (BlockAckReq)
01 Control 1001 Block Ack (BlockAck)
01 Control 1010 PS-Poll
01 Control 1011 RTS
01 Control 1100 CTS
01 Control 1101 Ack
01 Control 1110 CF-End
01 Control 1111 CF-End +CF-Ack
10 Data 0000 Data
10 Data 0001 Data +CF-Ack
10 Data 0010 Data +CF-Poll
10 Data 0011 Data +CF-Ack +CF-Poll
10 Data 0100 Null (no data)
10 Data 0101 CF-Ack (no data)
10 Data 0110 CF-Poll (no data)
10 Data 0111 CF-Ack +CF-Poll (no data)
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Table 2.3 Combinations of type and subtype (Continue)
Type value Type description Subtype value Subtype description

10 Data 1000 QoS Data
10 Data 1001 QoS Data +CF-Ack
10 Data 1010 QoS Data +CF-Poll
10 Data 1011 QoS Data +CF-Ack +CF-Poll
10 Data 1100 QoS Null (no data)
10 Data 1101 Reserved
10 Data 1110 QoS CF-Poll (no data)
10 Data 1111 QoS CF-Ack +CF-Poll (no data)
11 Extension 0000 DMG Beacon
11 Extension 0001–1111 Reserved
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Figure 2.7: Trigger frame format

There are two majority changes in the trigger frame compared with conventional control

frame. First is the Common information field, this field defines some common information

of this trigger frame and the transmission in the channel. The details structure of common

information field is shown in Figure 2.8.
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Figure 2.8: Format of Common information field

As is shown in the Figure 2.8, this field contains the basic information for this trigger

frame and state of following transmission in this channel, including the type and length of this

trigger, bandwidth, Guard interval, transmission power of AP, MU-MIMO, spatial reuse and

so on.
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There are several types of trigger frame designed for different transmission scenarios,

STAs will prepare different frames to response the trigger frame according to the type of the

received trigger frame. The valid types of trigger frame are shown in the following Table 2.4. In

Table 2.4: Valid type of trigger frame
Trigger Type subfield value Trigger frame variant

0 Basic
1 Beamforming Report Poll (BRP)
2 MU-BAR
3 MU-RTS
4 Buffer Status Report Poll (BSRP)
5 GCR MU-BAR
6 Bandwidth Query Report Poll (BQRP)
7 NDP Feedback Report Poll (NFRP)

8-15 Reserved

this thesis, we will use two types of trigger frames. One is the basic trigger frame designed for

soliciting HE TB PPDU transmissions, the other one is the Buffer Status Report Poll Trigger

frame (BSRP-TF), which is designed for soliciting the BSR frame. The details of BSR frame

and relative mechanism will be illustrated in Section 2.3.3, and the application of BSR frame

is illustrated in Chapter 4.

The second difference is the User information field, which contains the allocation scheme

and necessary PHY layer information for transmission in the following RUs. There are one or

more user information fields in each trigger frame, depends on the number of accessed users,

but no more than the number of maximum RUs in the channel. The frame structure of User

Information Field is shown in Figure 2.9.

AID12
RU 

Allocation
Coding MCS DCM

SS 

Allocation

Target 

RSSI
Reserved

Trigger Depend 

User Info

12 8 1 4 1 6 6 1 variable

Figure 2.9: Format of User information field

As is shown in Figure 2.9, in the user information field there is a 12 bits AID subfield that

indicates the Least significant bit (LSB) of the STA’s AID, and the RU allocation subfield
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indicates the RU used by the HE TB PPDU of the STA that is identified by previews AID

subfield.

Containing several user information fields, trigger frame can schedule the access scheme

of MU, which will be illustrated in Section 2.3.4.

2.3.1.2 Multi-BlockAck Frame

The Mutil-BlockAck (M-BA) frame is a new subtype of BlockAck frame proposed in

the 802.11ax. M-BA aggregates multiple users’ acknowledge information, which indicates

whether the previous transmission is successful or not. Generally, an M-BA frame is sent from

AP to multiple STAs after UL MU transmission of HE TB PPDUs. The structure of BlockAck

is shown in Figure 2.10.
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Figure 2.10: Format of Block Acknowledge frame

The subtype of BlockAck frame is presented in the BA Control subfield, and the relative

acknowledge information is presented in the BA information field. The BA control field is

shown in Figure 2.11.

BA Ack 

Policy 
BA Type Reserved TID_INFO

Bits:   1 74 4

Figure 2.11: Format of BA control field

In Figure 2.11, the type of the BlockAck frame is defined in the BA Type subfield, the
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definition of BA Type subfield and the valid types of BlockAck frame are presented in the

Table 2.5.

Table 2.5: BA Type definition and valid type of BlockAck frame
BA Type BlockAck frame variant

0000 Basic BlockAck
0001 Reserved
0010 Reserved
0011 Reserved
0100 Compressed BlockAck
0101 GLK-GCR BlockAck
0110 GCR BlockAck
0111 Reserved
1000 Extended Compressed BlockAck
1001 Reserved
1010 Reserved
1011 Reserved
1100 Multi-TID BlockAck
1101 Multi-STA BlockAck
1110 Reserved
1111 Reserved

Note that Multi-STA BlockAck(M-BA) is the new type defined in IEEE 802.11ax. In the

Table. 2.5, there are many Reserved Bits due to undecided transmission mechanism, such as

the BTM. According to [31], there are maybe two possible M-BA frames in the BTM, one is

that M-BA contains the information subfield which has the similar function as Trigger Frame,

the other is the conventional M-BA frame. The details of BTM will be illustrated in Chapter 4.

Expect the reserve bits, there are still many types of BlockAck frame in the Table. 2.5,

each type of M-BA has their own format of BA information subfield. In this subsection, we

will focus and illustrated the BA information subfield format of M-BA, which is presented in

the Figure 2.12.

As is shown in the Figure 2.12, there are multiple per AID TID information subfield in the

BA information, one per AID TID information subfield corresponds to one STA. Each per AID

TID information subfield contains one AID TID Info subfield and two optional subfields. In

AID TID Info subfield there are three subfields included: AID11, Ack Type and TID subfields.

The AID11 subfield carries the 11 LSBs of the AID, which indicates the previous transmission
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Frame 

Control
Duration RA TA

BA 

Control 

BA

Info
FCS

Octets: 2 6 62 2 variable 4

Per AID 

TID Info.

Per AID 

TID Info.

AID TID 

Info.

Block Ack Starting 

Sequence Control 

Block Ack 

Bitmap 

AID 11 Ack Type TID

Octets: 2

variablevariable

0 or 2

0,4,8,16 

or 32

Bits: 11 1 4

Frame 

Control
Duration RA TA

BA 

Control 

BA

Info
FCS

Octets: 2 6 62 2 variable 4

Per AID 

TID Info.

Per AID 

TID Info.

AID TID 

Info.

Block Ack Starting 

Sequence Control 

Block Ack 

Bitmap 

AID 11 Ack Type TID

Octets: 2

variablevariable

0 or 2

0,4,8,16 

or 32

Bits: 11 1 4

Figure 2.12: Format of BA control field

of this STA is received. The Ack Type indicates whether there is a aggregation in the MPDU

of previous transmission. The TID is used to support QoS for higher layer’s entity.

2.3.1.3 QoS Null Frame and BSR Control

This section will illustrate that how QoS Null Frame contains the BSR information by

presenting and explaining the details of frame structure. The function and application of BSR

are presented in Section 2.3.2.2.

Generally, in all frame defined in 802.11, there is an optional sequence control information

field, called HT control field in the MAC header [18]. The Mac frame format is shown as Figure

2.6. In order to support the transmission of BSR, STA needs to use the QoS Null Data frame,

the frame type definition is presented in Section 2.3.1. Meanwhile, STA needs to apply the

optimal HT control field which carries BSR information. The first two bits in the HT control

field indicate the structure of the subtype of this HT control field. The structure of HT control

field is shown in Figure 2.13-2.15.
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VHT(0)
HT Control 

Middle 

AC 

Constraint 

Bits: 1 29 1

B0 B1-B29 B30

RDG/More 

PPDU 

B31

1

Figure 2.13: Format of HT variant

VHT(1)
VHT Control 

Middle 

AC 

Constraint 

Bits: 1 29 1

B0 B1-B29 B30

RDG/More 

PPDU 

B31

1

HT(0)

1

B1

Figure 2.14: Format of VHT variant

VHT(1) HT(1) A-Control

Bits: 1 1 30

B0 B1 B2-B31

Figure 2.15: Format of HE variant
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The HT Control field has three forms, note that the HE variant is a new type defined in

802.11ax, which carries the BSR information is in the Aggregated control (A-control) subfield.

The format of A-control subfield is presented in the Figure 2.16.

VHT(1) HT(1) A-Control

Bits: 1 1 30

Control 1 Control N Padding

Control ID Control Information

4 or more 4 or more 0 or more

4 variable

Figure 2.16: Format of A-control subfield

A-control subfield contains one or more control subfield, and the total length of the A-

control subfield is equal to 30 bits. There are several types of control subfield, which is defined

by the control ID subfield as is shown in Figure 2.16. The length and details of control in-

formation are variable according to the control type. The structure of each control subfield is

presented as Table 2.6.

Table 2.6: Control ID subfield

Control ID Meaning of control ID Length of the Control
Info. subfield

0 UL MU response scheduling (UMRS) 26
1 Operating mode (OM) 12
2 HE link adaptation (HLA) 26
3 Buffer status report (BSR) 26
4 UL power headroom (UPH) 8
5 Bandwidth query report (BQR) 10
6 Command and status(CAS) 8

7-15 Reserved

Currently, there are 7 types of different control subfield as is shown in the Table. 2.6, when

control ID equals to 3, the Buffer Status Report is included. The length its control information

subfield is 26 bits, which means there is only one control subfield in the A-control subfield
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(length of A-control field is limited by 30 bits). The structure of control information subfield

is presented in Figure 2.17.

ACI 

Bitmap
ACI High

Scaling 

factor 

Bits: 4 2 2

Queue size 

High

8

Delta 

TID

2

Queue size 

All

8

Figure 2.17: Format of BSR informaiton subfield

In the control information subfield for BSR, ACI bitmap, Delta TID and ACI High indicate

the QoS status of the queues in buffer, the Scaling Factor, Queue Size High, and Queue Size

All indicate the Queue size in the buffer. Note that the ACI High indicate the ACI of Queue

Size High subfields, and Queue Size All indicates all queues size in the buffer.

With the BSR from each STA, AP can properly schedule the access and resource alloca-

tion for a more efficient network. Section 2.3.2 will briefly introduce the access mechanism of

Chapter 4 and 5 will present the application of BSR to improve the system performance.

2.3.2 MAC Mechanism

2.3.2.1 Uplink OFDMA Random Access (UORA)

Different from the conventional 802.11, which mainly adopts the CSMA/CA mechanism

for access control. In 802.11ax, several new MU access techniques are proposed. Uplink

OFDMA Random Access (UORA) is designed as the de-facto random access mechanism for

UL MU transmission, considering its ability that UORA can initialize a transmission without

pre-schedule information, which is also adopted to support pre-scheduled transmission as well.

The details of UORA are illustrated in the following paragraphs.

UORA is a trigger-based random access mechanism for MU UL transmission that is

initialized and synchronized by a trigger frame. Utilizing random access as the contention

mechanism for resource allocation among multiple users, this process does not require any

pre-scheduling information for transmission and provides a parallel access method for MUs.

Generally, one full UORA process includes three parts of frame transmission:
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• Process initialization by the trigger frame broadcasted from AP;

• STAs response the corresponding frames according to the information of previews trig-

ger;

• AP feedback a Multi-BlockAck after it received at least one frame from STAs.

In the trigger frame, AP can either schedule the allocation of RUs or set RUs for random access.

When AID12 subfield equal to the 12 LSBs of the AID of the STA, this RU is assigned to this

STA. Otherwise, if the AID12 subfield equal to 0, this RU is allocated for associated STAs

RA. And if AID12 subfield equal to 2045, this RU is allocated for unassociated STAs RA. An

example of UORA mechanism is shown in Figure 2.18.

AID=3

M-BA

Random access 
period

Contended by  associated STAs

Contended by  associated STAs

Contended by  unassociated STAs

Contended by  associated STAs

STA1, unassociated STAs

Assigned to STA3

AID=0

AID=2045

AID=0

AID=0

STA2, associated STAs

STA3, associated STAs

STA4, associated STAs

STA5, associated STAs

Figure 2.18: An example of the UORA mechanism.

In Figure 2.18, RU1, RU2, and RU4 are assigned for Random Access (RA), STAs that

support RA might content these RUs after backoff. RU3 is assigned to unassociated STAs,

the unassociated STAs can access the network through this RU and establish the connection

with AP. RU5 is assigned to STA3, which is scheduled by AP based on previous information

feedback from STA3 or other reliable information that indicates STA3 will transmit in this time

slot.

In order to avoid the collision of directly access the RU for Random Access (RA-RU),

802.11ax designs an OFDMA backoff (OBO) process. After STAs received the trigger frame
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from AP, if these STAs are not assigned RU and in the trigger frame there are user information

field has the subfield whose AID equals to 0 or 2045, STA will STAs start OBO process. Each

STA has an OBO counter to storage the backoff status. If the OBO counter value of one STA is

equal or lower than 0, it will randomly access one RA-RU. After STAs successfully access and

transmit their data, AP will respond with a Multi-BlockAck (MBA) and mention these STAs.

The details of OBO process are illustrated as follow: firstly, one STA sets up the OBO

counter by minimal and maximal OFDMA contention window (OCW), denoted as OCWmin,OCWmax

respectively. Their values are derived from EOCWmin and EOCWmax field in Random Access

Parameter Set (RAPS) element of the beacon frame, the frame structure of RAPS element is

illustrated in Figure 2.19.

OCW Range

Bits: 8

EOCWmin EOCWmax Reserved

Element ID 

Extension
Element ID Length

8 8 8

3 3 2

Figure 2.19: The format of RAPS element in Beacon frame

With given EOCWmin and EOCWmax, the parameters OCWmin,OCWmax and the maximal

backoff stage m, are calculated, respectively, as:

OCWmin = 2EOCWmin − 1, (2.1)

OCWmax = 2EOCWmax − 1, (2.2)

m = EOCWmax − EOCWmin. (2.3)

The OBO counter is initialized in [0,OCWmin]. After the STA receives trigger frame from AP,

its OBO counter subtracts the number of RA-RUs, which is indicated in the trigger frame. If

the value of OBO counter is equal or lower than 0, this STA will randomly choose one of the
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RA-RUs to access. If two or more STAs access the same RU, the collision happens. The OBO

counters of these STAs will double the OCW and reset the OBO counter based on new OCW.

If this STA accesses the RA-RU without collision, the OBO counters will be reset using initial

OCW value. If the OBO counter value is higher than 0, the counter will retain this value until

the next trigger frame comes.

The OBO counters of collision STAs will double the old OCW (OCWold) and reset the

OBO counter based on new OCW (OCWnew), but the OCWnew should not be higher than

OCWmax.

OCWnew = 2 ∗ (OCWold + 1) − 1, OCWnew ≤ OCWmax (2.4)

OCWnew = OCWmax, OCWnew > OCWmax (2.5)

OBO = i,∀i ∈ [0,OCWnew] (2.6)

If this STA accesses the RA-RU without collision, the OBO counters will be reset in the range

from 0 to the initial OCW value, OCWmin. If the OBO counter value is higher than 0, STA will

not transmit, and the counter will retain this value until the next trigger frame comes. Note

that the principle of OBO process is similar to conventional back-off process in CSMA/CA

mechanism, while there is no waiting time when reduce the value of OBO counter.

Once the STA received the trigger frame, it directly subtracts OBO counter value by the

number of RA-RU, so there is no time loss when backoff. After one STA successfully go

through the OBO process, it will transmit the corresponding frame according to the type of the

trigger frame. For instance, STA while response HE TB PPDU if it receives a basic trigger

frame, this process is a conventional UL data transmission process. If it receives the BSRP

trigger frame, will response BSR frame, this is an information soliciting process, which will be

further illustrated in Chapter 4, and the details of BSR frame is presented in Section 2.3.5.

2.3.2.2 Buffer Status Report (BSR)-based Mechanism

Buffer Status Reports (BSRs) mechanism is an information soliciting mechanism to assist

AP to schedule the transmission in allocating UL MU resources, STAs can report their BSRs

without requirement from AP, and AP can also solicit the STAs’reports about the queue size
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and QoS label in their buffer. There are two types of BSR, for unsolicited BSR, STAs can

transmit BSRs that are contained in the QoS Control field or BSR Control field of any frame

transmitted from STA to the AP, for solicited BSR, STAs can deliver BSRs in QoS Null frame

that is sent to the AP as the response of a BSRP-TF. In this thesis, we will focus on the solicited

BSR.

In the solicited BSR, AP sends a BSRP-TF to initiate and synchronize the BSR mecha-

nism, then STAs, who received the BSRP-TF and prepared to UL transmission, will report the

queue frame size and QoS label in their buffer, though the QoS Null frames. The transmis-

sion process of BSR mechanism is similar to the conventional UORA mechanism, which is

illustrated in Figure 2.20.

AID=3

M-BA

BSR – Random access

BSR – Random access

BSR – Random access

BSR-STA3

AID=0

AID=0

AID=0

AID=0

BSR – Random access

Figure 2.20: An example of BSR transmission.

Generally, in solicited BSR mechanism, AP waits for a DIFS after the last transmission,

and then broadcasts a BSRP-TF to all STAs in this channel to initial the BSR mechanism.

When STAs receive the BSRP-TF, if their buffers are not empty and these STAs support UO-

RA mechanism, they will response QoS Null frames that contain their BSRs to AP following

UORA mechanism according to the allocation scheme in the trigger frame. For instance, as is

shown in figure 2.20, BSRP-TF allocates RU5 to STA3 to transmit its BSR, and assigns RU1-4
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for random access, the rest STA in this channel need to contend the access of these RUs to

transmit their BSRs. The details of UORA contention process is illustrated in Chapter 2.3.4.

After AP received at least one BSR from these STAs, it transmits an M-BA frame.

After the transmission of BSR, there will be a contention free data transmission process,

the detail of this process is presented in Chapter 4.

2.3.2.3 Target Wake Time Mechanism

Target Wake Time (TWT) is a WLAN STAs grouping mechanism in the time domain

for power saving and collision easing, which is firstly proposed in IEEE 802.11ah and also

included in the IEEE 802.11ax [30, 36].

In general TWT mechanism, STAs will negotiate the wake up time with AP at first, then

wake up at the negotiated time point to start transmission, this negotiation enables AP to sched-

ule the access scheme before the data transmission, which is more efficient than conventional

CSMA/CA. In the negotiating period, there are two valid mechanisms, one is the Individ-

ual TWT agreement, which allows STAs to individually negotiate with AP. This agreement

provides more flexibility for STAs about the wake up time, but it requires lots of time to ne-

gotiate the wake up time one by one before transmission. Meanwhile, the maximum number

of simultaneously active agreements is limited to 8, which will highly degrades the network

performance in the ultra-dense deployed scenario.

Therefore, 802.11ax proposes a new mechanism for TWT negotiation in the ultra-dense

network, called Broadcast TWT operation. Different from Individual TWT agreement, it is

not necessary for STAs to negotiate the wake up time with AP one by one. AP can directly

broadcast TWT parameters to STAs without the individual agreements between AP and STAs,

but STAs still need to negotiate the membership with AP [30].

Compared with the conventional Individual TWT agreement, the STAs do not have the

freedom to choose the TWT parameters in Broadcast TWT operation, but they have the choice

to whether take part into this transmission or not. With the given TWT parameters from AP,

the negotiation process is much simpler than Individual TWT agreement, which also allows

the AP supporting more number of STAs in the TWT mechanism in the ultra-dense network.

This thesis focus on the ultra-dense network, therefore we assume that the Broadcast
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TWT operation is the default negotiation mechanism of TWT mechanism in the rest part of

this thesis.

There is the scheduled data transmission period after the negotiation process. In this

period, because AP scheduled all TWT parameters, STAs only wake up in the scheduled wake

up time for transmission, called TWT Service Periods (SPs). In the other time outside the SP,

STA will turn into doze state, which saves the power of STAs as well as the channel resources

of the network [26, 37]. During the SP, STA and AP can either do UL or DL transmission,

including the access mechanism mentioned in Section 2.3.2.2 and 2.3.2.1.

In order to support the TWT scheduling for large scale of STA access, there is also a

TWT grouping mechanism. In this mechanism, AP can add STAs into TWT groups and then

scheduled the access of the whole group of STAs. Compared with the conventional TWT

mechanism, one of the differences of TWT grouping in negotiation process is that AP needs

to transmit an individually addressed frame to STA [36]. This frame will include a TWT

element which contains the TWT group ID assigned this STA and the TWT parameters for this

group. In the data transmission period after negotiation, the access principle of TWT grouping

is similar to the conventional TWT mechanism. All STAs in each group will follow the TWT

parameters scheduled by AP, and only wake up in the scheduled SP, STAs in this group will

turn into doze state outside the SP for this group.

The TWT grouping mechanism can be used to divide STAs into several groups in the time

domain, and ease the contention such as the UORA mention in the previous section, the details

will be illustrated in the next chapter.

2.4 Summary of the Chapter

In this chapter, fundamental aspects of 802.11ax that will be considered in this thesis

are introduced, including the PHY and MAC layer features. In the PHY layer, the adoption

of OFDMA divides channels into multiple RUs, which improves the MU access ability as

well as the resource allocation flexibility. In the MAC layer, we mainly introduced the frame

structure and access mechanism that will be studied in this thesis. The Trigger frame and BSR

are firstly adopted in 802.11ax, which provides better access control and resource allocation
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for transmission. Meanwhile, the UORA, BSR-based two-stage and TWT mechanism were

introduced, which will be further illustrated in the rest of this thesis.



Chapter 3

UORA Analysis and Proposed Adaptive

UORA Grouping Scheme

3.1 Overview

UORA is a trigger-based random access mechanism for UL MU transmission. This mech-

anism adopts random access for resource allocation among multiple STAs, which does not re-

quire any pre-scheduling information for transmission and provides a parallel access method

for MU access and transmission. Therefore, UORA is suitable for information soliciting before

data transmission or directly user for data transmission when it is difficult for AP to receive the

pre-scheduling information.

As the de-facto random access mechanism, UORA directly influences the system perfor-

mance in IEEE 802.11ax. It attracts high attentions of researchers. The authors in [38] firstly

studied the UORA system using bi-dimensional Markov chain in 2016. However, the accuracy

of this model is limited because of the early version of the draft standard. This model was

improved in [39], while the results are complex. Then a simple form with accurate analysis

model of UORA was derived in [40]. Unfortunately, one of the significant problems of UORA,

according to [38, 39, 40], is the degrading efficiency caused by high collision probability in

the ultra-dense networks. The adaptive backoff mechanism proposed in [39, 26], tries to main-

tain the optimal system efficiency by extending the contention windows. However, in IEEE

802.11ax, the maximal backoff window in UORA is 127. It leads to the result that the adaptive

32
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backoff mechanism cannot be adopted in the scenario with a large number of STAs.

To conquer these drawbacks, we propose an adaptive UORA grouping scheme based on

the TWT grouping mechanism. The grouping strategy has already been widely used in wireless

communication to eliminate the collision [41], improve the resource allocation [42, 43], Energy

scheduling [44] and so on.

In our proposed scheme, STAs are divided into several groups along the time dimension

to eliminate the collisions. In order to optimize the system efficiency as well as eliminate the

influence of remainder when grouping, an adaptive grouping algorithm is designed to facilitate

AP grouping STAs.

The the rest of this chapter is organized as follows: Section 3.2 analyzes and illustrates

the existing and potential problem of UORA in the ultra-dense network; The system model of

proposed UORA grouping scheme is formulated in Section 3.3; In Section 3.4, the relationship

between STAs number with RU efficiency is studied, and the optimal group size is derived;

Section 3.5 proposes an adaptive grouping algorithm based on the results of adaptive group

size, which ease the performance fluctuation after grouping; The performance of proposed

algorithm is evaluated by numerical results in Section 3.6; Section 3.7 summarizes the works

of Chapter 3.

3.2 Challenges of UORA in Ultra-Dense Deployment

As is mentioned in Section 2.3.2.1, UORA is a random access mechanism. Similar to the

conventional CSMA/CA, the collision rate of UORA still rise as STAs number increases. The

relationship between STAs number with collision rate of UORA is presented in Figure 3.1.

The collision rate rises sharply when the STA number increases and approach to 1 when

STA number arrives around 140. Some researchers proposed an adaptive backoff mechanism to

maintain the optimal system efficiency by extending the contention windows. But this method

only has limited functions. Because the maximum value of EOCWmax is 7, the maximum

value of OCWmin and OCWmax equals to 27−1 = 127. This backoff window in much shorter

than the value in conventional standard. The performance with different backoff parameters is

shown in Figure 3.2.
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Figure 3.1: Rising collision rate with increasing STA number.

Figure 3.2: The limitation of adaptive parameter adjust optimization.
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The maximum active range of this algorithm is n = 67, when the parameters are set to

”W=127, m=0 and r=9” in a 20MHz channel. The performance of RU efficiency still degrades

when STA number is higher than 67. One available method is extending the backoff windows,

but it will raise the power consumption of each STA. Therefore, a more effective access scheme

is necessary to be proposed to solve this problem.

3.3 System Model and Formulation of UORA Grouping Scheme

This thesis considers an ultra-dense IEEE 802.11ax network with single AP and n STAs

accessing the network through the proposed UORA grouping mechanism, which is operated

through the following procedures.

The AP first assigns all STAs to different groups using TWT mechanism. After the group-

ing process, all STAs listen to the beacon frame from AP. Once they receive the beacon frame,

STAs turn into doze state until their TWT SPs come. During each TWT SP, STAs wake up to

receive the trigger frame sent by AP, then STAs compete for the RUs using the UORA mecha-

nism. After the transmission in the TWT SP, STAs in the group turn into doze state until their

next TWT SP. The proposed grouping scheme is illustrated in the Figure 3.3, where STAs are

divided into G groups, each group stays in doze state until their TWT SP.

Several assumptions are made to simplify the subsequent analysis. The PHY layer is

assumed to be ideal with no transmission error, while the network is saturated. All STAs are

associated with the AP with equal access priority. All analysis and simulation results are in

the steady-state after the grouping and group adaptation processes. The notations used in this

paper are summarized in Table 3.1.

In the rest part of this paper, the OCWmin is represented by W0, the OBO parameters

represent r, W0 and m. The parameters proposed for adaptive grouping range, α, Nrmin and

Nrmax, are introduced in the next section.

Since STAs are divided into several groups using different TWT SPs in the time domain,

their transmissions are independent. The proposed scheme can be considered as several succes-

sive and independent UORA processes. Hence, it is necessary to analyze the UORA process,

so as to evaluate and optimize the performance of the proposed scheme.
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Figure 3.3: UORA grouping scheme based on TWT grouping mechanism.

Table 3.1: Parameter definition

Parameter Meaning
n: STA number
r: Number of RU
OCWmin(W0): Minimal contention window size
i: i-th backoff stages
m: Maximum number of backoff stages
p: Collision possibility
η: Efficiency of RU
τ: Transmit probability
α: Efficiency factor
Nrmin Lower bound of group size
Nrmax Upper bound of group size
G: Total group number
j: j-th group
N j: STA number in the j-th group
η j: RU efficiency the j-th group
H: Efficiency of UORA grouping scheme
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According to the analysis of conventional UORA process in [40], the probability τ that

one STA sends out the messages after OBO is expressed as:

τ =
W0 + 1

W0 + 1 + (1 − p)X0 + (1 − p)
∑m−1

i=1 Xi(
p
2 )i + Xm( p

2 )m
, (3.1)

where

Xi = (−
r
2

⌊Wi

r

⌋2

+ (Wi −
r
2

)
⌊Wi

r

⌋
),

and

Wi = 2i(W0 + 1) − 1, i ∈ [1,m − 1].

Meanwhile, the STAs randomly choose the available RU to access the AP, the probability p

that collision happens in the chosen RU can be derived as [40]:

p = 1 − (1 −
τ

r
)n−1. (3.2)

Because the STAs randomly choose the RU, when study one RU, the queue model should be

M/G/1, therefore the utilization efficiency of each RU can be derived as [40]:

η(p) =
nτ(1 − p)

r
. (3.3)

As is shown in (3.1)-(3.3), the efficiency of RU is influenced by OBO parameters and STA

number n. The UORA grouping scheme is supposed to improve the system performance in the

ultra-dense network by reducing the access number of STA each time. The grouping strategy

is directly impacted by n, which is studied in the next section with given OBO parameters.

3.4 Derivation of Optimal Group Size

In order to achieve optimal grouping, the closed-form expression of maximized RU effi-

ciency is derived as a function of station number and OBO parameters in this section. Mean-

while, the monotonicity of the efficiency function is proved. The variable range of group size

is analyzed so as to provide more flexibility grouping method to cope with remainder problem.
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By substituting the equation (3.2) into (3.3), the efficiency function of p can be rewritten as:

η(p) = n(1 − (1 − p)
1

n−1 )(1 − p). (3.4)

Proposition 1: The maximal efficiency of RU (3.4) is reached when:

n(1 − p)
1

n−1 − n + 1 = 0, n ∈ [2,∞), p ∈ [0, 1]. (3.5)

Proof By regarding n as constant, the first order of η(p) is calculated as:

dη(p)
dp

=
n

n − 1
(n(1 − p)

1
n−1 − n + 1). (3.6)

Suppose Z1 = n(1 − p)
1

n−1 − n + 1, the first order derivative of Z1 is:

dZ1

dp
=
−n(1 − p)

1
n−1

(n − 1)(1 − p)
< 0. (3.7)

By substituting (3.7) in to (3.6), it is obvious that dη(p)2

d2 p < 0. Therefore, for any n ≥ 2, the η

reaches maximal when Z1 = 0, the constrain is expressed as:

n(1 − p)
1

n−1 − n + 1 = 0. (3.8)

�

According to (3.1), (3.3) and (3.5), the RU efficiency is maximized when it follows the con-

strains (3.9), which is a close-form expression that only contain the n and OBO parameters.

W0 + 1

W0 + 1 + (1 − 1
n )n−1 ∑m−1

i=0 Xi(
1−(1− 1

n )n−1

2 )i + Xm( 1−(1− 1
n )n−1

2 )m
−

r
n

= 0, n ∈ [2,∞) (3.9)

ηopt = (1 −
1

Nopt
)Nopt−1. (3.10)


αηopt = n(1 − (1 − p)

1
n−1 )(1 − p)

W0+1
W0+1+(1−p)

∑m−1
i=0 Xi(

p
2 )i+Xm( p

2 )m − r(1 − (1 − p)
1

n−1 ) = 0
, n ∈ [2,∞), p ∈ [0, 1] (3.11)
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By regarding OBO parameters as given constants, the optimal group size Nopt can be calculated

using numerical method. According to (3.4) and (3.9), the optimal result of efficiency can

be derived as (3.10). Generally, when grouping the STAs, the total STA number can not be

exactly divided by the Nopt without remainder. If the remainder is small, directly allocating

few STAs into one TWT SP may waste the channel resource. Therefore, the efficiency factor

α ∈ [0, 1] is proposed, which provides more flexibility in grouping by sacrificing (1 − α)ηopt

of RU efficiency. According to (3.4), (3.9) and (3.10), the variable range of group size can be

calculated by (3.11).

Proposition 2: If n < Nopt, the efficiency of RU (3.4) is monotone and increasing; If

n > Nopt, (3.4) is monotone and decreasing.

Proof The proof of Proposition 2 is presented in this section. By substituting the calculated

Nopt in to (3.8), this equation can be rewritten as:

1 − popt = (1 −
1

Nopt
)Nopt−1. (3.12)

Suppose n < Nopt. According to (3.2), it is easy to prove that p(n) is a monotone and

increasing function. Thus p < popt is true. The function Z1 is constrained by:

Z1 =n(1 − p)
1

n−1 − n + 1

>n(1 − popt)
1

n−1 − n + 1

=n((1 − popt)
1

n−1 − (1 −
1
n

)),

(3.13)

According to (3.12), the final term of (3.13) can be rewritten as:

n((1 − popt)
1

n−1 − (1 −
1
n

)) = n(1 −
1

Nopt
)

Nopt−1
n−1 − (1 −

1
n

). (3.14)

According to assumption n < Nopt, because 1 − 1
Nopt
∈ (0, 1), it is easy to prove that

(1 −
1

Nopt
)

Nopt−1
n−1 − (1 −

1
n

) > 0. (3.15)

By substituting (3.15) into (3.13), the first order dη(p)
dp > 0 is proved. The monotony of η(p)
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when n > Nopt can be proved in the similar method.

�

According to Proposition 2, n has one or two roots in (3.11). Supposed the smaller root is Nrmin

and the bigger root is Nrmax. If there is only one root, this root is Nrmax and Nrmin = 2. The

variable range of group size is expressed as [Nrmin,Nrmax]. Therefore, when the group size of

each group N j ∈ [Nrmin,Nrmax], the RU efficiency of each group η j ∈
[
αηopt, ηopt

]
.

3.5 Proposed Adaptive Grouping Algorithm

In this section, we proposed an adaptive grouping algorithm based on the analysis results

of optimal group size and variable range of group size.

The proposed algorithm improves the system efficiency as well as eliminate the remainder

problem, by using variable range of group size N j ∈ [Nrmin,Nrmax] to divide STAs adaptively.

The proposed adaptive grouping algorithm is shown in Algorithm 1.

If the total STA number n is higher than Nopt, the algorithm will firstly try to use Nopt as

the object to divide STAs into G =
⌊

n
Nopt

⌋
+ 1 groups. Every group has Nopt STAs except the last

group, which has n mod Nopt STAs. Then the algorithm checks the value of the remainder n

mod Nopt, if it is lower than Nrmin, it will cancel the last group and divide the last group equally

into other groups.

After this reallocation process, if there are still at least one group has more than Nrmax

STAs, the algorithm will try to generate more groups by using Nrmin rather than Nopt as the

object to divide STAs, and repeat the operation described in the previous paragraph. With

the output of the algorithm G and N j, the RU efficiency of each group after grouping can be

expressed as:

η j(p) = N j(1 − (1 − p j)
1

N j−1 )(1 − p j), j ∈ [1,G] . (3.16)

The average efficiency of the system can be derived as:

H(p) =
1
G

G∑
j=1

η j(p). (3.17)
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In some cases, if the variable grouping range is small, the output if the algorithm N j may

not allocate in the range, this problem will be discussed in the next section.

Algorithm 1: Adaptive grouping algorithm
Input: Nopt,Nmin,Nmax,n
Output: G, N j,∀ j ∈ [1,G]

1 if n > Nopt then
2 G ⇐

⌊
n

Nopt

⌋
+ 1

3 for j ∈ [1,G − 1] do
4 N j ⇐ Nopt

5 NG ⇐ n mod G
6 if NG < Nrmin then
7 G ⇐

⌊
n

Nopt

⌋
8 for j ∈ [1,G] do
9 if j ∈ [1, (n mod G) mod G] then

10 N j ⇐ Nopt +
⌊

n mod G
G

⌋
+ 1

11 else
12 N j ⇐ Nopt +

⌊
n mod G

G

⌋
13 if N j > Nrmax,∀ j ∈ [1,G] then
14 G ⇐

⌊
n

Nrmin

⌋
+ 1

15 for j ∈ [1,G − 1] do
16 N j ⇐ Nrmin

17 NG ⇐ n mod G
18 if NG < Nrmin then
19 G ⇐

⌊
n

Nrmin

⌋
20 for j ∈ [1,G] do
21 if j ∈ [1, (n mod G) mod G] then
22 N j ⇐ Nrmin +

⌊
n mod G

G

⌋
+ 1

23 else
24 N j ⇐ Nrmin +

⌊
n mod G

G

⌋

3.6 Performance Evaluation

In this section. The efficiency improvement of proposed grouping scheme is presented,

comparing with the conventional UORA and adaptive backoff mechanism. The influence of
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efficiency factor α on the proposed algorithm performance is studied as well. The throughput

improvements of both system and single STA are presented. All of the OBO parameters in this

section is assumed as follows: r = 9, considering 20MHz bandwidth; m0 = 2,W0 = 7, which

are default setting in the standard [30].

3.6.1 RU Efficiency

The RU efficiency performance of the adaptive grouping algorithm is shown in Figure

3.4, comparing with conventional UORA and adaptive backoff mechanism proposed in [27].

When STA number is small, the parameter optimization algorithm has higher RU efficiency,

by reducing unnecessary RUs for random access. However, its RU efficiency still decreases

when n > 67 because of the length limitation of EOCWmax in the RAPS element of Beacon

frame. Compared with UORA and parameter optimization algorithm, the grouping algorithm

maintains the high performance that approaches to the optimal result.

Figure 3.4: RU efficiency of adaptive grouping algorithm compared with conventional UORA
and adaptive backoff mechanism.
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3.6.2 Impact of Efficiency Factor α

The efficiency factor α offers the AP more flexibility to group the STAs and minimize

the impact of remainder stations in UORA grouping. However, when the variable grouping

range is small, the performance can’t be exactly guaranteed in
[
αηopt, ηopt

]
. The performance

of different α selection is presented in Figure 3.5. As is shown in Figure 3.5, if the variable

range is too tight, such as α = 1, it is difficult for algorithm to guarantee that all groups have

N j STAs in the range. If the variable range is too loose, such as α = 0.5, the performance

will decrease as well. Though N j can all allocate in the range, the design performance αη is

far away from the ηopt. Therefore, it is necessary to consider both of these two factors when

selecting the α.

Figure 3.5: RU efficiency with different factor α selection.

The proposed adaptive grouping has the near optimal performance as is shown in the

Figure 3.6. Here, the certain group means the AP divides STAs into certain number of groups

despite how many STAs in each group. The proposed adaptive grouping algorithm (red line)

cuts the optimal performance of each certain groups line.
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Figure 3.6: RU efficiency of proposed Adaptive grouping scheme vs certain number of groups
strategy.

3.6.3 Throughput Performance

To evaluate the throughput of both system and single STA, the expression of throughput

is derived in this subsection. The time duration of successful transmission is given by:

Tduration = TDIFS + Ttrigger + 2 ∗ TS IFS + TPPDU + TMBA. (3.18)

When the transmission in all RUs are failed, the time duration is calculated as:

Tidle = TDIFS + Ttrigger. (3.19)

The estimation of time duration of one group is given as:

E[T ] = TidlePidle + TdurationPsucc. (3.20)

The throughput of the system equals to:

Thsys =
r ∗ η ∗ Dpayload

E[T ]
, (3.21)
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Table 3.2: Simulation parameters in Chapter 3

Parameter Value Parameter Value
r 9 TDIFS 34µs
m0 2 TPIFS 25µs
W0 7 Ttrigger 112µs
α 0.95 TS IFS 16µs
Payload 1000bits TMBA 150µs
MCS 9 TBS R 80µs
GI 0.8µs

where Dpayload is the payload. The average throughput of single user in the system is formulated

as:

ThS U =
τ ∗ (1 − p) ∗ Dpayload

E[T ]
. (3.22)

The simulation parameters are assumed in Table 3.2, according to the draft standard of IEEE

802.11ax.
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Figure 3.7: System throughput of adaptive UORA grouping scheme compared with conven-
tional UORA.

The numerical result of system throughput is shown in Figure 3.7, compared with the
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Figure 3.8: Single user throughput of adaptive UORA grouping scheme compared with con-
ventional UORA.

conventional UORA process. Meanwhile, the average throughput of single STA is presented

in Figure 3.8. As is shown in Figure 3.7 and Figure 3.8, the grouping algorithm is not working

until the system throughput falls from the summit. With increasing number of STAs, the per-

formance of conventional UORA degrades sharply because of the rising collision probability.

However, the proposed grouping algorithm maintains the near-summit performance by con-

trolling the group sizes. These two figures show the significant throughput improvement of the

proposed grouping algorithm in the ultra-dense networks. For instance, the grouping algorithm

provides 1051 times gain when n = 200.

3.7 Summary of the Chapter

This chapter proposed an adaptive grouping scheme to address the high collision of UO-

RA in the ultra-dense 802.11ax network. The system model of proposed UORA grouping

scheme was formulated, the relationship between STAs number with RU efficiency was stud-

ied, and optimal group size was derived. Meanwhile, because there are usually remainders
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after grouping, which degrades the performance of the whole system, we also derived an adap-

tive range of group size and proposed an adaptive grouping algorithm. The numerical results

showed that proposed adaptive grouping maintained the performance of UORA and was su-

perior to the conventional UORA. A new adaptive grouping algorithm is proposed in Section

3.5 based on the results of adaptive group size, which ease the performance fluctuation after

grouping; The performance of proposed algorithm is evaluated by numerical results in Section

3.6;



Chapter 4

BSR based Two-stage Mechanism (BTM)

and BTM Grouping Scheme

4.1 Overview

The UORA in 802.11ax is an essential multi-user (MU) access mechanism, multiple S-

TAs can directly access the AP simultaneously without the assistance of other additional in-

formation. One critical problem of UORA is the rising collision rate caused by increasing

STAs number. Because the access contention happens in RUs, where STAs transmit their data

package-PPDU (Presentation Protocol Data Unit), the channel utility efficiency degrades when

the collision rate is high. Therefore, limit the access number of STAs can effectively main-

tain the channel utility efficiency in the network, such as the grouping scheme proposed in the

previews chapter, which limits the access STA number is a time period. However, the optimal

efficiency after grouping is still low because of the ALOHA design in the UORA, as is shown

in Fig. 4.1.

In Fig. 4.1, even though the proposed UORA grouping scheme maintains the optimal

efficiency, it is still lower than 40 percent. According to (3.10), the optimal RU efficiency of

UORA is equal to (1 − 1
N )N−1, which is degrading when as STA number rise and approach to

1/e ≈ 37%. This means that if the UORA mechanism is directly used for data transmission, the

wasted channel resource will be higher than 60 percent. In order to cope with this drawback

as well as retain the advantages of UORA, the BSR based Two-stage Mechanism (BTM) is

48
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Figure 4.1: Low efficiency of UORA even after grouping.

proposed.

In this chapter, we adopt and study the grouping scheme in BTM. The rest of this chapter

is organized as follows: Section 4.2 introduces the process details of the BSR based Two-

stage. Section 4.3 formulates and analysis the BTM grouping scheme. Section 4.4 evaluates

the performance of the proposed scheme by simulation results. This chapter is summarized in

Section 4.5.

4.2 BSR based BSR based Two-stage Mechanism (BTM)

BSR based Two-stage Mechanism (BTM) is a UL MU transmission process for IEEE

802.11ax. By separating the access process with resource allocation , BTM maintains the

advantage of UORA, which allows STAs directly access the AP without pre-scheduling infor-

mation, and provides AP the flexibility to control the resource allocation for accessed STAs.

In the first stage, which is a UORA based mechanism for BSR transmission. As is intro-

duced in the Chapter 2, BSR contains the information of STAs’ buffers, which facilitates AP to

schedule the following resource allocation. In the second stage, AP allocates RUs to accessed

STAs in the first stage based on the BSRs. The directly allocation of RU avoid the possible



50 Chapter 4. BSR based Two-stageMechanism (BTM) and BTM Grouping Scheme

collisions in data transmission stage. The details of BTM is illustrated are follows:

The AP sent a BSRP-TF to initiate and synchronize the BSR mechanism, then STAs, who

received the BSRP-TF and prepared to UL transmission, will report the data frame size and

QoS level of their following transmission in their BSR frames. The access of BSR frames

following the same rule as convention UORA mechanism. After AP received the BSR frames

sent by STAs, it will feedback a Multi-BlockAck (M-BA) frame and mentioned the STAs who

successfully transmitted their BSR frames. After the execution of the BSR mechanism, AP can

schedule the RU allocation according to the data frame size and QoS level of different STAs.

AP firstly broadcast a regular trigger frame, which contains the information of RU allocation.

STAs transmit their data frames according to this allocation, then AP feedback another M-

BA frame after it received these data frame. This data transmission process is scheduled by

AP based on previews information in BSR, so it is a contention-free process without wasting

channel resource.

The whole process introduced above including two stages: 1. BSR mechanism is adopt-

ed to solicit the necessary information for scheduling, called information soliciting stage; 2.

Conventional trigger-based transmission is adopted for data transmission, called data trans-

mission stage.

Because the information soliciting stage adopts the UORA mechanism, which does not

require the information for scheduling but suffers from low efficiency. However, BTM adopts

an addition collision-free transmission stage to improve the utility of channel resources. In the

saturated networks, all STAs will capture as much RUs as possible, even though in information

soliciting stage there are collisions happen, once there is at least one STA accessed AP by its

BSR, all RUs can be allocated and there is no waste of channel resources. The separation of the

access process and data transmission process effectively improves the throughput of accessed

STAs and the whole system. However, the collision in the information soliciting stage still

degrades the access number of STAs, when the STA number is very high, the collision is still

critical enough that even one STA cannot access the AP. Therefore, in order to improve the

performance of this two-stage mechanism, we proposed a grouping scheme to optimize the

access efficiency in information soliciting stage, which also improves the performance of each

STA and the whole system as well in the ultra-dense scenario. The whole process of BTM is
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illustrated in Figure 4.2.
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Figure 4.2: The process illustration of BTM.

The access performance of BSR frames directly influence the efficiency of information

soliciting, so the concept BSR delivery rate is used to evaluate the access efficiency of the BSR

frames [31].

Suppose in one STA, all transmission information, such as size and QoS of the pending

data frame, can be delivered to AP by one BSR frame. Generally, each STA only need to

access one BSR-RU each time, either the STA or the network will not gain benefit if the STA

access extra BSR-RUs. With this assumption, the access number of BSR frames is equal to the

number of accessed STAs.

The separation of the access process and data transmission process effectively improves

the throughput of the whole system. However, the collision in the information soliciting stage

(by UORA) is still critical. It degrades the access number of STAs when the STA number is

very high. Therefore, we propose an adaptive BTM grouping scheme in this thesis, which is

illustrated in Section 4.3.

4.3 Analysis Model of BTM Groping Scheme

The BTM grouping scheme is a TWT based grouping scheme for UL MU transmission.

The time domain is divided into several service period, only one group of STAs can access AP
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in each service period. In the service period, the group of STA access AP by BTM and turn into

doze state when this service period finishes until the next service period. The BTM grouping

scheme is illustrated in Figure 4.3.
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Figure 4.3: The process illustration of BTM grouping mechanism.

There are two major parts in proposed BTM grouping scheme: 1. Grouping part; 2.

Transmission part. In the grouping part, the AP firstly calculates the optimal group size and

group and virtually divides all STAs into several groups. Then AP adopts TWT mechanism

to implement the grouping strategy. In the TWT mechanism, AP broadcast a beacon frame to

initial the mechanism and schedules the transmission time of different groups. Each group has

its individual transmission time duration, called service period. The STA in one group only

wake up in their own service period and turn into doze state after transmission until the next

service period. The transmission part happens in the service period, where the BTM is adopted

as the transmission method. STA follows the process of BTM, information soliciting stage and

data transmission stage, to complete the data transmission.

This section will formulate the system model of BTM grouping scheme. Considering the

two stages transmission of BTM, the formulation of these two stages are separated.

The first stage is the information soliciting stage, because AP has no information about S-

TAs buffer status, therefore the conventional UORA is adopted to solicit the BSR frames from

STAs. Meanwhile, in order to ease the high collision rate, the grouping scheme is adopted.

According to Chapter 3, in order to maintain the optimal RU efficiency, the optimal group size

should be calculated according to (3.4) and (3.9). In order to further ease the performance fluc-
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tuation caused by remainder after grouping, the variable group size is proposed and calculated

in (3.11). The grouping scheme is proposed in Algorithm 1. With UORA grouping scheme,

the optimal group size can be calculated by (3.10), and the STA number in each group N j is

derived by Algorithm 1. The RU efficiency of each group can be calculated by (3.16):

η j(p) = N j(1 − (1 − p j)
1

N j−1 )(1 − p j), j ∈ [1,G] ,

which can be regarded as the probability that one RU successfully access one STA’s

BSR request. After the contention process for the first stage, the AP will allocate RU to STAs

who successfully transfer their BSR to AP.

In this section, we will focus on formulate the model of the second stage. Assume that all

users are the same and the saturated, in this case, the AP averagely divides the all r RUs to all

accessed users. For each 20MHz channel, there are r = 9 RUs, which can support maximal

9 STAs simultaneously. Suppose the number of accessed STAs is NA j, where j is the j − th

groups. The new notations involved in this section is presented in Table 4.1.

Table 4.1: Notations definition

Notations Meaning
NA j Number of accessed STAs in the j-th group
RUi, j Number of allocated RU for the i-th STAs in the j-th group
Th Average system throughput
Th j Average system throughput when service the the j-th group
ThS T A Average throughput of each STA
ThS T A, j Average throughput of each STA in the the j-th group

According to (3.16), the number of accessed STAs NA j is expressed as:

NA j = N j ∗ η j(p), j ∈ [1,G]. (4.1)

Therefore, for each transmission with NA j access STAs, each accessed STA is allocated with

RUi, j RUs, which can be calculated by:

RUi, j =

⌊
r

NA j

⌋
, i ∈ [1,NA j], j ∈ [1,G]. (4.2)
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Generally, there are (r mod NA j) RU left as remainder after dividing shown in (4.2). In this

case, AP randomly allocates them into (r mod NA j) of STAs, each STA should has one more

RU. Therefore the RU allocation can be written as:

RUi, j =


⌊

r
NA j

⌋
+ 1, i ∈ [1, r mod NA j], j ∈ [1,G];⌊

r
NA j

⌋
, i ∈ [(r mod NA j) + 1,NA j], j ∈ [1,G].

(4.3)

Because there is r = 9 RUs in each group, in the saturated scenario, if there is at least one STA

successfully transmits BSR to AP, all RUs can be allocated for data transmission. Therefore

the average RUs for each STA in each group can be expressed as:

E
[
RU j

]
=

∑NA j

i=1 RUi, j

N j
=

r
N j

(4.4)

Furthermore, the throughput of BTM grouping mechanism in each group should be equal to

the data transmission capacity of this grouping, unless there is no STA successfully access the

AP. The throughput in each group is written as:

Th j =
r ∗ (1 − (1 − e f f )r) ∗ Lpayload

E [T ]
, (4.5)

where Lpayload is the length of payload and E [T ] is the expectation time duration in each group.

With the given throughput of each grouping, the average system throughput can be expressed

as:

Th =
1
G

G∑
j=1

Th j. (4.6)

And the average throughput of each STA is written as:

ThS T A =
τ ∗ (1 − p) ∗ E[RU j] ∗ Lpayload

E[T ]
. (4.7)

Theoretically, the average system throughput of proposed BTM grouping scheme should be

better than the conventional UORA grouping, because of the higher RU efficiency. To illustrate

this statement, the numerical results is presented in the next section.
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4.4 Numercial Results of BTM Grouping Scheme

In this section, the performance of proposed BTM grouping scheme is evaluated by nu-

merical results. The performance of proposed BTM grouping scheme should superior to the

UORA grouping according to the analysis of section 4.3, while this statement should also be

evaluated by the simulation. The simulation parameters are given in Table 4.2

Table 4.2: Simulation Parameters in Chapter 4

Parameters value Parameters value
r 9 W0 7

m0 2 Payload 1000 bytes
Trigger 89 bytes BSR 32 bytes
M-BA 46 bytes SIFS 16 µs
DIFS 34 µs MCS 9

GI 0.8 µs Rate 11.8Mbps

Without specific statement, all simulation parameter of this Chapter is shown in the Table

4.2. We still consider a networks with N STAs and one AP, the channel bandwidth is 20MHz.

In order to present the performance of proposed BTM grouping scheme, both simulation and

analysis results compared among proposed BTM grouping, UORA grouping, conventional

BTM and conventional UORA. The performances are shown in Fig. 4.4:

The throughput of BTM is higher than UORA either in grouping scheme or non-grouping

scheme, also the grouping scheme is superior to the non-grouping scheme either in BTM or

UORA, as is presented in the Figure 4.4. This simulation results (points in the Figure 4.4)

closely attach to the analysis results (lines in the Figure 4.4). The proposed BTM grouping

scheme overwhelms to other schemes in the system throughput, especially when STA number

is high. Because the proposed BTM grouping scheme ease the collision by dividing STAs

into groups along the time domain and BTM mechanism utilizes all channel resources as well.

Furthermore, the performances of average throughput of each STA are also presented with

different access mechanism, which are shown in Figure 4.5, 4.6.

The propose BTM grouping scheme has an advantage over other schemes in both system

and each STA throughput, especially in the ultra-dense network. Meanwhile, there is almost
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Figure 4.4: System Throughput of BTM grouping compared with convention UORA, conven-
tional BTM and proposed UORA grouping in Chapter 3.

Figure 4.5: BTM grouping throughput of each STA with convention UORA, conventional
BTM and proposed UORA grouping in Chapter 3.
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Figure 4.6: BTM grouping throughput of each STA with convention UORA, conventional
BTM and proposed UORA grouping in Chapter 3 (zoom in).

no throughput for each STA in the non-grouping scheme because of the very high collision rate

in the ultra-dense scenario. Therefore, the proposed BTM grouping scheme further enhance

the performance of proposed UORA grouping scheme.

4.5 Summary of the Chapter

In this chapter, the grouping scheme proposed in Chapter 3 is adopted and studied in BTM

to further improve the performance of both system and each STA. The process details of the

BTM is illustrated, formulated and analyzed. Finally, the numerical results are presented to e-

valuate the performance of proposed scheme. The BTM shows better system performance than

conventional UORA, and the proposed BTM grouping scheme has overwhelming throughput

performance than other schemes.



Chapter 5

Hybrid BTM Grouping Scheme and

Utility Enhancement

5.1 Overview

Generally, in the realistic MU UL process of 802.11ax network, with the ultra-dense and

diverse STAs, the service requirements are also diverse. In order to satisfy these requirements,

we propose the hybrid BTM grouping scheme. The major changes are illustrated as follows.

In information soliciting stage, both random access and the scheduled scheme will be

adopted. If the transmission timing of user is predictable with acceptable accuracy, schedul-

ing the access of users will be more efficient than random access. While if AP has no idea

when which user will transmit, the aimless scheduling will only degrade the system perfor-

mance. Therefore, in the information soliciting stage, both these two methods will be adopted

to maintain the BSR delivery rate of the network.

In the transmission stage. The major problem is the allocation scheme of the RUs. This

scheme should content the demands of users as well as the network RU efficiency. Therefore,

the rest RUs will be allocated for UORA after scheduling. Meanwhile, users usually have

multi-dimension QoS demands, these demands have different kinds of requirements of the

allocation scheme. For instance, the user which has low-latency requirement will be allowed

to access more frequently between different groups, but they may only need one or two RUs in

each time period; the user which has high data rate requirement will be assigned more RUs in

58
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one period of time, while it is not necessary to assign them in sequence.

After each transmission, the quality of service is evaluated by latency. For each service on

the STA, it can value the service quality by the linear function, call QoS utility function. This

function is used to value the QoS performance of proposed hybrid BTM grouping scheme.

The proposed Hybrid BTM grouping scheme allows scheduled STAs access multiple

times in one big grouping period by multiply cross-group access, which provides lower latency

experience for scheduled STAs. Meanwhile, the STAs are divided into two types according

to their sensitivity about latency. The proposed grouping algorithm will assign the latency

sensitive STAs as scheduled STAs for better QoS performance.

The rest of this chapter is organized as follows: Section 5.2 presents the formulation pro-

cess and proposed algorithm; Section 5.3 shows the numerical results of proposed algorithm,

with different dimensions of performances and considering diverse factors that influence these

performances. This chapter is summarized in Section 5.4.

5.2 System Model of Hybrid BTM Grouping & Proposed Al-

gorithm

In the proposed access mechanism, the AP uses the hybrid strategy. In the scheduled part,

STAs are multiply allocated across groups in one big grouping period. Suppose there are Ns

STAs need to be scheduled, the k-th STA has the given repeat requirement Rpak(k ∈ [1,Ns]),

which is given by the AP according to the requirement of the service in scheduled STA (we

suppose it is a constant in this thesis). because the RUs are regarded as the same to STAs,

all scheduled STAs are averagely allocated in each group and the rest RUs are assigned for

random access. In the random-access part, STAs access AP by the rest of RUs after scheduled.

AP divides UORA STAs into groups to ease the collision and calculates the optimal group

number and group sizes. In the system model of this paper, STAs are separated into two parts,

scheduled STAs (Ns) and UORA STAs (NRA), the sum of these two parts’STAs are:

NRA + Ns = N, (5.1)
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where N is the total number of STAs in the network. In each group, AP assign rs RUs to the

scheduled STAs and ruo RUs to the UORA STAs:

rs + rRA = r, (5.2)

where r is the RUs number in each group. In the hybrid access, the performance of scheduled

access is determined. In order to study the influence of the hybrid access, it is necessary to study

how number of RU ruo influence the performance of UORA in grouping. The performance of

conventional UORA is given by [40]:

τ =
W0 + 1

W0 + 1 + (1 − p) X0 + (1 − p)
∑m−1

i=1 Xi

(
p
2

)i
+ Xm

(
p
2

)m , (5.3)

where

Xi = (−
r
2

⌊Wi

r

⌋2

+ (Wi −
r
2

)
⌊Wi

r

⌋
),

and

Wi = 2i(W0 + 1) − 1, i ∈ [1,m − 1].

The probability p that collision happens in one RU can be derived as:

p = 1 −
(
1 −

τ

r

)n−1
. (5.4)

And the efficiency of each RU is written as:

e f f =
nτ (1 − p)

r
. (5.5)

According to Proposition 1, the efficiency is maximized when:

n (1 − p)
1

(n−1) − n + 1 = 0, n ∈ [2,∞), p ∈ [0, 1]. (5.6)

The optimal number of STAs in each group can be calculated by:
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W0 + 1

W0 + 1 +
(
1 − 1

n

)n−1 ∑m−1
i=0 Xi

(
1−(1− 1

n )n−1

2

)i

+ Xm

(
1−(1− 1

n )n−1

2

)m −
r
n

= 0, n ∈ [2,∞) . (5.7)

According to (5.7), for any given ruo, the correspond optimal group size Nopt can be cal-

culated, and the group number G can be calculated by:

G =

⌊
Nuo

Nopt

⌋
. (5.8)

The number of scheduled STA Ns is determined by AP, which will judge the QoS pref-

erence of each STAs to improve the QoS utility of each STA. The details QoS utility will be

illustrated in section 5.3.

Becasue the Ns, f =
Rpak

G can be calculated by the AP, where f is the average access fre-

quency for cross-group multi-allocation when grouping. Suppose in one big grouping period,

there are Rs are scheduled, which can be expressed as:

Rs =

Ns∑
k=1

Rpak =

G∑
j=1

rs, j. (5.9)

The number of scheduled RU in each group rs, j is impacted by the number of the group

number G. That means the number of UORA RU also impacted by G. For simplification, we

suppose that all scheduled RU Rs are averagely allocated in each group. If there are remainders

left after dividing, there will be allocated from the first group. Rewrite (5.9), the estimation of

rs in each group can be calculated by:

r̂s =
Rs

G
=

∑Ns
k=1 Rpak

G
=

Ns∑
k=1

fk, (5.10)

where the fk is the access frequency requirement of the k-th scheduled STAs, which is directly

related to the latency requirement. In this thesis we regard it as given constant. Since the cross

group multiple allocation is designed for low latency transmission, while the group number

vary when network scenario is changing, therefore AP will use the access frequency fk =
Rpak

G ,

f ∈ [0, 1] to adjust the average latency of STAs. Rpak is the access times in one big grouping
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period.

With the given fk of each scheduled STA and number of scheduled STAs Ns, the estimated

number of assigned RU r̂s can be calculated. Therefore, the estimated number of RU for

random access r̂uo can also be calculated.

Rewrite (5.2), (5.7), (5.8), the estimation of optimal group size for random access N̂opt

can be calculated by:

N̂opt (W0 + 1)

W0 + 1 +

(
1 − 1

N̂opt

)N̂opt−1 ∑m−1
i=0 Xi

 1−
(
1− 1

N̂opt

)N̂opt−1

2


i

+ Xm

 1−
(
1− 1

N̂opt

)N̂opt−1

2


m −

r − Ns∑
k=1

fk

 = 0.

(5.11)

The group number G can be calculated by: Nuo

N̂opt

 = G, (5.12)

and the total number of assigned RU in one big grouping period Rs is derived as:

Rs =

G ∗
Ns∑

k=1

fk

 . (5.13)

The group number G and the total RUs for scheduled STA Rs can are given. Therefore, the

average RUs in each group can be calculated by:

rs =
Rs

G
. (5.14)

According to the value of rs, there are three possible scenarios after allocated the scheduled

STAs: Scheduled STAs are equal in each group (rs is integer, rs ∈ (0, r)); Scheduled STAs

in some groups is more than others because of remainder after dividing (rs is not an integer,

rs ∈ (0, r)); Scheduled STAs occupy all RUs (rs = r). Three examples are shown in Figure

5.1-5.3 for better illustration.

With the given G, N̂opt and r̂s by (5.11),(5.12), and (5.14), the group dividing of NRA can

be completed according to different scenarios, which is expressed in the Algorithm 2.

Generally, there are three parts in Hybrid grouping algorithm for different allocation s-
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Figure 5.1: Hybrid grouping scheme where scheduled STAs are equal in each group.
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Figure 5.2: Hybrid grouping scheme where remainders left after dividing scheduled STAs in
each group.
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Figure 5.3: Hybrid grouping scheme where scheduled STAs occupy all RUs.
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cenarios. If the number of scheduled RUs is larger than the total available RUs, all RUs will

be allocated for scheduled transmission. If the number of scheduled RUs can be divided by

number of groups without remainder, these RUs can be averagely allocated to each group, then

using Algorithm 1 to schedule the STAs for random access. If number of scheduled RUs can-

not be divided by number of groups without remainder, the Algorithm 3 will be run to schedule

the allocation and grouping scheme.

After dividing STAs into groups, Suppose each group has NRA, j SATs, which following

constrain:

NRA =

G∑
j=1

NRA, j (5.15)

Algorithm 2: Hybrid grouping algorithm

Input: G, N̂opt, r, NRA, Ns, r̂s.
Output: rs, j, NRA, j, where ∀ j ∈ [1,G]

1 if r̂s ≥ r then
2 G <= 1
3 rs,1 <= r
4 NRA,1 <= 0

5 else if r̂s == r̂s −
⌊
r̂s
⌋

then
6 if NRA ≤ N̂opt then
7 G <= 1
8 NRA,1 <= NRA

9 rs,1 <=
⌊
r̂s
⌋

10 else
11 Fun Algorithm 1 to schedule STA for random access.

12 for j ∈ [1,G] do
13 rs, j <=

⌊
r̂s
⌋

14 rRA, j <= r − rs, j

15 else if 0 < r̂s < r then
16 Run Algorithm 3 to schedule STA for both random and scheduled access.

Suppose in jth group, there are rs, j = r−ruo, j scheduled users. Then the total group number

of j-th group is N′j = N j+rs, j. For different ruo, the optimal efficiency ηopt are different, therefore

the allocation should maximize the average η =
∑G

j=1 rRA, j ∗ η j.

The main purpose of the proposed hybrid grouping algorithm is to improve the system

performance under a system model that is more close to realistic transmission scenario. The
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Algorithm 3: Hybrid grouping algorithm for fraction allocation rs

Input: G, N̂opt, r, NRA, Ns, r̂s.
Output: rs, j, NRA, j, where ∀ j ∈ [1,G]

1 Rs <=
⌊
G ∗ r̂s

⌋
2 mod1 <= mod(Rs,G)
3 mod2 <= mod(NRA,G)
4 mod3 <= mod(mod2,G − mod1)
5 if G = 1 then
6 NRA,1 <= NRA

7 rs, j <=
⌊
r̂s
⌋

8 rRA, j <= r − rs, j

9 else if mod3 = 0 then
10 for j ∈ [1,G] do
11 if j ∈ [1,mod1] then
12 NRA, j <=

⌊
NRA
G

⌋
13 rs, j <=

⌊
r̂s
⌋

+ 1

14 else
15 NRA, j <=

⌊
NRA
G

⌋
+

⌊
mod2

G−mod1

⌋
16 rs, j <=

⌊
r̂s
⌋

17 else
18 for j ∈ [1,G] do
19 if j ∈ [1,mod1] then
20 NRA, j <=

⌊
NRA
G

⌋
21 rs, j <=

⌊
r̂s
⌋

+ 1

22 else if j ∈ [mod1 + 1,mod1 + mod3] then
23 NRA, j <=

⌊
NRA
G

⌋
+

⌊
mod2

G−mod1

⌋
+ 1

24 rs, j <=
⌊
r̂s
⌋

25 else
26 NRA, j <=

⌊
NRA
G

⌋
+

⌊
mod2

G−mod1

⌋
27 rs, j <=

⌊
r̂s
⌋
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major index to value the performance including the latency, BSR delivery rate as well as QoS

Utility. AP will choose the high priority STAs as scheduled STAs to optimal the QoS Utility.

Throughput is not involved as the major index because BTM has guaranteed the throughput to

maximum, it will only be influenced by the length of data frame in our model.

The concepts of BSR delivery rate and QoS Utility will be illustrated in Section 5.3. There

are several factors that influence the performance of proposed hybrid grouping algorithm. In

the following section, we will consider these factor one by one to evaluate the performance of

proposed algorithm in Section 5.3.

5.3 The Numerical Results of Proposed Hybrid BTM Group-

ing Algorithm

This section will evaluate the performance of proposed Hybrid Grouping Algorithm through

the numerical results. In the simulation, several dimensions of variants are considered, includ-

ing the number of scheduled STA (fixed number or proportion of total number), different access

frequency of scheduled STA and the length of the data package. The default values of simula-

tion parameters are shown in Table 5.1.

Table 5.1: Simulation Parameters in Chapter 5

Parameters value Parameters value
Ns 0.1N f 0.9
w1 1 w2 0.1
r 9 W0 7

m0 2 Payload 1000 bites
Trigger 89 bytes BSR 32 bytes
M-BA 46 bytes SIFS 16 µs
DIFS 34 µs MCS 9

GI 0.8 µs Rate 11.8Mbps

The default simulation parameter in this section is presented in Table 5.1 unless there is

specific statement. In this section, we will use several factors to evaluate the performance of

proposed hybrid grouping algorithm, including average BSR delivery rate in the network, the
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average latency per STA and the average utility of latency per STA.

The concept of BSR delivery rate in 802.11ax is firstly proposed in [45]. This factor re-

flects the BSR delivery efficiency of the network. Comparing the influence of system through-

put, BSR delivery rate reflects the capability of effective UL MU access. Total BSR delivery

rate can by express by sum of scheduled and random access BSR rate, which can be express as

[45]:

BS R j = rs, j + Nuo, jτ j

(
1 − p j

)
(5.16)

The parameters τ and p represent the probability that STA go through the backoff stage

and the collision rate when access the RU, they can be calculated according to (5.3), (5.4),

respectively. The probability that one STA successfully access can also be expressed by these

two parameters:

Ps = τ(1 − p) (5.17)

With the probability of successfully access, the average latency of random access STAs is

expressed as:

Tlatency =
Tduation ∗G

Ps
(5.18)

In this thesis, we use the performance of latency as an example of QoS property. Consid-

ering the diversity of IoT devices in the ultra-dense network, the preference of QoS is different

from device to device. In order to evaluate the expression and value the different preference of

QoS performance, the concept of QoS utility is proposed and the utility function is expressed

as follows:

Ui =
wi

Tlatencyi

(5.19)

where the wi is the weigh that this STA value the latency. The weighted mean method is

widely adopted to evaluate the different preference of resources [28], [29]. Generally, there are

several dimension factors to evaluate the utility. In this thesis, we focus on latency and suppose

there are only two types of STAs, latency sensitive and latency non-sensitive, for simplification.

The latency sensitive STA will value the latency performance much higher than the latency
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non-sensitive STA, which means their wi is higher. We suppose the w1 represents the wight for

latency sensitive STAs and w2 represents the wight for latency non-sensitive STAs. Therefore,

the sum of utility function of all STA is written as:

U =

N∑
i=1

Ui, (5.20)

and the average utility of each STA can be expressed as:

E [Ui] =
U
N
. (5.21)

As mentioned in Section 5.2, there are many factors that influence the performance of

proposed algorithm. In our system model, we consider the coexisting of both scheduled and

random access STAs in the network. In the realistic transmission scenario, the number of

scheduled STA may be fixed or dynamic. We considered the fixed number of scheduled STA

in Section 5.3.1 and proportional scheduled STA number of total STA in Section 5.3.2 for

simplification, and we compare these two different scenarios in Section 5.3.3. Meanwhile,

due to the diversity of services on the STAs, the requirement of access frequency for scheduled

STAs are also different. In Section 5.3.4, the presented numerical results show how the different

access frequency requirement influence the performance of system and each STAs. Finally, the

length of data frame packet is also considered, in Section 5.3.5, the performance, such as

system throughput, average latency per STA and the QoS utility, are presented with big and

small size of data frame.

Note that the ”latency” and ”utility” presented in figures mean the average performance

on each STA in the following subsection.

5.3.1 Fix Number of Scheduled STAs

This subsection considered the fixed number of scheduled STAs in the hybrid transmission

scenario, other factors are set with default value shown in Table 5.1. Generally, this scenario

can be equalized as the UORA grouping model with smaller number of available RUs. The

BSR delivery rate of this scenario is shown in Figure 5.4. The proposed grouping method
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Figure 5.4: BSR delivery rate of hybrid scheme with fixed number of scheduled STAs.

maintains the BSR rate performance even when the number of STA is very high (200). The B-

SR delivery rate is improving as the number of scheduled STA is rising. Because the efficiency

of UORA is around 37 percent, the scheduled access is more efficiency. Therefore with more

scheduled STAs in the network, system has higher capacity of UL MU access.

The Figure 5.5 shows the latency per STA with different number of scheduled STAs. The

conventional UORA (ungrouping) has quite high latency in the ultra-dense network due to the

rapidly growing collision rate. The average latency per STA increases when the number of

scheduled STA increase. The reason average latency rises with the number of scheduled STAs

is that more scheduled STAs occupy more RUs in each group and there will be less RUs for

random access. Because the total number of STA is much higher than the scheduled STAs

with fixed number of scheduled STAs in the ultra-dense network, the average latency per STA

is influenced more by random-access STAs. Even though the average latency is risen by total

STA number, it is much better than the ungrouping UORA in the ultra-dense network. The

grouping scheme optimizes the collision rate per group, the latency rises in a linear rate with

rising number of total STAs.

The Figure 5.6 presents the QoS utility per STA with different number of scheduled STAs.
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Figure 5.5: Latency of hybrid scheme with fixed number of scheduled STAs.

The QoS Utility reflect the preference of each QoS performance. In this thesis, we use the

Figure 5.6: QoS utility of hybrid scheme with fixed number of scheduled STAs.

latency as an example. There are only two types of STAs for simplification. The average utility

per STA rises when the number of scheduled STAs is higher. Because the latency sensitive

STAs are selected as scheduled STAs, which means the performance of STAs that has higher
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weight is guaranteed. With more high weight STAs, the QoS utility is higher.

5.3.2 Proportional Number of Scheduled STAs

In the realistic networks, the number of scheduled STAs can not only be fixed constant,

but also a dynamically changing variant. In this section, we suppose the number of scheduled

STAs is a variant that has a proportional relationship with total STA number. Note that all

simulation parameters are presented in Table 5.1, expect the number of scheduled STAs, which

is expressed as:

Ns = ρ ∗ N, (5.22)

where ρ is the parameter that indicates the proportional rate of scheduled STA in the total STA.

In this section, we assume this parameter as a variant to study how the variable number of

scheduled STA influence the performance of system and each STA. The numerical results of

BSR delivery rate with different ρ are presented in Figure 5.7.

Figure 5.7: BSR delivery rate of hybrid scheme with variant number of scheduled STAs.

Different from the network with fixed number of scheduled STAs, the number of sched-
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uled STAs in this network is proportionally changing with the total number of STAs. With

more scheduled STAs participate in the transmission, the BSR delivery rate is rising at the

same time. As is shown in Figure 5.7, the higher proportional rate leads to faster rising rate

of BSR delivery rate. However, due to the limitation of the channel RUs, the maximum BSR

delivery rate is equal to the number of RUs in this channel.

Even though the rising number of scheduled STAs improves the BSR delivery rate, it also

reduces the number of RUs for random access, which sharply degrades the performance of

random-access STA, the effect of which is presented in Figure 5.8.

Figure 5.8: Latency of hybrid scheme with variant number of scheduled STAse.

Because the number of random access STA is usually much higher than the scheduled

STAs, the degrading performance of random-access STA always leads to the performance of

average STA declines. Even though the performance of scheduled STAs (pink line) is main-

tained in high level in the ultra-dense network, the average latency per STA sharply increasing

as total STA number rising. Note that the curves of the average latency per STA stop in the

middle of x-axis, which means the network can’t support any more STAs to access the net-

work, because all RUs are occupied by the scheduled STAs, the proposed hybrid scheme has

worse average latency performance. Nevertheless, as is mentioned in Chapter 1, in the ultra-
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dense network, the wide application of IoT leads to the diversity of IoT service. Different

services have different requirements and preference about the QoS performance. The average

performance cannot properly reflect the quality of service on each device.

Figure 5.9: QoS utility of hybrid scheme with variant number of scheduled STAs.

In the proposed hybrid grouping scheme, the AP assigns the scheduled STAs according

to the sensitivity about latency, the STAs that are sensitive to the latency are scheduled and

have high level performance of latency, therefore the proposed hybrid scheme has a better

performance than conventional UORA grouping scheme in QoS utility. In Figure 5.9, the per-

formance of QoS utility is presented. The proposed hybrid grouping scheme has overwhelming

performances than the conventional UORA grouping scheme. With more latency sensitive S-

TAs served, the QoS utility is higher. The QoS utility decrease when the network can not

support more STAs to access, but the average STA QoS still higher than the conventional UO-

RA grouping.

5.3.3 Fix vs. Variable Number of Scheduled STAs

In this subsection, we will compare the different performance between fixed and variable

number of scheduled STAs. The fixed number is Ns = 5, and the variable number is Ns = 0.1N.
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Other simulation parameters are shown in Table 5.1. The latency performance of proposed

algorithm compared with conventional UORA grouping is shown as follows.
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Figure 5.10: Latency of hybrid scheme with variant number vs. fixed number of scheduled
STAs.

As is shown in Figure 5.10, the scheduled STAs occupy the RUs and the rest RU for ran-

dom access is less than conventional UORA grouping scheme. Therefore, the average latency

of hybrid scheme (green and blue lines) are higher than the conventional UORA. However, the

latency performance of schedule STAs (blue line with star point) is guaranteed in very small

value. Compared with the fixed number, the latency of variant number is increasing with the

number of scheduled STAs. In Figure 5.11, the details of variant number scheme is presented.

Note that the improvement of latency is limited when scheduled STA number is low, while it

rises faster when the scheduled STA number is high. The reason why this happens is that when

decreasing BSR delivery rate with increasing number of RUs in UORA mechanism, as well as

the effect of the rising number of random-access STAs. Therefore, how to effectively schedule

the hybrid grouping scheme using this property becomes a meaningful topic, which will be

further studied in the future.

The BSR rate performance of proposed algorithm compared with conventional UORA

grouping is shown in Figure 5.12.
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Figure 5.11: Latency of hybrid scheme with variant number vs. fixed number of scheduled
STAs (zoom in).

Figure 5.12: BSR delivery rate of hybrid scheme with variant number vs. fixed number of
scheduled STAs.
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Similar to latency performance, the BSR rate is also rising with the number of scheduled

STAs. The numerical result of average utility of each STA is shown in Figure 5.13.

Figure 5.13: QoS utility of hybrid scheme with variant number vs. fixed number of scheduled
STAs.

In Figure 5.13, the proposed hybrid grouping scheme has better QoS utility than con-

ventional UORA grouping scheme, either in fixed or variable number scenario. Because the

proposed scheme serves the more important STA and guarantees the latency of scheduled S-

TAs, which are latency sensitive STAs. The utility of scheduled STAs is also presented in

Figure 5.13 with the pink start line.

5.3.4 Different Access Frequency

This subsection considered the influence of different access frequency in the hybrid trans-

mission scenario, the number of scheduled STAs Ns = 5 in this subsection, other factors are set

with default value shown in Table 5.1. The average access frequency requirement is the mean

value of all access frequency of STAs, which is expressed as:

f =
1
Ns
∗

Ns∑
k=1

fk. (5.23)
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In this thesis, the number of scheduled STAs Ns and the access frequency requirement of each

scheduled STA fk is regarded as the given constant, therefore f can be calculated as a constant.

The BSR delivery rate with different access frequency is shown in Figure 5.14. With higher

Figure 5.14: BSR delivery rate of hybrid scheme with different access frequency.

access frequency, the BSR rate is also higher. In the access model of proposed scheme, sched-

uled STAs are allowed to multiply access across different groups in one big group period. Note

that random-access STAs need to wait one big group period after one transmission. The illus-

tration of one big group period is shown in Figure 4.3. The higher access frequency represents

this STAs are more frequently allocated, which means more RUs are occupied by scheduled

STAs. Therefore, the performance of rising access frequency is similar to rising the number of

scheduled STAs as is shown in Figure 5.4.

The Figure 5.15 shows the latency performance of hybrid grouping scheme with different

access frequency.

The higher access frequency leads to the higher average latency per STA as is shown in

Figure 5.15. The reason why this happens is similar to rising rate of BSR. The increasing

number of frequency means more RUs are occupied by scheduled STAs, so the number of

rest RUs becomes less and the performance of random-access STAs become worse. Because
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Figure 5.15: Latency of hybrid scheme with different access frequency.

the number of random-access STAs is the majority STAs, the average latency performance per

STA in the system increases with the rise access frequency. The Figure 5.16 shows the QoS

utility with different access frequency.

Figure 5.16: QoS utility of hybrid scheme with different access frequency.
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The high access frequency leads to high QoS utility, because more RUs are assigned to

STAs that are more sensitive to the latency. This allocation scheme of STAs is more effective

than fair allocation such as UORA grouping. Changing the access frequency has similar func-

tion as changing scheduled STAs’ number. These two factors can be considered together when

facing different network scenarios. For instance, the network that has a large number of sched-

uled STAs’ number with low access frequency, can perform the same (or similar) way as the

network that has a small number of scheduled STAs’ number with high access frequency. The

differences are that the first scenario can serve more scheduled STAs and the second scenario

can improve the QoS utility for particular scheduled STAs. Therefore, how to balance these

two characters become an interesting topic, which will also be studied in the future.

5.3.5 Different Length of Packet

In this subsection, we will discuss the influence of different data packet length in the

hybrid transmission scenario. For simplification, there are two types of payload, assume that

the data frame with 8000 bites payload is the large data frame, and the data frame with 1000

bites payload is the small data frame. Other parameters are set with default value shown in

Table 5.1. Because the BSR delivery rate only reflects the information soliciting efficiency

in the information soliciting stage of BTM, we directly study the throughput to evaluate the

impact of different payload length on the system. The performance of system throughput of

the hybrid scheme with different payload length is presented in Figure 5.17.

The large payload has the better performance of system throughput in all kinds of access

mechanism mentioned in this thesis, and the BTM grouping scheme has the performance that

is close to theoretical PHY rate (11.8Mbps) with large payload, as is shown in Figure 5.17.

The performance of small payload has worse performance than large payload because the large

payload eases the impact of the overhead and control signal in transmission. However, using

large payload does not have the overwhelming advantages, it also has drawbacks. As is shown

in Figure 5.18, which shows the latency of hybrid scheme with different payload length.

The latency of length payload (line with stars) is much higher than the short payload (line

with circles). The long payload duration has advantages as well as drawbacks in transmission.
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Figure 5.17: Throughput of hybrid scheme with different payload length.

Figure 5.18: Latency of hybrid scheme with different payload length.
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For sure the long payload increases the proportion of data transmission time, it also increases

the total transmission time for each data frame. In the grouping scheme proposed in this thesis,

AP allocates transmission time periods to each group by Round Robin method, so the longer

transmission duration of each group accelerate with group number and lead to much higher

delay. Therefore, there is a trade-off when choosing large payload or small payload, which

should be decided according to the specific implementation in the realistic world, which is also

worth to be studied in the future. In the Figure 5.19, the QoS utility of hybrid scheme with

different payload length is presented.

Figure 5.19: QoS utility of hybrid scheme with different payload length.

The small payload has the overall better latency performance than the large payload,

which is also reflected in the QoS utility. The small payload has overwhelming latency per-

formance than large payload, whether in the hybrid grouping scheme or the UORA grouping

scheme.
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5.4 Summary of the Chapter

A new Hybrid BTM grouping scheme is proposed in this chapter, the system model is for-

mulated and a hybrid grouping algorithm is proposed to implement this scheme. The proposed

algorithm provides lower latency experience for scheduled STAs by allowing scheduled STAs

cross-group access multiple times cross the groups in one big grouping period. Meanwhile, the

proposed grouping algorithm improves the QoS performance by assigning the latency sensitive

STAs as scheduled STAs. The performance of proposed Hybrid BTM grouping scheme and

algorithm is valid by numerical results with different dimensions of performances and consid-

ering diverse factors that influence these performances.



Chapter 6

Conclusion and Future Works

6.1 Conclusion

This thesis mainly studied two major challenges in the UL MU transmission of 802.11ax,

e.g. the performance optimization in the ultra-dense networks; and the QoS utility enhance-

ment with the diverse service requirement. In order to achieve these goals, we proposed UORA

grouping scheme, BTM grouping scheme and Hybrid BTM grouping scheme in Chapter 3 to

5, with three grouping and resource allocation algorithms.

We firstly studied the relationship between RU efficiency with STA number in the UORA

network in Chapter 3. The rising STA number leads to the high collision rate in the ultra-dense

network, which degrades the performance of the whole system and each STA, such as RU

efficiency and throughput. Therefore we proposed a grouping UORA scheme ease the high

collision rate and maintain the performance in the ultra-dense network. In this scheme, STAs

are virtually divided into different groups along the time dimension using TWT mechanism.

Meanwhile, in order to optimize the system efficiency as well as eliminate the influence of

remainder when grouping, an adaptive grouping algorithm is designed to facilitate AP grouping

STAs. The numerical results show that the proposed adaptive grouping scheme significantly

enhanced the performance of both system and each STA.

In Chapter 4, we considered the limitation of RU efficiency using UORA mechanism,

proposed and studied the grouping scheme in BTM. An averagely resource allocation method is

adopted for RU allocation in BTM. The numerical results show that the BTM grouping scheme

83
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is superior to conventional BTM mechanism and the proposed UORA grouping scheme.

At last, a Hybrid BTM Grouping scheme is proposed to support the diversity of services

operated on different devices in Chapter 5. The QoS utility is used to evaluated the satisfaction

and preference of different QoS performance. We used the latency as an example, divided STAs

into two types: latency sensitive (with high utility weight) STAs and latency non-sensitive (with

low utility weight) STAs. In order to improve the QoS experience of latency sensitive STAs, we

proposed a Hybrid BTM Grouping to scheduled the grouping and access scheme. The proposed

algorithm allows scheduled STAs multiply access the AP across the groups. The performance

of proposed scheme is evaluated by the numerical results, which show the proposed Hybrid

BTM grouping scheme has better performance in BSR delivery rate and QoS utility than the

BTM grouping.

6.2 Future Works

In the future IoT networks, there are diverse of devices connected and different types of

services operated. In this thesis, we only use latency as the example to study the utility of QoS,

while in the realistic IoT network, each kind of service is supported by multiple dimension

of QoS performance. Therefore, how to schedule the limited network resources to maximally

satisfy the services with multi-domain requirements is a interesting and meaningful topic. The

potential research topics are introduced as follows.

• Utility optimization in diverse IoT network

Dynamical weight in utility QoS function. In Chapter 5, we suppose that STAs have

constant linear preference wight in the utility function. Even though this model simplify

the calculation of utility of each STA, it is difficult to describe the dynamical changing

QoS preference of STA in the realistic world. Therefore, the Non-linear relation ship in

utility function should be considered to describe the dynamical preference of QoS in the

future works.

Multiple dimension of QoS. We only considered one QoS character-latency in Chapter

5. While the service experience is influenced by multiple dimensions of QoS factors,
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including throughput, power consumption, reliability, privacy, security etc. Therefore,

more dimension should be considered into the QoS utility function.

Diversity of service requirements. In the ultra-dense network with the diversity of IoT

devices, there are diverse services operated on these devices. Each service has there

own preference (utility function curve) with different QoS factors. How to optimize the

Utility of the STAs in the network in worth to study.

• Preference study, awareness and prediction.

In Chapter 5, the QoS requirements are quantified by the “weight” in the utility function.

These requirements are also normalized, we suppose the sum of these “weight” is 1,

which means we regard all services as the same. Each service can freely allocate these

“weight” according to its requirement. With the multiple dimension of QoS, one service

may allocate some QoS performances higher “weight”, we call this service “prefer” these

performance than other performance, or simplified as “preference”.

With different preferences of each service, when smart IoT devices are optimizing its

service quality, the behaviors of these devices may different from conventional STAs in

the wireless network. How this “preference” influences the performance of the whole

network and each device is a topic that is worth to be studied.

Meanwhile, devices have no or few information about other devices’ “preference”. This

information asymmetry leads to low efficiency in the network scheduling. How these

“preference” is able be awareness by each devices is also an interesting topic.

Generally, the “preference” of devices are dynamically changing, which will highly in-

crease the complexity of network scheduling. Find a reliable method to predict “prefer-

ence” of each devices can also enhance the performance of the whole network and each

device.

• Adaptive Self-organized smart scheduling networks structure.

Even with the prediction of utility function, the optimizing is still a high cost operation

for AP. With the known preference of each service as well as the AI operated each de-

vice, it is able to allow the devices participating the network scheduling to enhance the
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performance of the network. In this scenario, designing a network structure that is able

to allow AI device participating in the network management, becomes a effective way to

reduce the scheduling pressure in AP side.
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