6,633 research outputs found

    Support vector machine for functional data classification

    Get PDF
    In many applications, input data are sampled functions taking their values in infinite dimensional spaces rather than standard vectors. This fact has complex consequences on data analysis algorithms that motivate modifications of them. In fact most of the traditional data analysis tools for regression, classification and clustering have been adapted to functional inputs under the general name of functional Data Analysis (FDA). In this paper, we investigate the use of Support Vector Machines (SVMs) for functional data analysis and we focus on the problem of curves discrimination. SVMs are large margin classifier tools based on implicit non linear mappings of the considered data into high dimensional spaces thanks to kernels. We show how to define simple kernels that take into account the unctional nature of the data and lead to consistent classification. Experiments conducted on real world data emphasize the benefit of taking into account some functional aspects of the problems.Comment: 13 page

    Comment on "Support Vector Machines with Applications"

    Full text link
    Comment on ``Support Vector Machines with Applications'' [math.ST/0612817]Comment: Published at http://dx.doi.org/10.1214/088342306000000484 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Support Vector Machines in High Energy Physics

    Get PDF
    This lecture will introduce the Support Vector algorithms for classification and regression. They are an application of the so called kernel trick, which allows the extension of a certain class of linear algorithms to the non linear case. The kernel trick will be introduced and in the context of structural risk minimization, large margin algorithms for classification and regression will be presented. Current applications in high energy physics will be discussed.Comment: 11 pages, 12 figures. Part of the proceedings of the Track 'Computational Intelligence for HEP Data Analysis' at iCSC 200
    corecore