1,606 research outputs found

    FSS-2019-nCov:A deep learning architecture for semi-supervised few-shot segmentation of COVID-19 infection

    Get PDF
    The newly discovered coronavirus (COVID-19) pneumonia is providing major challenges to research in terms of diagnosis and disease quantification. Deep-learning (DL) techniques allow extremely precise image segmentation; yet, they necessitate huge volumes of manually labeled data to be trained in a supervised manner. Few-Shot Learning (FSL) paradigms tackle this issue by learning a novel category from a small number of annotated instances. We present an innovative semi-supervised few-shot segmentation (FSS) approach for efficient segmentation of 2019-nCov infection (FSS-2019-nCov) from only a few amounts of annotated lung CT scans. The key challenge of this study is to provide accurate segmentation of COVID-19 infection from a limited number of annotated instances. For that purpose, we propose a novel dual-path deep-learning architecture for FSS. Every path contains encoder–decoder (E-D) architecture to extract high-level information while maintaining the channel information of COVID-19 CT slices. The E-D architecture primarily consists of three main modules: a feature encoder module, a context enrichment (CE) module, and a feature decoder module. We utilize the pre-trained ResNet34 as an encoder backbone for feature extraction. The CE module is designated by a newly introduced proposed Smoothed Atrous Convolution (SAC) block and Multi-scale Pyramid Pooling (MPP) block. The conditioner path takes the pairs of CT images and their labels as input and produces a relevant knowledge representation that is transferred to the segmentation path to be used to segment the new images. To enable effective collaboration between both paths, we propose an adaptive recombination and recalibration (RR) module that permits intensive knowledge exchange between paths with a trivial increase in computational complexity. The model is extended to multi-class labeling for various types of lung infections. This contribution overcomes the limitation of the lack of large numbers of COVID-19 CT scans. It also provides a general framework for lung disease diagnosis in limited data situations

    Cascade-DETR: Delving into High-Quality Universal Object Detection

    Full text link
    Object localization in general environments is a fundamental part of vision systems. While dominating on the COCO benchmark, recent Transformer-based detection methods are not competitive in diverse domains. Moreover, these methods still struggle to very accurately estimate the object bounding boxes in complex environments. We introduce Cascade-DETR for high-quality universal object detection. We jointly tackle the generalization to diverse domains and localization accuracy by proposing the Cascade Attention layer, which explicitly integrates object-centric information into the detection decoder by limiting the attention to the previous box prediction. To further enhance accuracy, we also revisit the scoring of queries. Instead of relying on classification scores, we predict the expected IoU of the query, leading to substantially more well-calibrated confidences. Lastly, we introduce a universal object detection benchmark, UDB10, that contains 10 datasets from diverse domains. While also advancing the state-of-the-art on COCO, Cascade-DETR substantially improves DETR-based detectors on all datasets in UDB10, even by over 10 mAP in some cases. The improvements under stringent quality requirements are even more pronounced. Our code and models will be released at https://github.com/SysCV/cascade-detr.Comment: Accepted in ICCV 2023. Our code and models will be released at https://github.com/SysCV/cascade-det

    Heteroskedastic Geospatial Tracking with Distributed Camera Networks

    Full text link
    Visual object tracking has seen significant progress in recent years. However, the vast majority of this work focuses on tracking objects within the image plane of a single camera and ignores the uncertainty associated with predicted object locations. In this work, we focus on the geospatial object tracking problem using data from a distributed camera network. The goal is to predict an object's track in geospatial coordinates along with uncertainty over the object's location while respecting communication constraints that prohibit centralizing raw image data. We present a novel single-object geospatial tracking data set that includes high-accuracy ground truth object locations and video data from a network of four cameras. We present a modeling framework for addressing this task including a novel backbone model and explore how uncertainty calibration and fine-tuning through a differentiable tracker affect performance

    Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation

    Full text link
    Semantic segmentation plays an important role in widespread applications such as autonomous driving and robotic sensing. Traditional methods mostly use RGB images which are heavily affected by lighting conditions, \eg, darkness. Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation. However, existing works either simply fuse RGB-Thermal (RGB-T) images or adopt the encoder with the same structure for both the RGB stream and the thermal stream, which neglects the modality difference in segmentation under varying lighting conditions. Therefore, this work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation. Specifically, we employ an asymmetric encoder to learn the compensating features of the RGB and the thermal images. To effectively fuse the dual-modality features, we generate the pseudo-labels by saliency detection to supervise the feature learning, and develop the Residual Spatial Fusion (RSF) module with structural re-parameterization to learn more promising features by spatially fusing the cross-modality features. RSF employs a hierarchical feature fusion to aggregate multi-level features, and applies the spatial weights with the residual connection to adaptively control the multi-spectral feature fusion by the confidence gate. Extensive experiments were carried out on two benchmarks, \ie, MFNet database and PST900 database. The results have shown the state-of-the-art segmentation performance of our method, which achieves a good balance between accuracy and speed
    • …
    corecore