2,266 research outputs found

    Cooperative communication in wireless networks: algorithms, protocols and systems

    Get PDF
    Current wireless network solutions are based on a link abstraction where a single co-channel transmitter transmits in any time duration. This model severely limits the performance that can be obtained from the network. Being inherently an extension of a wired network model, this model is also incapable of handling the unique challenges that arise in a wireless medium. The prevailing theme of this research is to explore wireless link abstractions that incorporate the broadcast and space-time varying nature of the wireless channel. Recently, a new paradigm for wireless networks which uses the idea of 'cooperative transmissions' (CT) has garnered significant attention. Unlike current approaches where a single transmitter transmits at a time in any channel, with CT, multiple transmitters transmit concurrently after appropriately encoding their transmissions. While the physical layer mechanisms for CT have been well studied, the higher layer applicability of CT has been relatively unexplored. In this work, we show that when wireless links use CT, several network performance metrics such as aggregate throughput, security and spatial reuse can be improved significantly compared to the current state of the art. In this context, our first contribution is Aegis, a framework for securing wireless networks against eavesdropping which uses CT with intelligent scheduling and coding in Wireless Local Area networks. The second contribution is Symbiotic Coding, an approach to encode information such that successful reception is possible even upon collisions. The third contribution is Proteus, a routing protocol that improves aggregate throughput in multi-hop networks by leveraging CT to adapt the rate and range of links in a flow. Finally, we also explore the practical aspects of realizing CT using real systems.PhDCommittee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Ingram, Mary Ann; Committee Member: Jayant, Nikil; Committee Member: Riley, Georg

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 µs worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 µW if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 µW with 10 Gb communication data per day

    Autonomous Swarm Navigation

    Get PDF
    Robotic swarm systems attract increasing attention in a wide variety of applications, where a multitude of self-organized robotic entities collectively accomplish sensing or exploration tasks. Compared to a single robot, a swarm system offers advantages in terms of exploration speed, robustness against single point of failures, and collective observations of spatio-temporal processes. Autonomous swarm navigation, including swarm self-localization, the localization of external sources, and swarm control, is essential for the success of an autonomous swarm application. However, as a newly emerging technology, a thorough study of autonomous swarm navigation is still missing. In this thesis, we systematically study swarm navigation systems, particularly emphasizing on their collective performance. The general theory of swarm navigation as well as an in-depth study on a specific swarm navigation system proposed for future Mars exploration missions are covered. Concerning swarm localization, a decentralized algorithm is proposed, which achieves a near-optimal performance with low complexity for a dense swarm network. Regarding swarm control, a position-aware swarm control concept is proposed. The swarm is aware of not only the position estimates and the estimation uncertainties of itself and the sources, but also the potential motions to enrich position information. As a result, the swarm actively adapts its formation to improve localization performance, without losing track of other objectives, such as goal approaching and collision avoidance. The autonomous swarm navigation concept described in this thesis is verified for a specific Mars swarm exploration system. More importantly, this concept is generally adaptable to an extensive range of swarm applications

    A survey on MAC protocols for complex self-organizing cognitive radio networks

    Get PDF
    Complex self-organizing cognitive radio (CR) networks serve as a framework for accessing the spectrum allocation dynamically where the vacant channels can be used by CR nodes opportunistically. CR devices must be capable of exploiting spectrum opportunities and exchanging control information over a control channel. Moreover, CR nodes should intelligently coordinate their access between different cognitive radios to avoid collisions on the available spectrum channels and to vacate the channel for the licensed user in timely manner. Since inception of CR technology, several MAC protocols have been designed and developed. This paper surveys the state of the art on tools, technologies and taxonomy of complex self-organizing CR networks. A detailed analysis on CR MAC protocols form part of this paper. We group existing approaches for development of CR MAC protocols and classify them into different categories and provide performance analysis and comparison of different protocols. With our categorization, an easy and concise view of underlying models for development of a CR MAC protocol is provided

    A Detailed Characterization of 60 GHz Wi-Fi (IEEE 802.11ad)

    Get PDF
    The emergence of wireless local area network (WLAN) standards and the global system of mobile communication (GSM) in the early 1990s incited tremendous growth in the demand for wireless connectivity. Iterative technological enhancements to cellular and WLAN improved wireless capacity and created a breadth of new mobile applications. The continued increase in display resolutions and image quality combined with streaming displacing satellite/cable has created unprecedented demands on wireless infrastructure. Data-caps on cellular networks deter over consumption and increasingly shift the growing burden to Wi-Fi networks. The traditional 2.4/5 GHz Wi-Fi bands have become overloaded and the increasing number of wireless devices in the home, public, and workplace create difficult challenges to deliver quality service to large numbers of client stations. In dense urban areas, the wireless medium is subjected to increased interference due to overlapping networks and other devices communicating in the same frequency bands. Improvements to conventional Wi-Fi are approaching their theoretical limits and higher order enhancements require idealized conditions which are seldom attainable in practice. In an effort to supplant to scaling capacity requirements a very high frequency WLAN amendment has been proposed (IEEE 802.11ad). IEEE 802.11ad, also referred to as Wireless Gigabit (WiGig), operates in the globally unlicensed 60 GHz band and offers channel bandwidths nearly 100x as wide as 802.11n. The higher bandwidth facilitates multi-Gbps throughput even with the use of lower complexity modulation coding schemes (MCS). IEEE 802.11ad relies heavily on rate adaptation and high beamforming gain to mitigate interference and fading as signals in the 60 GHz band suffer from higher atmospheric ab- sorption and free space path loss (FSPL). Due to the unique nature of 60 GHz wireless there have been numerous research efforts. Many studies have been directed at simulation and modeling of the 60 GHz channel. However modeling the channel is difficult as real- world environments are highly dynamic with varying link quality and conditions which cannot be accurately predicted by conventional techniques. Some research is focused on medium access control (MAC) enhancements to improve overall capacity by coordinating concurrent links or reducing communication overhead for example. Lastly, there has been a limited amount of real world testing of 802.11ad due to lack of availability of commercial platforms and measurement instrumentation. Some researchers tested early generation devices in certain use cases such as in vehicles for media streaming, in data centers to augment the wired network, or in basic indoor and outdoor environments. This research contains two main components. In the first study, analytical models are applied to estimate line of sight (LOS) 802.11ad performance for realistic antenna param- eters. The second part contains a comprehensive evaluation of performance and reliability of early generation 802.11ad hardware. This characterization emphasizes environmen- tal performance (e.g. conference room, cubical farm, open office), multiple-client testing (multiclient), multiple network interference (spatial re-use), and stability in the presence of station mobility, physical obstructions, and antenna misalignment. In order to evaluate 802.11ad, early generation platforms from technology vendors were used in extensive test suites. The hardware tested included docks for wireless personal area networking (WPAN) applications, client laptop stations, and reference design access points (APs). Finally, a customized proof-of-concept (PoC) platform was engineered which allowed finer control over front end antenna configuration parameters such as: topology, placement and orienta- tion. The PoC also served as a suitable means to identify practical limitations and system design engineering challenges associated with supporting directional multi-Gbps (DMG) communication in the 60 GHz band

    Adaptation of the IEEE 802.11 protocol for inter-satellite links in LEO satellite networks

    Get PDF
    Knowledge of the coefficient of thermal expansion (CTE) of a ceramic material is important in many application areas. Whilst the CTE can be measured, it would be useful to be able to predict the expansion behaviour of multiphase materials.. There are several models for the CTE, however, most require a knowledge of the elastic properties of the constituent phases and do not take account ofthe microstructural features of the material. If the CTE could be predicted on the basis of microstructural information, this would then lead to the ability to engineer the microstructure of multiphase ceramic materials to produce acceptable thermal expansion behaviour. To investigate this possibility, magnesia-magnesium aluminate sp~el (MMAS) composites, consisting of a magnesia matrix and magnesium aluminate s~ne'l (MAS) particles, were studied. Having determined a procedure to produce MAS fr alumina and magnesia, via solid state sintering, magnesia-rich compositions wit ~ various magnesia contents were prepared to make the MMAS composites. Further, the l\.1MAS composites prepared from different powders (i.e. from an alumina-magnesia mixture ahd from a magnesia-spinel powder) were compared. Com starch was added into the powder mixtures before sintering to make porous microstructures. Microstructural development and thermal expansion behaviour ofthe MMAS composites were investigated. Microstructures of the MAS and the MMAS composites as well as their porous bodies were quaritified from backscattered electron micrographs in terms of the connectivity of solids i.e. solid contiguity by means of linear intercept counting. Solid contiguity decreased with increasing pore content and varied with pore size, pore shape and pore distribution whereas the phase contiguity depended strongly on the chemical composition and was less influenced by porosity. ' The thermal expansion behaviour of the MAS and the MMAS composites between 100 and 1000 °C was determined experimentally. Variation in the CTE ofthe MAS relates to the degree of spinel formation while the thermal expansion of the MMAS composites depends strongly on phase content. However, the MMAS composites with similar phase compositions but made from different manufacturing processes showed differences in microstructural features and thermal expansion behaviour. Predictions of the CTE values for composites based on a simple rule-of-mixtures (ROM) using volume fraction were compared with the measured data. A conventional ROM accurately predicted the effective CTE of a range of dense alumina-silicon carbide particulate composites but was not very accurate for porous multiphase structures. It provided an upper bound prediction as all experimental values were lower. Hence, the conventional ROM was modified to take account of quantitative microstructural parameters obtained from solid contiguity. The modified ROM predicted lower values and gave a good agreement with the experimental data. Thus, it has been shown that quantitative microstructural information can be used to predict the CTE of multiphase ceramic materials with complex microstructures.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore