10,427 research outputs found

    Multi-phase state estimation featuring industrial-grade distribution network models

    Get PDF
    This paper proposes a novel implementation of a multi-phase distribution network state estimator which employs industrial-grade modeling of power components and measurements. Unlike the classical voltage-based and current-based state estimators, this paper presents the implementation details of a constrained weighted least squares state calculation method that includes standard three-phase state estimation capabilities in addition to practical modeling requirements from the industry; these requirements comprise multi-phase line configurations, unsymmetrical and incomplete transformer connections, power measurements on 4-connected loads, cumulative-type power measurements, line-to-line voltage magnitude measurements, and reversible line drop compensators. The enhanced modeling equips the estimator with capabilities that make it superior to a recently presented state-of-the-art distribution network load estimator that is currently used in real-life distribution management systems; comparative performance results demonstrate the advantage of the proposed estimator under practical measurement schemes

    Imaging multi-age construction settlement behaviour by advanced SAR interferometry

    Get PDF
    This paper focuses on the application of Advanced Satellite Synthetic Aperture Radar Interferometry (A-DInSAR) to subsidence-related issues, with particular reference to ground settlements due to external loads. Beyond the stratigraphic setting and the geotechnical properties of the subsoil, other relevant boundary conditions strongly influence the reliability of remotely sensed data for quantitative analyses and risk mitigation purposes. Because most of the Persistent Scatterer Interferometry (PSI) measurement points (Persistent Scatterers, PSs) lie on structures and infrastructures, the foundation type and the age of a construction are key factors for a proper interpretation of the time series of ground displacements. To exemplify a methodological approach to evaluate these issues, this paper refers to an analysis carried out in the coastal/deltaic plain west of Rome (Rome and Fiumicino municipalities) affected by subsidence and related damages to structures. This region is characterized by a complex geological setting (alternation of recent deposits with low and high compressibilities) and has been subjected to different urbanisation phases starting in the late 1800s, with a strong acceleration in the last few decades. The results of A-DInSAR analyses conducted from 1992 to 2015 have been interpreted in light of high-resolution geological/geotechnical models, the age of the construction, and the types of foundations of the buildings on which the PSs are located. Collection, interpretation, and processing of geo-thematic data were fundamental to obtain high-resolution models; change detection analyses of the land cover allowed us to classify structures/infrastructures in terms of the construction period. Additional information was collected to define the types of foundations, i.e., shallow versus deep foundations. As a result, we found that only by filtering and partitioning the A-DInSAR datasets on the basis of the above-mentioned boundary conditions can the related time series be considered a proxy of the consolidation process governing the subsidence related to external loads as confirmed by a comparison with results from a physically based back analysis based on Terzaghi's theory. Therefore, if properly managed, the A-DInSAR data represents a powerful tool for capturing the evolutionary stage of the process for a single building and has potential for forecasting the behaviour of the terrain-foundation-structure combination

    Making Distribution State Estimation Practical: Challenges and Opportunities

    Full text link
    In increasingly digitalized and metered distribution networks, state estimation is generally recognized as a key enabler of advanced network management functionalities. However, despite decades of research, the real-life adoption of state estimation in distribution systems remains sporadic. This systematization of knowledge paper discusses the cause for this while comparing industrial and academic experiences and reviewing well- and less-established research directions. We argue that to make distribution system state estimation more practical and applicable in the field, new perspectives are needed. In particular, research should move away from conventional approaches and embrace generalized problem specifications and more comprehensive workflows. These, in turn, require algorithm advancements and more general mathematical formulations. We discuss lines of work to enable the delivery of tangible research.Comment: 10 page

    Multiple Heat Exchanger Cooling System for Automotive Applications – Design, Mathematical Modeling, and Experimental Observations

    Get PDF
    The design of the automotive cooling systems has slowly evolved from engine-driven mechanical to computer-controlled electro-mechanical components. With the addition of computer-controlled variable speed actuators, cooling system architectures have been updated to maximize performance and efficiency. By switching from one large radiator to multiple smaller radiators with individual flow control valves, the heat rejection requirements may be precisely adjusted. The combination of computer regulated thermal management system should reduce power consumption while satisfying temperature control objectives. This research focuses on developing and analyzing a multi-radiator system architecture for implementation in ground transportation applications. The premise is to use a single radiator during low thermal loads and activate the second radiator during high thermal loading scenarios. Ground vehicles frequently use different radiators for each component that needs cooling (e.g., engine blocks, electronics, and motors) since they have different optimal working temperatures. The use of numerous smaller heat exchangers adds more energy-management features and alternative routes for carrying on with operation in the event of a crucial subsystem failure. Moreover, despite cooling systems being designed for maximum thermal loads, most vehicles typically operate at a small fraction of their peak values. To study and examine the planned multi-heat exchanger cooling system concepts, various computer simulations and experimental tests were performed. A nonlinear state space model, featuring input and output heat flow paradigms, was developed using a multi-node resistance-capacitance thermal model. The heat removal rate from the radiator(s) was estimated using the -NTU method as downstream fluid temperatures were not required. The system performance was studied for two driving cycles proposed by the Environmental Protection Agency (EPA) – urban and highway driving schedules. The computer simulation was validated using the laboratory setup in the High Bay Area of Fluor Daniel Engineering Innovation Building. The configuration features computer controlled variable speed electric motor driven coolant pump and independent variable speed fans for each radiator to provide desired fluid flow rates. The pump and fan power consumptions are approximately 0.8-1.2 kW and 0.4-3.2 kW, which corresponds to coolant and air flow rates of 0.2-1.5 kg/s and 0.5-1.75 kg/s, respectively. Two servo motor-controlled gate valves limit the coolant outlet from each radiator. Various thermocouples and a magnetic flow sensor record test data in real time using a dSpace DS1103 data acquisition control system. Designing and analyzing a nonlinear control architecture for the suggested system was the last phase in the study process. A nonlinear controller equipped TMS should offer higher energy efficiency and overall system performance. Three controllers—sliding mode, stateflow, and classical—were designed and implemented in Matlab/Simulink and placed onto the dSpace hardware. The sliding mode controller is recommended for high performance applications since it offers steady temperature tracking, 5oC, an acceptable response time, 120 sec, but suffers from frequent changes in fan speed. The stateflow controller exhibited the fewest fan speed oscillations, the fastest response time, 88 sec, and the smallest temperature offset, 3oC, it is advised for use in common passenger vehicle applications. Both controllers need around six minutes to warm up. The traditional controller, meanwhile, had the quickest warmup, 600 sec, but the slowest response time, 215 sec. Nonlinear cooling systems are essential for maintaining component temperatures which will enable vehicle reliability, and maximize performance given the focus on hybrid and electric vehicles

    Moving Toward a Reliability-Oriented Design Approach of Low-Voltage Electrical Machines by Including Insulation Thermal Aging Considerations

    Get PDF
    © 2020 IEEE. Electrical machines (EMs) are required to consistently perform their intended mission over a specified timeframe. The move toward transportation electrification made the EMs' reliability an even stringent and predominant requirement, since a failure might cause severe economic losses, as well as endanger human lives. Traditionally, the design procedure of motors conceived for safety-critical applications mainly relies on over-engineering approaches. However, a paradigm shift is recently taking place and physics of failure approaches/methodologies are employed to meet the reliability figures, while delivering an optimal design. This article proposes and outlines a reliability-oriented design for low-voltage EMs. Thermal accelerated aging tests are preliminarily carried out on custom-built specimens. Once the aging trend of the turn-to-turn insulation system is assessed, the thermal endurance graph at several percentile values is determined and lifetime models are developed, for both constant and variable temperature operations. Finally, these models are used to predict the turn-to-turn insulation lifetime of motors meant for aerospace and automotive applications

    Single Iteration Conditional Based DSE Considering Spatial and Temporal Correlation

    Get PDF
    The increasing complexity of distribution network calls for advancement in distribution system state estimation (DSSE) to monitor the operating conditions more accurately. Sufficient number of measurements is imperative for a reliable and accurate state estimation. The limitation on the measurement devices is generally tackled with using the so-called pseudo measured data. However, the errors in pseudo data by cur-rent techniques are quite high leading to a poor DSSE. As customer loads in distribution networks show high cross-correlation in various locations and over successive time steps, it is plausible that deploying the spatial-temporal dependencies can improve the pseudo data accuracy and estimation. Although, the role of spatial dependency in DSSE has been addressed in the literature, one can hardly find an efficient DSSE framework capable of incorporating temporal dependencies present in customer loads. Consequently, to obtain a more efficient and accurate state estimation, we propose a new non-iterative DSSE framework to involve spatial-temporal dependencies together. The spatial-temporal dependencies are modeled by conditional multivariate complex Gaussian distributions and are studied for both static and real-time state estimations, where information at preceding time steps are employed to increase the accuracy of DSSE. The efficiency of the proposed approach is verified based on quality and accuracy indices, standard deviation and computational time. Two balanced medium voltage (MV) and one unbalanced low voltage (LV) distribution case studies are used for evaluations

    Inductive interconnecting solutions for airworthiness standards and power-quality requirements compliance for more-electric aircraft/engine power networks

    Get PDF
    Driven by efficiency benefits, performance optimization and reduced fuel-burn, the aviation industry has witnessed a technological shift towards the broader electrification of on-board systems, known as the More-Electric Aircraft (MEA) concept. Electrical systems are now responsible for functions that previously required mechanical, hydraulic or pneumatic power sources, with a subset of these functions being critical or essential to the continuity and safety of the flight.;This trend of incremental electrification has brought along benefits such as reductions in weight and volume, performance optimization and reduced life-cycle costs for the aircraft operator. It has however also increased the necessary engine power offtake and has made the electrical networks of modern MEA larger and more complex. In pursuit of new, more efficient electrical architectures, paralleled or interconnected generation is thought to be one platform towards improved performance and fuel savings.;However, the paralleling of multiple generation sources across the aircraft can breach current design and certification rules under fault conditions. This thesis proposes and evaluates candidate interconnecting solutions to minimize the propagation of transients across the interconnected network and demonstrates their effectiveness with reference to current airworthiness standards and MIL-STD-704F power quality requirements.;It demonstrates that inductive interconnections may achieve compliance with these requirements and quantifies the estimated mass penalty incurred on the electrical architecture, highlighting how architectural and operating strategies can influence design options at a systems level. By examining the impact of protection operation speed on the electrical network, it determines that fast fault protection is a key enabling technology towards implementing lightweight and compliant interconnected architectures.;Lastly, this thesis addresses potential implications arising from alternate standards interpretations within the framework of interconnected networks and demonstrates the impact of regulatory changes on the electrical architecture and interconnecting solutions.Driven by efficiency benefits, performance optimization and reduced fuel-burn, the aviation industry has witnessed a technological shift towards the broader electrification of on-board systems, known as the More-Electric Aircraft (MEA) concept. Electrical systems are now responsible for functions that previously required mechanical, hydraulic or pneumatic power sources, with a subset of these functions being critical or essential to the continuity and safety of the flight.;This trend of incremental electrification has brought along benefits such as reductions in weight and volume, performance optimization and reduced life-cycle costs for the aircraft operator. It has however also increased the necessary engine power offtake and has made the electrical networks of modern MEA larger and more complex. In pursuit of new, more efficient electrical architectures, paralleled or interconnected generation is thought to be one platform towards improved performance and fuel savings.;However, the paralleling of multiple generation sources across the aircraft can breach current design and certification rules under fault conditions. This thesis proposes and evaluates candidate interconnecting solutions to minimize the propagation of transients across the interconnected network and demonstrates their effectiveness with reference to current airworthiness standards and MIL-STD-704F power quality requirements.;It demonstrates that inductive interconnections may achieve compliance with these requirements and quantifies the estimated mass penalty incurred on the electrical architecture, highlighting how architectural and operating strategies can influence design options at a systems level. By examining the impact of protection operation speed on the electrical network, it determines that fast fault protection is a key enabling technology towards implementing lightweight and compliant interconnected architectures.;Lastly, this thesis addresses potential implications arising from alternate standards interpretations within the framework of interconnected networks and demonstrates the impact of regulatory changes on the electrical architecture and interconnecting solutions

    Robust tool condition monitoring in Ti6Al4V milling based on specific force coefficients and growing self-organizing maps

    Get PDF
    Tool condition monitoring (TCM) is a mean to optimize production systems trying to use cutting tool life at its best. Nevertheless, nowadays available TCM algorithms typically lack robustness in order to be consistently applied in industrial scenarios. In this paper, an unsupervised artificial intelligence technique, based on Growing Self-Organizing Maps (GSOM), is presented in synergy with real-time specific force coefficients (SFC) estimation through the regression of instantaneous cutting forces. The conceived approach allows robustly mapping the SFC, exploiting process parameters and similarity to manage the variability of their estimation due to unmodelled phenomena, like machine dynamics and tool run-out. The devised approach allowed detecting the tool end-of-life in cutting tests with variable lubrication, machine tool and cutting speed, through the adoption of a self-starting control chart running on real-time clustered data. The solution was validated through the comparison of the GSOM framework with respect to the optimized self-starting control chart applied without GSOM clustering. The GSOM reached a root mean squared percentage error (RMSPE) of 13.2% with respect to 56.1% obtained with the analogous control chart in a full-set optimization scenario. When optimised on tests for a unique machine tool and tested on another machine tool, GSOM scored an RMSPE of 34.5%, whereas the optimized control chart scored 64.5%

    Estimating Workforce Development Needs for High-Speed Rail in California, Research Report 11-16

    Get PDF
    This study provides an assessment of the job creation and attendant education and training needs associated with the creation of the California High-Speed Rail (CHSR) network, scheduled to begin construction in September 2012. Given the high profile of national and state commitment to the project, a comprehensive analysis that discusses the education, training, and related needs created during the build out of the CHSR network is necessary. This needs assessment is achieved by means of: 1) analyzing current high-speed rail specific challenges pertaining to 220mph trains; 2) using a more accurate and robust “bottom-up” approach to estimate the labor, education, skills, and knowledge needed to complete the CHSR network; and 3) assessing the current capacity of railroad-specific training and education in the state of California and the nation. Through these analyses, the study identifies the magnitude and attributes of the workforce development needs and challenges that lie ahead for California. The results of this research offer new insight into the training and education levels likely to be needed for the emergent high-speed rail workforce, including which types of workers and professionals are needed over the life of the project (by project phase), and their anticipated educational level. Results indicates that although the education attained by the design engineers of the system signifies the most advanced levels of education in the workforce, this group is comparatively small over the life of the project. Secondly, this report identifies vast training needs for the construction workforce and higher education needs for a managerial construction workforce. Finally, the report identifies an extremely limited existing capacity for training and educating the high-speed rail workforce in both California and in the U.S. generally
    • …
    corecore