1,725 research outputs found

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    A general architecture for robotic swarms

    Get PDF
    Swarms are large groups of simplistic individuals that collectively solve disproportionately complex tasks. Individual swarm agents are limited in perception, mechanically simple, have no global knowledge and are cheap, disposable and fallible. They rely exclusively on local observations and local communications. A swarm has no centralised control. These features are typifed by eusocial insects such as ants and termites, who construct nests, forage and build complex societies comprised of primitive agents. This project created the basis of a general swarm architecture for the control of insect-like robots. The Swarm Architecture is inspired by threshold models of insect behaviour and attempts to capture the salient features of the hive in a closely defined computer program that is hardware agnostic, swarm size indifferent and intended to be applicable to a wide range of swarm tasks. This was achieved by exploiting the inherent limitations of swarm agents. Individual insects were modelled as a machine capable only of perception, locomotion and manipulation. This approximation reduced behaviour primitives to a fixed tractable number and abstracted sensor interpretation. Cooperation was achieved through stigmergy and decisions made via a behaviour threshold model. The Architecture represents an advance on previous robotic swarms in its generality - swarm control software has often been tied to one task and robot configuration. The Architecture's exclusive focus on swarms, sets it apart from existing general cooperative systems, which are not usually explicitly swarm orientated. The Architecture was implemented successfully on both simulated and real-world swarms

    Optimization of swarm robotic constellation communication for object detection and event recognition

    Get PDF
    Swarm robotics research describes the study of how a group of relatively simple physically embodied agents can, through their interaction collectively accomplish tasks which are far beyond the capabilities of a single agent. This self organizing but decentralized form of intelligence requires that all members are autonomous and act upon their available information. From this information they are able to decide their behavior and take the appropriate action. A global behavior can then be witnessed that is derived from the local behaviors of each agent. The presented research introduces the novel method for optimizing the communication and the processing of communicated data for the purpose of detecting large scale meta object or event, denoted as meta event, which are unquantifiable through a single robotic agent. The ability of a swarm of robotic agents to cover a relatively large physical environment and their ability to detect changes or anomalies within the environment is especially advantageous for the detection of objects and the recognition of events such as oil spills, hurricanes, and large scale security monitoring. In contrast a single robot, even with much greater capabilities, could not explore or cover multiple areas of the same environment simultaneously. Many previous swarm behaviors have been developed focusing on the rules governing the local agent to agent behaviors of separation, alignment, and cohesion. By effectively optimizing these simple behaviors in coordination, through cooperative and competitive actions based on a chosen local behavior, it is possible to achieve an optimized global emergent behavior of locating a meta object or event. From the local to global relationship an optimized control algorithm was developed following the basic rules of swarm behavior for the purpose of meta event detection and recognition. Results of this optimized control algorithm are presented and compared with other work in the field of swarm robotics
    • …
    corecore