
University of Southern Queensland

School of Mechanical and Electrical Engineering

A General Architecture for Robotic Swarms

A thesis submitted by

Iain James Brookshaw

in fulfilment of the requirements of

Doctor of Philosophy

2015

Abstract

Swarms are large groups of simplistic individuals that collectively solve dis-
proportionately complex tasks. Individual swarm agents are limited in percep-
tion, mechanically simple, have no global knowledge and are cheap, disposable
and fallible. They rely exclusively on local observations and local communica-
tions. A swarm has no centralised control.

These features are typified by eusocial insects such as ants and termites,
who construct nests, forage and build complex societies comprised of primitive
agents.

This project created the basis of a general swarm architecture for the control
of insect-like robots. The Swarm Architecture is inspired by threshold models
of insect behaviour and attempts to capture the salient features of the hive
in a closely defined computer program that is hardware agnostic, swarm size
indifferent and intended to be applicable to a wide range of swarm tasks.

This was achieved by exploiting the inherent limitations of swarm agents.
Individual insects were modelled as a machine capable only of perception, lo-
comotion and manipulation. This approximation reduced behaviour primitives
to a fixed tractable number and abstracted sensor interpretation. Cooperation
was achieved through stigmergy and decisions made via a behaviour threshold
model.

The Architecture represents an advance on previous robotic swarms in its
generality – swarm control software has often been tied to one task and robot
configuration. The Architecture’s exclusive focus on swarms, sets it apart from
existing general cooperative systems, which are not usually explicitly swarm
orientated.

The Architecture was implemented successfully on both simulated and real-
world swarms.

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and
conclusions set out in this dissertation are entirely my own effort, except where
otherwise indicated and acknowledged.
I further certify that the work is original and has not been previously submit-
ted for assessment in any other course or institution, except where specifically
stated.

Iain James Brookshaw

w0086292

Signature of Candidate

Date

Endorsement

Signature of Supervisor/s

Date

Acknowledgements

Many people helped make this project possible, but I would like especially to
thank my father, Dr. Leigh Brookshaw, whose knowledge of Linux made this

project possible, my mother Jan for her tireless support and critical
proofreading (without which this document would be close to illegible) and my

sister Ingrid, who knows how to fix a cow.
I would also like to thank my friends from school and uni: Smithy, Robin,

Cameron, Erin, Sabrina, Chris J, Rian, Luke, James, Rodolfo, Tiarna, Safeen,
Tanya, Scanlon, all those who wrote for the paper (despite everything),

everyone from C-block. . . and many, many others, too numerous to name and
in no order. You all know why and who you are – thank you.

I would also like to acknowledge all those thousands who have laboured to
create open-source hardware and software, without which almost no robotics

research would be possible and more locally to thank Richard, Les and Selvan
who made important technical suggestions and Dean, Graham, Terry and

Adrian who know how to get things done and where everything is.

Finally and most importantly, I would like to thank Dr. Tobias Low, who has
helped, contributed and put up with my work for the last four years, been
consistent with advice, selfless with help and who always knows what to do

next.

Thank You

Colophon

This document was typeset in Computer Modern by the LATEX2e typesetting
program.

The epigraphs at the start of each chapter are quotations from The Hitchhiker’s
Guide To The Galaxy by Douglas Adams, as broadcast on BBC Radio in 1978.

This work was made possible through an Australian Government Postgraduate

Award Scholarship.

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Swarms . 3
1.3 Swarm Tasks . 4
1.4 The Architecture . 4

1.4.1 What it is. 5
1.4.2 . . . and What it is Not . 6
1.4.3 Implementation . 6

2 Swarms: Insects and Robots 9
2.1 Insects As Machines . 10
2.2 Selected Insect Swarms . 12
2.3 Stigmergy and Self-Organisation 16
2.4 Threshold Models . 19
2.5 Swarm Robots, Tasks and Control 21

2.5.1 Simple Swarms and Aggregation 21
2.5.2 Manipulative Swarms . 23
2.5.3 Recruitment, Signalling and Advanced Swarms 27

2.6 General Cooperative Architectures 31
2.6.1 Robot Behaviours . 31
2.6.2 Architectures and Swarms 33

3 The Swarm Architecture: Design 35
3.1 Design Overview . 37

3.1.1 Parallelism and Computing Requirements 39
3.1.2 The Designer and User . 40

3.2 The Object List . 40
3.2.1 Object Types . 41
3.2.2 Confidence . 43
3.2.3 Insect Sensor Comparisons 43

3.3 Actions . 44
3.3.1 Blocking Actions . 47
3.3.2 Agent Survival . 48

3.4 Behaviours . 49
3.4.1 Behaviour Selection . 49

i

3.4.2 The Null Behaviour and Zeroth Object 53

3.4.3 Composition – Building Behaviours 53

3.4.4 Behaviour Execution . 55

3.4.5 Behaviour Evolution and Historical Notes 56

3.4.6 Survival Selection and Execution 56

3.5 Designing Behaviours . 57

3.6 Summary – The Complete Robotic Insect 58

4 The Swarm Architecture: Testing 61

4.1 The Tasks . 62

4.2 Ball Passing Task . 64

4.2.1 Task Behaviours . 64

4.2.2 Simulation Results . 66

4.2.3 Real-World Results . 66

4.2.4 Observations and Discussion 66

4.3 Object Grouping1 . 69

4.3.1 Task Behaviours . 69

4.3.2 Simulation Results . 70

4.3.3 Real-World Results . 73

4.3.4 Observations and Discussion 76

4.4 Object Grouping2 . 78

4.4.1 Task Behaviours . 78

4.4.2 Simulation Results . 80

4.4.3 Real-World Results . 81

4.4.4 Observations and Discussion 84

4.5 General Observations . 86

5 Future Work and Applications 89

5.1 Developments . 90

5.1.1 Thresholds and Stimulus 90

5.1.2 Peer-to-Peer Communications 90

5.1.3 Improved Perception . 91

5.1.4 New Agents . 92

5.1.5 Other Survival Actions . 93

5.1.6 User Control . 93

5.2 Applications . 93

6 Conclusions 95

6.1 Implementation . 95

6.2 The Architecture and The Swarm Ethos 96

6.3 The Architecture Scope . 97

6.3.1 Biological Inspirations . 97

6.3.2 Task Agnosticism . 97

6.3.3 Hardware Agnosticism . 98

6.3.4 Swarm Size Indifference 98

A Relevant Publications 107

ii

B Implementation 121
B.1 Real-World Robots . 121

B.1.1 Evolution . 121
B.1.2 Computer . 123
B.1.3 Low-Level Sensors . 123
B.1.4 Vision . 127
B.1.5 Motors and Actions . 134
B.1.6 Clocks and Timing . 136
B.1.7 Chassis . 137

B.2 Simulation . 137
B.2.1 Overview . 137
B.2.2 Perception . 138
B.2.3 Actions . 138

C Swarm Implementation 139
C.1 Real-World and Simulation . 139

C.1.1 The Real-World . 140
C.1.2 Simulation . 142

iii

iv

List of Figures

2.1 Exposed plaster cast of the above ground tunnel network of a
Macrotermes michaelseni mound. From Turner (2011), page 23. . 12

2.2 The circular nest of the Leptothorax tuberointerruptus ant in a
laboratory environment. Note the dense cluster of ants in the
centre and the entrance at 7 o’clock. From Franks & Deneubourg
(1997) page 781. 13

2.3 A swarm of army ants forming a living bridge whilst on emigra-
tion. From Wilson (1979) page 62. 14

2.4 The raiding swarm of the army ant Eciton burchelli. From Wilson
(1979) page 58. 14

2.5 An abstract representation of the three phases of colony defence
for the Pheidole dentata ant. Taken from Wilson (1976) 15

2.6 Termite employing stigmergic building to construct pillars. From
Turner (2011) page 27. 18

2.7 Top left: The Alice robot used in the cockroach aggregation ex-
periments of Garnier, Jost, Jeanson, Gautrais, Asadpour, Caprari
& Theraulaz (2005), From Caprari & Siegwart (2005) page 1.
Right: the series of stills from the aggregation experiments. The
left-hand sequence have show the Alice robots, they appear as
black squares on the white arena and faint black squares with
white dots in the black aggregation shelters. Notice how all the
robots are within the left-hand shelter by the end of the sequence.
From Garnier et al. (2005) page 4. 22

2.8 Left: the “Jasmine” robots used in Bodi, Thenius, Szopek, Schmickl
& Crailsheim’s (2012) bee clustering experiment. Right: the
robot “bee” swarm, aggregating around the light source. From
Bodi et al. (2012) page 90. 23

2.9 Left: the robotic bulldozers of Parker & Zhang (2006), built from
a child’s toy. Right: the cleared “nest”. From Parker & Zhang
(2006) pages 14 and 16 respectively 24

v

2.10 The stick-pulling experiment. Top: the robots in action, bottom:
the hard-coded controller in each robot. Note the two robots
on the top-right cooperating to remove the stick from the ta-
ble hole. Bottom: the robot controller’s flow diagram. From
Ijspeert, Martinoli, Billard & Gambardella (2001) pages 152 and
153 respectively. 25

2.11 Phan & Russell’s (2012) leaf curling robots (right) and the weaver
ants they were modelled upon. From Phan & Russell (2012) page
103 . 27

2.12 Top: stills from the foraging task of Nouyan, Gross, Bonani,
Mondada & Dorigo (2009), showing eight s-bots moving the red
“prey” to the blue “nest”. From Nouyan et al. (2009) page 703.
Bottom: the s-bot. From Baldassarre, Trianni, Bonani, Mondada,
Dorigo & Nolfi (2007) page 255. 29

2.13 The controllers for the s-bots of Nouyan et al. (2009). The three
modules of the foraging task are boxed, with circles representing
the states (behaviours) of a finite state machine. The labelled
arrows signify the state change triggers. From Nouyan et al.
(2009) page 700. 29

2.14 Matarić’s (1994) “Nerd Herd” of cooperative robots. From Arkin
(1998) page 371. 32

3.1 The complete Architecture showing all processes and their inter-
actions. The blue elements represent separate, parallel processes,
with the shared memory in the centre providing inter-process
communications. Note: any method of inter-process communica-
tion will suffice, specifically using shared memory is not critical. . 38

3.2 The behaviour action block design, showing the first action block. 54

4.1 A sequence of stills from 3:59:012, passing experiment 13, showing
an instance of ball passing. Clockwise from top left, the first robot
with the ball, approaching another robot, transfer (in this case
resulting in collision), the second robot with the ball. 65

4.2 Three illustrations of the receive behaviour. From Top: two
agents following a third, two agents facing each-other with the
ball in between them with a third watching, two agents with the
ball between them. From experiment 3, 100 seconds, experiment
1, 154 seconds and experiment 16, 135 seconds respectively. . . . 68

4.3 The object Grouping1 task in the simulator. Left: at the be-
ginning of the simulation with the robots in the corners and the
targets randomly distributed. Right: the final stage after 20 sim-
ulated minutes, two clear groups and one spare. 70

4.4 Percentage of each simulation that target objects within a group
for the small-scale Grouping1 simulation. This is computed by
measuring the mean nearest-neighbour distance for each target
object. Each simulation ran for 3600 seconds, contained four
robots and ten target objects. 71

vi

4.5 Plot of the target-object nearest-neighbour distances for a typ-
ical Grouping1 simulation run (chosen at random). This plot
shows the mean distance of one target object to another over the
experiment. 71

4.6 The object grouping task in a very large (20 by 20 metre) arena.
The objects were initially arranged in a uniform random distri-
bution (left), while small clusters of target objects are discernible
at the end of the 30 minute simulation (right). In this simulation
there were 800 target objects and 100 robots. 72

4.7 A close up view of the large-scale Grouping1 task, left: the initial
uniform random distribution (slightly skewed by the image per-
spective), right: the grouped objects at the end of the 30 minute
simulation. 72

4.8 The mean nearest neighbour distance for objects in the very large
arena, Grouping1. The mean distance trails off as the target
objects are grouped closer and closer together. This is a typical
simulation. 73

4.9 Two target objects being grouped in the Grouping1 task. Clock-
wise from top left: a robot (circled) with a captured object bring-
ing it towards a Target object, the captured object being dropped
and the robot backing up, the robot turning away from the new
group, the robot resuming searching. From Grouping1, experi-
ment 7, 42.5 seconds. 74

4.10 Grouping1 with grippers. Top: the beginning of the Grouping1
task showing the dispersal of the target objects. Bottom: a later
stage in the same experiment showing the objects in two clusters.
From experiment 6, 3.5 seconds and 220.2 seconds, respectively. . 75

4.11 Illustration of the problems of target-object occlusion in the Group-
ing1 task. The two left-hand robots are trying to place their
captured object near other target objects, unaware that they are
pushing such objects before them. From experiment 2, 357 seconds. 77

4.12 Top: the beginning of the real-world Grouping2 task, showing
the target objects, the robots and the central “pillar” object in
their initial positions, bottom: the same experiment after approx-
imately 624 seconds, showing the partial grouping of the target
objects. From experiment 7. 79

4.13 Percentage of each simulation that target objects within a group
for the small-scale Grouping2 simulation. This is computed by
measuring the mean distance from the central pillar for each tar-
get object. Each simulation ran for 3600 seconds, contained four
robots and ten target objects. 81

4.14 One Grouping2 simulation chosen at random, showing the mean
distance of the target objects from the central pillar over the
course of the simulation. 82

4.15 Left: the beginning of a typical Grouping2 small-scale simulation.
Right: the final grouping result of a typical simulation. The red
grouping pillar object is at the centre of the arena. 82

vii

4.16 The second object grouping task in a very large (20 by 20 me-
tre) arena. The objects and robots are initially arranged in a
uniform random distribution with 100 grouping pillars in a two
metre by two metre grid (left). Small clusters of target objects
are discernible around each pillar at the end of the 30 minute sim-
ulation (right). In this simulation there were 800 target objects
and 100 robots. 83

4.17 A close up view of the large-scale Grouping2 task, left: the ini-
tial uniform random distribution (slightly skewed by the image
perspective), right: the objects grouped around the pillar grid at
the end of the 30 minute simulation. 83

4.18 The mean nearest neighbour distance for objects in the very large
arena, Grouping2. The mean distance trails off as the target
objects are grouped closer and closer together. This is a typical
simulation. 84

4.19 Two target objects being grouped in the Grouping2 task (hooked
robots). Clockwise from top left: a robot (circled, red) with
a captured object bringing it towards the central pillar object,
the captured object being dropped and the robot backing up,
the robot turning away from the new group, the robot resuming
searching. Notice that there are already three objects grouped
around the central pillar while another robot (circled, blue) also
has captured a target object, but fails to perceive the central
pillar. From Grouping2, experiment 4, 557.7 seconds. 85

B.1 Top: The steady evolution of the robotic hardware. Left to right:
the original, camera-only machine, the addition of the infrared
capture sensor, the first touch sensor design and the final wire
touch whiskers and powered hook. Bottom: the final robot. . . . 122

B.2 The Raspberry Pi model B (revision 2) single board computer –
the primary computer in all physical agents. From the Raspberry
Pi Foundation. 123

B.3 Left: The Raspberry pi camera used as the robot’s primary sen-
sor. From the Raspberry Pi Foundation. Right: The low-level
sensor electronics. Left to right: the scoop gate infrared diode,
the infrared photo-transistor and the touch sensor contact switch
(not to scale). See jaycar.com.au catalogue numbers ZD-1945,
ZD-1950 and SM1036 respectively. 124

B.4 The touch sensor switch, attached to right scoop arm. 124

B.5 The infrared circuit design. Left, the photo-transistor, right the
infrared LED. The diodes were mounted on the left of the robots’
scoop, the photo-transistors on the right. 126

viii

jaycar.com.au

B.6 The view from the robot. This is a still from the visual feed
from a single robot, showing object detection in a complex scene
(this is the V channel, the image contrast has been adjusted for
ease of viewing). The robot is sitting on a desktop looking at
a black computer tower (background, right) with objects on the
wall behind it (background, left). Also present in the image are a
coffee mug (centre left), a target object (centre right) and a pen
(foreground). The robot has identified the handle of the coffee
mug, the entirety of the paper target object and two of the object
markers as potential objects. The markers are the only positive
matches. 127

B.7 The final target objects, Left: the first target object used in all
tasks, right: the second target object, used in the grouping2 task. 128

B.8 Top: Pinhole camera model, side view: illustrating of the re-
lationship between object height (ho), image height (hi), focal
length (f) and depth (Z). Bottom: the similar triangles that
may be formed from this model. 129

B.9 Pinhole camera model, top view: by using similar triangles, and
knowing the value of f and y, the bearing of any real-world object
θ may be computed. 130

B.10 The micro-servo motor powered hook being used to hold an object
in the gripper scoop. 134

B.11 Three simulated robots and the target-obj-1 (“ball”) object. The
cylindrical protuberance on the top of the robots is an omni-
directional camera, with the blue robot beacon at the base. The
tiny “gripper” is just visible on the right-hand robot as a slight
bulge on the middle section facing the target object. 137

C.1 The initial set-up of the ball passing task, as the infrared initiali-
sation barriers are removed. The lines on the floor are not related
to this project. From ball passing experiment 1. 140

ix

x

List of Tables

3.1 Behaviour selection constants in both the real-world and the sim-
ulation. 51

4.1 Individual real-world robot results for the ball-passing task, this
is the time that individual robots spend gripping the “ball” as a
percentage of the experiment. These results are an average of all
robots over all experiment. Separate results exist for the scoop
robots and the hook equipped robots and both sets are computed
based on the wall-time length of the experiment and the robot’s
internal measurement. The time each robot spends with the ball
in its scoop is always its own measurement. 66

4.2 Swarm real-world results for the ball-passing task. This is an
average of the summed times for each experiment and is separated
into scoop and hooked robots and clock and internal time as
previously. 67

B.1 The low-level sensor configurations. The touch sensors are all
contact micro switches. The pin numbers denote the Broadcom
pin numbers for the Raspberry Pi B revision 2. Note that the
wiringPi library used to interpret these pins uses a different num-
bering scheme. 125

xi

xii

Chapter1
Introduction

In the beginning the universe was created. This has
made a lot of people very angry and was widely
regarded as a bad move.

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy

Contents
1.1 Objectives . 2

1.2 Swarms . 3

1.3 Swarm Tasks . 4

1.4 The Architecture . 4

1.4.1 What it is. 5

1.4.2 . . . and What it is Not 6

1.4.3 Implementation . 6

A swarm is a large, but arbitrarily sized group of autonomous individuals
that cooperate to solve relatively complex tasks as a group. These tasks are often
so much larger than the individuals and cooperation so fluid and responsive
that external observers perceive the illusion of planned, centralised control. In
actuality, a swarm is comprised of extremely simple individual “agents” that
coordinate via local interactions only.

The philosophy behind an artificial swarm is that it is better to build a large
number of less-than-perfect simple, inexpensive robots, than a small number of
highly complex, costly and sophisticated robots. This argument is supported
by the activities of eusocial1 insects – such as ants and termites – who build
complex societies with relatively primitive agents.

1“truly social insects” where the vast majority of the colony have no reproductive presence
and are sacrificed for the good of the colony at need(Hölldobler & Wilson 1995)

1

1.1 Objectives

This project aimed to develop the basis for a general software architecture for
robotic swarm agents, inspired by eusocial insects. Currently, insect-like robotic
swarm agents are controlled by software that is tightly focused on a specific task,
while general robot architectures are not usually focused upon insect-like swarms
(compare Sections 2.2 and 2.3 with Sections 2.5 and 2.6 respectively).

This project aims to rectify both of these problems, ultimately creating a
system architecture that would form the basis of a multi-caste swarm of insect-
like robots.

To achieve this, the architecture design was required to be:

• Applicable to many different insect-like swarm robot designs without ma-
jor modification.

• Applicable to multiple different insect-like swarm tasks without major
modification.

• Implemented in a fashion consistent with insect-like swarms. This implied:

– Minimal communications, with coordination based upon agent ob-
servations. Insect-like methods of observation-based self-organisation
are discussed in Section 2.3.

– Fully autonomous agents and fully distributed swarms, no centralised
control or localisation systems (see Section 2.3).

– Minimalist agents, with as few moving parts as possible (see Section
2.1).

To achieve these objectives swarm-insect cooperation was examined in detail:

• The expected physical form of a insect-like swarm agent is exploited to
sharply limit the scope and number of behavioural primitives (see Sections
2.1 and 3.3).

• Insect cooperation mechanisms and tasks were discussed (see Sections 2.2
and 2.3) and incorporated into the system design (see Sections 3.1 and
3.2).

• A model for eusocial insect behaviour was incorporated into the design as
the basis for agent decision making (see Sections 2.4 and 3.4).

This project aimed to implement this architecture as a proof-of-concept only,
demonstrating basic functionality and feasibility on idealised insect-like swarm
tasks. Producing the “fastest” or “most efficient” swarm architecture is beyond
the scope of this project.

See Chapter 5 for a discussion on future implementations.
Upon implementation, the architecture was found to be functional on several,

idealised swarm tasks and two distinct swarm agents (one real-world, one sim-
ulated). The simulated swarm performed more smoothly, while the real-world
swarm supported the simulated and emphasised key points for implementation,
especially the need for unambiguous visual identification of object types.

2

1.2 Swarms

“Swarm robotics is the study of how large numbers of relatively
simple physically embodied agents can be designed such that a de-
sired collective behaviour emerges from the local interactions among
agents and between the agents and the environment” (Şahin 2005)

Swarms are always comprised of simple autonomous machines. They have
no central controller, no hierarchy and no leader, elected or otherwise. The
swarm cooperates without a master plan or global knowledge.

Instead, swarm cooperation is the result of agent-to-agent and agent-to-
environment interactions. Agents are reactive, responding only to what they
perceive in their immediate environment. Agents do not issue commands or
share detailed information. It is the Olympian perspective of the human ob-
server generates the illusion of centralised control. In Chapter 2 we discuss both
insect colony projects and how this implicit coordination is achieved.

The simplicity of swarm agents is also emphasised in this chapter. In this
project, we approximate worker insects as machines that can perceive their
environment (classify objects and identify stimulus), move through the environ-
ment (from point A to B, although the means of locomotion is not considered
important) and manipulate objects that they find there.

We assume that in individual agents all of these features are limited; per-
ception is local and small-scale, locomotion is probably slow while manipulation
is limited to a single, agent-scale object at a time.

We also expect that swarm agents are mechanically imperfect, it is the
summed effect of the swarm that is important, not the actions of individu-
als. It is to be expected that individual swarm agents break-down, fail in their
task and cannot grasp “the big picture”, we assume that another agent is always
present to help.

Efficiency in agent numbers, time or resources is not the objective, it is
sufficient that the swarm achieves its task. We do not attempt to optimise
cooperation.

These factors are summarised in Brambilla, Ferrante, Birattari & Dorigo
(2013) and form what we shall term the swarm ethos:

• Robots are autonomous – see also Baldassarre et al. (2007), Şahin (2005).

• Robots are situated in the environment and can act to modify it – ie:
they “do not deal with abstract descriptions, but through its sensors with
the here and now of the world, which directly influences [its] behaviour”
(Brooks 2002).

• Robots’ sensing and communication are local – see also Liu, Winfield, Sa,
Chen & Dou (2007), Nouyan et al. (2009). These features are heavily
stressed and leads to agents with limited cognitive scope and low mechan-
ical complexity – see Schmickl, Möslinger & Crailsheim (2007), Labella,
Dorigo & Deneubourg (2006), Liu et al. (2007).

• Robots do not have access to centralised control and/or to global knowl-
edge.

3

• Robots cooperate to tackle a given task. Moreover, individual swarm
robots should be “relatively incapable or inefficient on their own with
respect to the task at hand.” (Şahin 2005). The task given to these
localised robots is usually much greater in scale than they are and can
only be completed through the summation of swarm actions – see Phan
& Russell (2012), Nouyan et al. (2009).

Instead of complexity, large numbers of agents are employed. Swarm
robotics projects often attempt to aim for scalability to arbitrarily large
numbers of robots (Şahin 2005, Werfel, Bar-Yam, Rus & Nagpal 2006, Gar-
nier, Jost, Gautrais, Asadpour, Caprari, Jeanson, Grimal & Theraulaz
2008, Martinoli, Easton & Agassounon 2004, Rubenstein, Ahler & Nagpal
2012).

1.3 Swarm Tasks

Chapter 2 describes several selected swarm insect tasks. These are tasks which
are suitable for swarm cooperation, where self-organised coordination emerges
implicitly from agent interactions, large structures are built from repeating local
units and task execution order is implicit in the environment.

These tasks may be undertaken in a dangerous, dynamic environment, spread
over a large region. They may also scale arbitrarily (Şahin 2005). However,
swarm tasks are also robust to individual, local failure. It is the sum of all
agent’s efforts that is important.

Tasks that require extreme precision, tightly coupled interaction and are
intolerant to agent mistakes (ie: require verifiable levels of individual precision,
accuracy and efficiency) are not considered swarm tasks.

1.4 The Architecture

Robotic swarms and other styles of cooperative groups have been extensively em-
ployed to solve a variety of tasks. Machine collectives that map, follow, explore,
manipulate objects and build structures have been successfully implemented.
Groups of robots have been used to explore control theories and examine or ex-
plicitly model insect behaviour. However, many of these projects are explicitly
focused on solving the one task and their software architecture and behaviour
structure is written, from a very low level, around that task exclusively.

To overcome this restriction, several general cooperative architectures have
been developed. Usually behaviour-based, these architectures attempt to de-
scribe the perception and action process in a more general fashion allowing
for the group to be assigned different tasks by changing the individual agents’
behaviour patterns.

While successful in a variety of tasks, previous general architectures often
achieve global, group wide coordination by the imposition of restrictions that
are counter to the swarm ethos. As they are unable to exploit known task
or environmental considerations, general architectures often require that robots
explicitly share information along tightly defined channels. They also aim for
robots that are too complex to be called swarm agents, attempting to control
groups of complex robots, rather than swarms of simple machines.

4

This project seeks to overcome both these restrictions and designs a system
that is focused exclusively upon swarms, but is sufficiently abstracted from the
hardware to allow for different robot designs and task applications.

This project is a proof-of-concept, we do not intend to outperform existing,
focused swarms at this time. Instead we aim to create a general system that
draws on the key points of swarm cooperation, with the capacity for expansion.

1.4.1 What it is. . .

The Architecture follows the following broad principles:

Biologically Inspired:
The cooperative strategies of eusocial insects are adapted as a starting
point. However, this project does not attempt to slavishly reproduce in-
sects in robots, insect components are used where useful.

Hardware Agnostic:
A swarm agent is assumed to have rich local sensors, able to move through
its environment and manipulate single objects. The specific hardware
mechanisms used to do this are irrelevant. The Architecture does not care
if the agent uses wheels, treads or flies, so long as it moves. In this way,
The Architecture is portable.

It should be stressed that only swarm-like robots are supported, a swarm-
like machine should use the bare minimum of moving parts. By examining
swarm insects, we shall closely define a swarm agent as a machine capable
of locomotion, simple manipulation and perception. Complex robots with
many effectors and degrees of freedom are not considered swarm-like.

Task Agnostic:
The Architecture is based on the insects discussed in Chapter 2, rather
than on any one task. The Architecture does not exploit a priori task
knowledge, other than the assumption that the task will be “swarm-like”
(see above). The same decision-making program is intended to be used
for all tasks, regardless of goals.

Swarm Size Indifference:
The architecture was intended to be unrelated to swarm size, the design
objective required that individual agents pursue their goals regardless of
whether they are solitary or part of a swarm of millions.

It is important to note that these are the design principles of The Archi-
tecture. The system is only tested for broad functionality – to see if a system
built on these principles can solve simple tasks and produce cooperation. This
is discussed further in Chapter 4.

The following fields are rigorously defined by The Architecture:

• Basic motor schema or atomic behaviours (here termed “actions”). Both
the number and objectives of these functions are tightly controlled and
based on swarm considerations.

• Stigmergic, swarm orientated procedure for the creation of user-defined
behaviours from these atomic components.

5

• User-defined behaviour input/output.

• A thin universal sensor abstraction.

• Minimum sensor, motor and swarm agent physical requirements.

The design is discussed fully in Chapter 3.

1.4.2 . . . and What it is Not

The Architecture not intended to be the “best”, “fastest” or “most efficient” or
“most capable” cooperative robot design. These concepts are not considered,
it is only intended to control swarms. Cooperation among these very limited
agents is the end, in and of itself.

In the same vein, The Architecture is not intended to serve every conceivable
robot design. It only supports insect-like swarm agents and tasks. The robots
are insect-like, they are not perfect and will make mistakes as individuals.

The following areas are beyond the scope of The Architecture:

• Sensor data pre-processing. A specific final result is required, but the
intermediary steps are unimportant.

• Motor control. Specific results are required and certain functions must be
filled, but control implementation is unimportant.

• Communications. In the current version of the architecture all agents
are mute and deaf. For full generalisation, even local communication is
eschewed (see Sections 3.2.3 and 5.1.2 for more details).

• Precise agent-to-agent interactions. Tasks are accomplished by the sum
of interactions across the swarm as a whole, not by detailed or complex
interactions between individuals.

• Temporal sequence. Timing is implicit in the behaviour construction and
logical conditions. Beyond a certain level, the user may not expressly
specify task execution order.

• Biological duplication. The Architecture design was not intended as a
direct reproduction of biological systems. Insect swarms were taken as an
inspiration and a starting place, not an end.

1.4.3 Implementation

We test The Architecture on simple idealised swarm tasks (see Chapter 4).
These experiments are intended to show that The Architecture is functional
and illustrate the practicalities of implementation.

The Architecture is implemented upon two swarms, one real and one simu-
lated. The real-world robots are less robust then their simulated counterparts
and are used to show that the simulations are effective. The real-world robots
were designed to be as minimalist as possible – a process that went through sev-
eral revisions, see Appendix B. They are intended to showcase The Architecture
within the real-world constraints of limited time and a small budget.

6

The experiments are not intended to exhaustively test The Architecture,
simply to show that it functions in a swarm-like fashion and provides a basis
for further work. We discuss how The Architecture can be expanded, rendered
more robust and deployed on practical problems in Chapter 5.

7

8

Chapter2
Swarms: Insects and Robots

“. . . It’s imprinted on the Earth man’s brain
wave pattern, but I don’t suppose you’d be
interested.”

“You mean you can see inside my mind?”

“Yes.”

“. . . and?”

“It amazes me that you can live in anything so
small.”

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy

Summary

In this chapter, we shall discuss both insect and robotic swarms. This discussion
will emphasise the key features of insect agents, both a individuals and as a
group. As many of these features are counter-intuitive, they are discussed in
detail to provide background to the architecture design, as well as the limitations
of insect-like agents and appropriate task scope.

Contents
2.1 Insects As Machines 10

2.2 Selected Insect Swarms 12

2.3 Stigmergy and Self-Organisation 16

2.4 Threshold Models 19

2.5 Swarm Robots, Tasks and Control 21

2.5.1 Simple Swarms and Aggregation 21

2.5.2 Manipulative Swarms 23

2.5.3 Recruitment, Signalling and Advanced Swarms . . . 27

2.6 General Cooperative Architectures 31

2.6.1 Robot Behaviours 31

2.6.2 Architectures and Swarms 33

9

It is common for artificial swarms to be inspired by biological prece-
dents: fish (Min & Wang 2010) and birds (Thalmann & Musse 2007) have both
been used as models. However, by far the most common source of inspiration
is “. . . the observation of social insects – ants, termites, wasps and bees – which
stand as fascinating examples of how a large number of simple individuals can
interact to create collectively intelligent systems” (Şahin 2005). Despite their
simplicity as individuals, eusocial insects “. . . colonies are consistently superior
to solitary and pre-eusocial competitors, due to the altruistic behaviour among
nest-mates and their ability to organise coordinated action. . . ”

Eusocial insects “represent the largest research corpus. . . [and] their under-
lying principles are very close to those found in other animal species” (Garnier,
Gautrais & Theraulaz 2007). This project focuses almost exclusively on ants
and termites, as bees are “considered the most highly evolved of all social in-
sects” (McGavin 2001) and exhibit considerably more complicated communica-
tion patterns than their grounded counterparts. We shall begin at a simpler
level.

Wilson & Hölldobler (2005) outline some of the principle features of eusocial
insects, emphasising the existence of a distinct reproductive caste is attended by
large numbers of non-reproductive workers and drones. Indeed, the vast major-
ity of individuals in a colony have no offspring (and consequently have no evolu-
tionary presence) and are often sacrificed for the colony’s survival (Drickamer,
Vessey & Jakob 1996).

Although swarm robots are not expected to reproduce, this is a critical
feature for swarm robot development; individual workers are interchangeable
and expendable. The loss or failure of a percentage of worker agents is not
significant. From this it follows that insect-like swarm robots should be as
simple and inexpensive as possible, even at a cost in individual performance.

2.1 Insects As Machines

To realise this in robots, we roughly approximate individual insects as simple
machines subdivided into two parts: locomotion/manipulation and perception/-
communication.

Perception and Communication Ants and termites have localised percep-
tion and communication channels. Broadly, both species have compound eyes
(Sudd 1970) (Howse 1970), although their vision is usually poor (Gordon 1999)
(Sudd 1970). They are also sensitive to tactile input (Turner 2011) (Gordon
1999) and may be sensitive to other locally perceived environmental factors,
such as humidity, carbon-dioxide concentration or vibration (Turner 2011).

However, both species rely heavily upon “rich medium of chemical commu-
nication between [agents], mediated mostly by pheromones.” (Turner 2011),
(Gullan & Cranston 1994). This sensing modality is “the glue that binds the
complex but highly ordered world of the ant colony. . . the most pervasive mode
of communications. . . ” (Hölldobler & Wilson 1989). Indeed, ants “perceive the
world, and each other, mostly though odours” (Gordon 1999).

Pheromones are used to lay non-direction trails (Hölldobler & Wilson 1995),
identify nest-mates (Detrain & Pasteels 1992), (Wilson 1976) or mark significant

10

objects (Turner 2011). Despite its ubiquity, chemical sensing is still a localised
process, and ant is “. . . aware only of what reaches its antennae.” (Gordon
1999). There is no “one-to-one correspondence between chemical and behaviour
response.” Indicating that chemical detection foes not control an agent directly
and is simply a richer, more abstract sensor channel than the insects’ poor
eyesight. Howse (1970) makes the important point that chemical trail-laying
methods entail “. . . no intentional communication of information, but that other
termites are aroused and then quickly detect and follow the trail autonomously.”

From this and similar comments (see Hölldobler & Wilson (1995) Sudd
(1970), Gordon (1999), among others) we take chemical communications as
a ‘blind’ mechanism. An agent might lay a trail or mark an object with the
intending to influence other agents, but it does not necessarily wait for a reply.
The chemical communication channel is asynchronous, it may or may not influ-
ence other agents at any time in its duration, while the original marking agent
may be part of a group or wholly alone.

In this vein, we view chemical signals as analogous to vision in more complex
animals – objects are identified as a class by chemical marker, rather than by
shape or colour.

Other communications channels exist – Howse (1970) discusses a “tapping”
system – but broadly, we view them all as similar concepts and ignore more
direct agent-to-agent signals as uncommon and insignificant in comparison.

Locomotion and Manipulation “The three most important effector sys-
tems in ant behaviour are the mouth-parts, the legs and the sting” (Sudd 1970).
In this work, we shall ignore the sting and focus on the other two.

An ant’s mandibles are broadly applied tools and are used for other pur-
poses than feeding: self-cleaning, holding prey, carrying nest-mates, larvae and
eggs and excavation. In the same vein, an ant’s legs have other uses besides
walking, including digging (Sudd 1970). Termites have similar multi-function
tools, with strong variance between casts, soldiers often sport “bizarre devel-
opments” (Gullan & Cranston 1994). These developments can range from the
simply larger and more powerful, to the exotic, such as chemical spray nozzles
and hole-plugging heads (Howse 1970).

Despite their broad utility, the mandibles are not mechanically complex. In
ants, the mouth-parts take the form of a “set of cuticular limbs and flaps. . . ”
(Sudd 1970). In most species the mandibles are simply a pair of hinged jaws
(Gullan & Cranston 1994).

Both species are equipped with six legs in a hexapod arrangement. “the
centre of gravity of the moving insect always lies within [a] tripod, giving great
stability. . . anchorage to the substrate needed to provide a lever to propel the
body is through pointed claws and adhesive pads. . . ” (Gullan & Cranston 1994).
We consider this to imply that any powerful, stable locomotion system could
roughly approximate insect movement.

For more detail on insect locomotion, see Chapman (1998).

In this work we shall ignore the caste differences – winged locomotion and
the more exotic termite soldier castes are not considered. We like-wise overlook
reproductive castes and conflate soldier (or ant “major”) castes with workers
(see Chapter 5 for a discussion on the future possibility of multi-caste swarms).

As for the workers, we approximate them with this summation from Sudd

11

Figure 2.1. Exposed plaster cast of the above ground tunnel network of a
Macrotermes michaelseni mound. From Turner (2011), page 23.

(1970); the legs to be the source of the forces ants apply to their world, forces
which are transmitted through the mandibles. We assume that a insect-like
agent has only one set of manipulator and one set of locomotion effectors and
that both are mechanically simple.

2.2 Selected Insect Swarms

The accomplishments of insect swarms are often massively larger than their
constituent agents, both in physical size and complexity.

Construction The dwellings of eusocial insects are one of their most impres-
sive accomplishments. In termites especially, the nest and associated outworks
can grow monstrous.

Mounds on the order of several meters high are common for species of the
genus Macrotermes (Turner 2011) (see Figure 2.1). This construction can house
up to one or two million individuals (Howse 1970) and “is a device for capturing
wind energy to power respiratory gas exchange for the colony,” functioning much
like a mammalian lung (Turner 2011).

While Macrotermes may be the most monolithic builders, Howse (1970) men-
tions some other impressive termite architectural achievements. Procubitermes
and Cubitermes have been known to build nests with overhangs and caps for
rain protection (while Cubitermes who live in drier regions do not). The Eu-
ropean Reticulitermes flavipes produces a “carton-like material of wood, earth
and faecal particles” which it uses to bridge substances that it cannot eat, al-
lowing it to invade new food sources around obstacles. Finally, the Australian
Mastotermes darwiniensis “in other ways [the] most primitive of termites” build
nests of large horizontal cells, spreading over “almost 100 meters”.

12

Figure 2.2. The circular nest of the Leptothorax tuberointerruptus ant in
a laboratory environment. Note the dense cluster of ants in
the centre and the entrance at 7 o’clock. From Franks &
Deneubourg (1997) page 781.

There are many other examples, but in general it can be concluded that
many species of termite take their nest construction seriously.

Smaller scale nests are produces by the the Leptothorax ant (see Figure
2.2). These much smaller swarms (up to 500 workers), produce a standard form
of nest between two close fitting planes (see Figure 2.2. The Queen and brood
occupying the centre with one entrance to the ring (Franks & Deneubourg 1997).

Both the massive termite nests and the smaller Leptothorax nests are con-
structed by broadly similar agents, cooperating as swarms.

Foraging On a similar massive scale to termite construction are the migra-
tions and foraging of the army ant Eciton bruchelli. This ant builds no nest,
instead the whole colony (which may consist of 150000 to 700000 workers)
(Wilson 1979) crouches against a log or tree root at night and forms a liv-
ing shield of ants “chains of bodies. . . accumulating layer upon layer” up to a
metre across, within which the queen and the larvae are sheltered for the night
(Wilson 1979).

During the day Eciton bruchelli is a ‘swarm-raider’, forming a broad swarm
front that “brings disaster to practically all animal life in its path,” the approach
of which is loud enough to be audible (Hölldobler & Wilson 1989). This is
illustrated in Figure 2.4, note the scale of the swarm front.

This daily migration cycle is periodically interrupted to allow the queen to
lay eggs, the hatching of which galvanises the colony to continue its migrations
(Hölldobler & Wilson 1995), (Wilson 1979).

Disaster Response Many species of both ants and termites are capable of
aggressive military action.

The European ant Pheidole pallidula is able to respond with surprising flexi-
bility to the incursions. The number of ants recruited for colony defence showed
a marked relationship to the number of majors (‘soldiers’) in the intruding force,

13

Figure 2.3. A swarm of army ants forming a living bridge whilst on emigra-
tion. From Wilson (1979) page 62.

Figure 2.4. The raiding swarm of the army ant Eciton burchelli. From Wil-
son (1979) page 58.

14

Figure 2.5. An abstract representation of the three phases of colony defence
for the Pheidole dentata ant. Taken from Wilson (1976)

allowing the defenders to deploy their forces to best tactical advantage (Detrain
& Pasteels 1992).

Once the defensive force was mobilised, the ants showed a “. . . very efficient
defensive strategy of cooperative attack: minors immobilised the intruders by
seizing their legs. . . whereas majors’ attacks were concentrated against spread-
eagled enemies, killing them with their powerful mandibles” (Detrain & Pasteels
1992).

A similarly sophisticated tactical doctrine is followed by the Pheidole dentata
ant in defence of their nest against invading fire ants. Hölldobler & Wilson
(1995) describes a strategy in three phases, the active phase dependant on the
numbers of invaders, outcome of the battle and the enemy’s deployment. These
three phases are illustrated in Figure 2.5, see also Wilson (1976).

The collective enterprises undertaken by the colony are all undertaken by
large numbers of individuals. Each task is complex, with interconnecting com-
ponents that must be coordinated and completed in parallel all in a dynamic
environment, by very simple individuals.

This all being the case, it is nevertheless true that all these tasks, involving
large numbers of simple agents, are undertaken without any centralised controller
and in the absence of a global communications net or planning system.

We will now explore how this can be possible.

15

2.3 Stigmergy and Self-Organisation

In all eusocial insect swarms, the impression of centralisation and tightly coupled
cooperation is an illusion. The great disparity of scale between insect colonies
and human observers often leads to the assumption that such creatures must be
centrally controlled by some dictator or conductor or are far more human-like
than is the case (see Howse (1970) for examples of this anthropomorphism).

Instead, all cooperation is generated from local interactions. Every insect
knows only what it can see and receives no explicit direction from the “Queen”
– indeed, in an established termite nest the sole occupation of the “primary
reproductive” is an egg-laying machine (McGavin 2001).

The coordinating information is implicit in the environment and actions
of other agents. This is all that is needed to produce a society far larger
than any one of its inhabitants could construct or even conceive on their own.
“. . . Cognition is the emergent result of the collective dynamics of either inter-
acting autonomous agents or basic control units in a single agent. . . the entities
have no reference to the global pattern or cognitive phenomenon they are con-
tributing to create”(Trianni, Tuci, Passino & Marshall 2011).

The governing principle of this coordination is stigmergy.
Originally introduced by Grassé (1959)1, stigmergy is generally “used to

indicate indirect communication mediated by modifications of the environment
. . . ” (Dorigo et al. 2000).

More specifically:

“. . . stigmergy is communication via long term traces, physical prac-
tical outcomes, useful environment modifications. . . Stigmergy is. . . where
the addressee does not perceive the behaviour (during its perfor-
mance) but perceives post-hoc traces and outcomes of it. In or-
der for a trace-based communication [to] be stigmergy it is neces-
sary that the perceived “object” be a practical one and the orig-
inating action also be for practical purposes (like nest building).”
(Castelfranchi 2006)

Stigmergy is a blind, asynchronous process. Explicit communication of in-
formation from agent-to-agent does not occur. Instead, agents are required to
respond to stimulus as they perceive it. As Dugatkin & Reeve (1998) observe
(similarly, see Deag (1980)):

“communication is said to occur when acts or cues given by one
individual influence the behaviour of another.”

Stigmergy is the principle driving component behind the “self-organisation”
of the swarm. The “set of dynamic mechanisms whereby structures appear at
the global level of a system from interactions among its lower-level components,
without being explicitly coded at the individual level.” (Garnier et al. 2007).

Thus “stigmergy is essentially a mechanism that allows an environment to
structure itself through the activities of agents within the environment: the

1The author cannot actually read French and a translation of this paper is surprisingly
hard to find. It is included in the citations for the sake of completeness, the actual description
of stigmergy used in this work is drawn from other, later interpretations. Chiefly Dorigo,
Bonabeau & Theraulaz (2000)

16

state of the environment and the distribution of agents within it, determine
how the environment and the distribution of agents will change in the future.”
(Holland & Melhuish 1999).

Grassé (1959) showed that coordination and regulation of termite building
activities follow this paradigm. Dorigo et al. (2000) discuss this and other
examples in some detail (see also Turner (2011) for termite building).

These examples rely heavily on the insects laying and detecting pheromones.
Chemical markers identify objects, the presence of which may excite behaviours.
The natural decay of the volatile markers provide the negative feedback neces-
sary to ensure stability (Dorigo et al. 2000), (Garnier et al. 2007).

These markers are deliberately placed by agents in the course of task execu-
tion, implying an explicit intent to communicate. However, chemical markers
could also be viewed as allowing very limited agents to identify objects in context
rapidly, without the need for a broad information base (as discussed above, see
also Howse (1970)). Taking this view, stigmergic reaction to “perceived prac-
tical objects” (Castelfranchi 2006) takes place at a slight abstraction, where
objects are already identified according to class. The author believes that this
is implicit in the examples in Dorigo et al. (2000), Garnier et al. (2007) and
Turner (2011) and that chemical ques replace object and context identifiers
that humans would recognise visually.

Critically, chemical signals do not have inherent bandwidth limitations. As
they are dependant on other agents to observe them, any number of insects can
“broadcast” a signal at once.

Such stigmergic systems are also termed “self-organising”. Garnier et al.
(2007) identify four basic ingredients in self-organisation (see also Dorigo et al.
(2000):

1. Positive feedback that results from execution of simple behavioural “rules
of thumb” – the actions of one agent encourage other agents, encouraging
more agents, and so on.

2. Negative feedback counterbalancing the positive, leading to system sta-
bilisation, preventing all agents from being monopolised in the one task.
This is generally due to reduction in stimulus.

3. Amplification in fluctuations by positive feed-backs. Random fluctuations
thus become the seeds from which structures nucleate and grow.

4. Direct stigmergy interactions among individuals “to produce apparently
deterministic outcomes”.

We can use the ideas of self-organisation and stigmergy to explain all the
insect cooperation examples discussed previously (Section 2.2):

• Nest Construction – Turner (2011) and Dorigo et al. (2000) describe the
“bucket-brigade” process used by termites to collect dirt-pellets and stack
them in pillars. Soil pellets are impregnated with a pheromone to identify
them as an object type. Individuals then deposit these randomly. Co-
ordination commences once deposits of pheromone tagged pellets reach a
critical size, once this occurs the probability of other agents adding to this
pile increases, which in turn creates a larger pile and greater stimulus for
the agents (see Figure 2.6).

17

Figure 2.6. Termite employing stigmergic building to construct pillars.
From Turner (2011) page 27.

In this process, the presence of pellet mounds is the stigmergic trigger (for
an agent to drop its payload), randomly moving agents that do not find
a pellet mound provides the negative feedback (Dorigo et al. 2000) and
the increasing size of the mounds (correspondingly increasing the chances
of a randomly moving agent finding the mound) provides the positive
feedback. A single pair of pellets is the initial fluctuation needed to start
this feedback.

The circular plate nests of the Leptothorax discussed above are built in the
same decentralised fashion. Franks & Deneubourg (1997) describe how
the “cluster of adult workers around the carefully sorted brood cluster
serves as a mechanical template to determine where the nest wall should
be built. . . the first building workers who make contact with the clus-
ter. . . ‘pace out’ a relatively short distance before depositing their building
material. . . ” Although they stress that the term ‘template’ “. . . does not
imply that the template provides individual workers with global knowl-
edge. . . for the individual worker. . . the template can be thought of as pro-
viding a locally restricted boundary zone where building is most likely to
occur.”

Franks & Deneubourg (1997) describe how small numbers of workers col-
lect building material from the environment, return to the nest and release
their prize once they have made contact with a cluster of nest-mates or
previously deposited stones. If the latter, “the ants seem actively to use
the stone they are carrying as a battering ram and release their stone only
after they have felt the resistance of other stationary stones.” Ants that
remain in the nest are “frequently seen to pick up stones that are close
to them and bulldoze them outwards again.” The increasing density of
stones provides the negative feedback required to produce the coherent
shape.

In both cases, building is an individual effort. Single agents make use of
local observations – the presence or absence of objects and their physical
locations – to move tiny components into place. The nest is the sum of
these activities.

• Foraging – Trail-following is inevitably the result of auto-catalytic mech-

18

anisms (Deneubourg & Goss 1989). Even the very large-scale E. burchelli
swarms rely on the interpretation of markers and events by individuals.

Once the increasing light of dawn has advanced past a specific thresh-
old, the bivouac disperse and workers run onto new ground, laying down
a chemical trail as they do so (Wilson 1979). This trail prompts more
workers, repeating the “snowball” effect. Once the column has formed,
there is no leader individual. Instead, “workers finding themselves in the
van press forward for a few centimetres, then wheel back into the throng
behind them, to be supplemented immediately by others who extend the
march a little farther.” (Wilson 1979).

• Dissaster Response – The ant’s defence of the nest is accomplished through
chemical trails and ques, (Detrain & Pasteels 1992), (Hölldobler & Wilson
1995), (Wilson 1976).

Pheidole pallidula recruitment is governed by trail-laying behaviour of the
part of Pheidole pallidula minors. The defensive strategy “can be gener-
ated by the elementary behaviour of recruiters” (Detrain & Pasteels 1992)
The more invaders present, the more Pheidole pallidula are likely to en-
counter them, creating greater numbers of recruiters who lay more and
(by repetition) stronger trails. The emission by one ant of “alarm” sig-
nals stimulates the recruitment of other defenders, who in turn also signal
alarm, resulting in another snowball effect.

2.4 Threshold Models

While the self-organising characteristics of insects have obvious use in building
swarms, a broader unifying structure is required to apply stigmergic cooperation
to a general robotic architecture. This is provided by the concept of behaviour
thresholds. Simply: an insect is controlled by a finite number of behaviours (on
order of 40 to 100 according to Hölldobler & Wilson (1995)). The activation
of any one of these behaviours is dependant on external stimuli (such as the
existence of objects, chemical signals or other sensory stimulus) and internal
thresholds. Different castes and individuals may have different thresholds for
the same stimulus-reaction pair.

As Theraulaz, Bonabeau & Denuebourg (1998) remark:

“Colony-level flexibility in response to external challenges and inter-
nal perturbations is an essential feature of division of labour in social
insects. Simple response threshold models, which assume that each
worker responds to a given stimulus when stimulus intensity exceeds
the worker’s threshold, can explain how flexibility at the colony level
results from the workers’ behavioural flexibility”

However, they emphasise that these thresholds are not fixed, as a rigid
threshold implies “that individuals are differentiated and roles preassigned”.
Furthermore, it cannot account for “robust task specialisation within physical
or temporal castes” and is inconsistent with observations. Consequently, they
develop a stimulus threshold model with a dynamic threshold (the following is
adapted from Theraulaz et al. (1998)):

19

Assume that there are N workers, each denoted by i. They have response
threshold θi,j , where j is a single task of the tasks i may attempt. The stimulus
for i to engage in task j is given by si,j .

An individual i will engage in task j with a probability:

Tθi,j =
s2j

s2j + θ2i,j
(2.1)

Theraulaz et al. (1998) appear to assume that the stimulus to do task j is
universally recognisable for all agents.

Let ξ and ϕ be coefficients that describe the “learning” and “forgetting” rates
of the threshold (respectively), or the rates at which the threshold decreases
through execution of j or increases as j is attempted.

Thus if agent i is performing task j over ∆t, the threshold becomes:

θi,j → θi,j − ξ∆t (2.2)

While if agent i is not executing task j over ∆t, the threshold becomes:

θi,j → θi,j + ϕ∆t (2.3)

If xi,j is the fraction of time spent by agent i doing task j, then within ∆t
agent i does task j for xi,j∆t and other tasks for (1− xi,j)∆t.

Therefore, the resultant change in θi,j within ∆t is:

θi,j → θi,j − xi,jξ∆t+ (1− xi,j)ϕ∆t (2.4)

Theraulaz et al. (1998) assume that ξ and ϕ are the same for all insects and
tasks. They also bound θi,j between θmin and θmax.

For the development of a general robotic architecture Equation 2.1 is the
most significant. This equation provides a mechanism for behaviour selection,
providing a decision making algorithm that is responsive to stimulus (s) and
incorporates past individual experience in the form of a moving threshold (θ).
We will not investigate the details of Theraulaz et al.’s (1998) implementation
much further save to note some important points:

• An active individual gives up on a task with the probability p every time
step. Thus the average time an individual spends of task j is 1

p . Although
it may re-engage in the task immediately if “stimulus intensity is still
large”.

In their implementation Theraulaz et al. (1998) fix this value as constant
for all tasks and individuals.

• The “average temporal dynamics” of xi,j includes a Gaussian stochastic
term that “. . . simulates the fact that individuals encounter slightly differ-
ent local conditions.”

• They also assume “. . . for simplicity that the demand for each task in-
creases at a fixed rate per unit time. . . ”

Mathematical descriptions of the change in θi,j , xi,j and sj can be found in
Theraulaz et al. (1998), Equations 4, 5 and 7.

20

The results of their model are interesting. Broadly speaking, they illustrate
that their variable threshold model can produce specialisation among individ-
uals, with the thresholds allowing for “learning in the form of a reinforcement
process. . . this extended model could account for the genesis of task allocation
and within-caste specialisation.” They also conduct an examination as to how
“learning and task-switching rates are expected to affect specialisation.” They
illustrate that individuals with a low θj have a correspondingly high xj value
(and visa-versa). Also, if an individual has an initially low θj value, they are
more likely to become a specialist in that task. Finally, they demonstrate that
if specialists (“individuals with a low θi,j”) are removed, “individuals with pre-
viously high θi,j lower their θi,j and become more responsive to task associated
stimuli” showing that the model incorporates some of the inherent flexibility of
the swarm.

We are not especially interested in how this model integrates with biological
swarms in detail. For the purposes of this project, the threshold model becomes
a fundamental idea around which we shall construct a software architecture and
it provides a starting place from which the design flows. As we shall see, ulti-
mately it has little effect on the execution of the simple tasks upon which the
design is tested. However, its importance should not be underrated. The thresh-
old model represents the most concise, general and mathematical description of
swarm decision making encountered in this reading.

For more detail on the threshold model and examples of implementation see:
Schmickl & Crailsheim (2008a), Garnier et al. (2007) and Dorigo et al. (2000).
For a more complex investigation incorporating other factors (such as insect
age) see Merkle & Middendorf (2004).

2.5 Swarm Robots, Tasks and Control

The above points have obvious correlation to the eusocial insects discussed pre-
viously. However, many swarm robot projects seek to implement reduced swarm
agents that focus on one task or aspect of cooperation.

We shall review several examples, illustrating how aspects of the swarm
cooperation of eusocial insects may be realised in hardware. We begin with the
simplest agents and tasks, moving upwards in task and hardware sophistication.
All of these tasks and robot configurations are of interest in the development of
a general swarm architecture.

2.5.1 Simple Swarms and Aggregation

First, we will examine basic agent grouping and clustering tasks. These bring the
agents together physically, encourage the spread of information and demonstrate
collective decision making (Garnier et al. 2005) and represent real-world swarm
agent hardware at its most basic.

Garnier et al. (2005) created a relatively large swarm2 comprised of the ex-
tremely small and relatively primitive “Alice” robot. The “Alice” was essentially

2Up to twenty individuals, which is a fair number of actual robots. The most spectacularly
large physical swarm is the 1024 “Kilobots” of Rubenstein, Cornejo & Nagpal (2014), but
this very much the exception. Due to time, cost and other constraints real-world laboratory
swarms tend to be fairly small in absolute numbers and tiny compared to insect hives.

21

Figure 2.7. Top left: The Alice robot used in the cockroach aggregation
experiments of Garnier et al. (2005), From Caprari & Siegwart
(2005) page 1. Right: the series of stills from the aggregation ex-
periments. The left-hand sequence have show the Alice robots,
they appear as black squares on the white arena and faint black
squares with white dots in the black aggregation shelters. No-
tice how all the robots are within the left-hand shelter by the
end of the sequence. From Garnier et al. (2005) page 4.

a pair of wheels with four infrared sensors for local avoidance communication.
The sensors had a maximum range of four centimetres. The whole robot was
controlled by the diminutive PIC16LF877 8-bit micro-controller (see Figure 2.7).

The aim of the project was to replicate a behavioural model for the aggre-
gation of the Blattella germanica cockroach, which clusters together in shelters.
This use of real or simulated robots to approximate aspects of insect behaviour
is common3. The behavioural model used by to achieve this was also highly
simple. Groups of ten or twenty individuals were deployed in a white arena
fifty centimetres across (see Figure 2.7). From analysis of live cockroaches, it
was known that when placed in an open arena, the insects perform a “random
walk” (see Fujisawa, Dobata, Sugawara & Matsuno (2014), Holland & Melhuish
(1999) Labella et al. (2006), Ishiwata et al. (2011) for other projects employing
the random walk as the basis for agent interaction).

Once the Alice cockroaches reached the edge of the arena, they followed the
wall, with a constant rate to return to the centre of the arena. The robots
periodically stopped and waited, the rate at which they did this increased with
the number of other robots they could detect (ID numbers were transmitted via
the infrared sensors to allow robots to detect swarm-mates).

This simple system produced the self-organising positive feedback previously
discussed; the more robots in a given area, the more likely for another agent

3For example: Phan & Russell (2012), Payton, Estkowski & Howard (2005), Ishiwata,
Noman & Iba (2011), Cicirello & Smith (2001), Duarte, Christensen & Oliveira (2011), Kallel,
Chatty & Alimi (2008), Wagner, Altshuler, Yanovski & Bruckstein (2008), Lee, Chong &
Defago (2007) and Schmickl et al. (2007) and Schmickl & Crailsheim (2008b) among many
others.

22

Figure 2.8. Left: the “Jasmine” robots used in Bodi et al.’s (2012) bee clus-
tering experiment. Right: the robot “bee” swarm, aggregating
around the light source. From Bodi et al. (2012) page 90.

to encounter them and stop, increasing the group. In this project there was no
counter-balancing negative feedback.

Garnier et al. (2005) expanded their experiment by modifying the robots’
controllers so the robots only halted when the ambient light fell below a certain
threshold – to emulate cockroach shelter finding behaviour. They found that
“. . . the group of robots will choose preferentially a shelter that is sufficiently
large to house all its members. But when the group is confronted with two
sufficiently large shelters, the self-enhanced aggregation mechanism can lead
the group to two stable choices, with a preference for the larger shelter.” The
randomly moving robots are more likely to encounter the larger shelter. It is
important to note that making an objective judgement, or quorum decision on
which shelter to favour, is beyond the abilities of the swarm agents. The decision
is implicit in the the interactions of the robots.

A similar clustering experiment was conducted by Bodi et al. (2012) employ-
ing the “Jasmine” micro-robot4 to model bee clustering behaviour. It resulted
in comparable outcomes.

Both these robots are incomplete swarm agents, they can have perception
and locomotion, but do not manipulate objects. However, their physical sim-
plicity demonstrates that these aspects of swarm agents do not need to be highly
sophisticated. They also demonstrate the use of the agent as a stigmergic signal.

Other minimalist swarm robots are also employed in the work of Rubenstein,
Cabrera, Werfel, Habibi, McLurkin & Nagpal (2013), Adouane & Le Fort-Piat
(2004), Kernbach (2013) and Schmickl et al. (2007), among others.

2.5.2 Manipulative Swarms

Parker & Zhang’s (2006) swarm of bulldozing robots are perhaps the first step
between simple grouping robots and manipulative swarms. Designed to clear
a two-dimensional area by explicitly copying the nest building behaviour of
the Leptothorax ant (described by Franks & Deneubourg (1997) and discussed
previously, see Section 2.2)5).

4See Figure 2.8 or www.swarmrobot.org.
5Although Parker & Zhang (2006) refers to Leptothorax albipennis and Franks &

Deneubourg (1997) speak of the Leptothorax tuberointerruptus. The author is unsure if they
are different creatures, but as both describe the same behaviour, for our purposes this is not
a significant distinction.

23

www.swarmrobot.org

Figure 2.9. Left: the robotic bulldozers of Parker & Zhang (2006), built
from a child’s toy. Right: the cleared “nest”. From Parker &
Zhang (2006) pages 14 and 16 respectively

These agents were among the simplest physical robotic agents encountered
in this research. Stripped-down toy bulldozers, each equipped with bumper
switches, a force sensitive plough and a micro-controller, they clearly demon-
strate the power of limited agents; over the course of two hours four of these
machines, starting in a clear zone 60 centimetres in radius, were able to sweep
clear an area of floor 90 centimetres in radius (see Figure 2.9).

To do this Parker & Zhang (2006) simply rely on the force sensitive plough
with which their agents shovel their “nest” building material (landscaping gravel).
As the robots wander out of the initial clear centre of the arena, they push gravel
in front of them. As this continues, the gravel in front of any one robot becomes
more compact, exerting more pressure on the plough. Eventually, this pressure
exceeds a threshold (as registered by the plough force sensor) and the robot
considers ploughing to be “finished” in this direction. It turns and selects a new
direction. Robots explore their environment by simply moving in a straight line,
turning and avoiding other robots.

This produced a robot with three states “finishing”, “ploughing” and “col-
liding”. Because there are only two classes of object in the environment – gravel
and other robots – the extremely simple sensors are sufficient to determine the
correct state change. However, this represents a step up from the bees and cock-
roaches of Garnier et al. (2005) and Bodi et al. (2012) in that Parker & Zhang’s
(2006) machines can identify a non-robot object and manipulate it, sending a
stigmergic signal to the other robots at the same time.

The robots thus use stigmergy to make decisions and cooperate; if one robot
has “finished” the nest in a given direction the resultant compacted gravel will
be the signal to other robots that no further work in that direction can be un-
dertaken. These are the “. . . useful environment modifications. . . ” that convey
information to the other members of the swarm (Castelfranchi 2006).

However, the agents are fully autonomous; as Parker & Zhang’s (2006) re-
sults show, one machine can complete the nest building task as well as a group,
just in a longer time.

Ijspeert et al.’s (2001) “stick-pulling experiment” takes manipulation fur-
ther. In this experiment6 a circular arena, 80 centimetres in diameter and
possessing four holes in a square formation, was populated with groups of two

6Martinoli et al. (2004) also discuss this project, but under a different, earlier citation. The
experiment is virtually identical and the implication is that Ijspeert et al. (2001) is follow up
work.

24

Figure 2.10. The stick-pulling experiment. Top: the robots in action, bot-
tom: the hard-coded controller in each robot. Note the two
robots on the top-right cooperating to remove the stick from
the table hole. Bottom: the robot controller’s flow diagram.
From Ijspeert et al. (2001) pages 152 and 153 respectively.

25

to six “Khepera” robots7, each equipped with a gripper and infrared proximity
sensors (Ijspeert et al. 2001). Objects are identified by their “width” in these
sensors; robots are wider than the target sticks.

The robots’ task was to remove four fifteen centimetre long sticks from the
corresponding holes in the arena. Each hole contained one stick, projecting five
centimetres from the table-top when at rest. The relative dimensions of the
robots’ grippers and the sticks ensure that a single agent cannot free a stick by
itself and depends on the cooperation of other robots to complete its task.

At no time do the robots communicate explicitly, nor do they recognise each
other as individuals. Instead they rely upon the changes caused by the other
robots, for example: a stick in the grip of another robot requires more force
to move than a free stick. The sensors are limited, their view is poor (a stick
held by another robot can only be recognised as such when approached from
“the opposite side, within a certain angle. . . ”) and manipulation simple. Their
controllers are hard-coded (see Figure 2.10).

This system illustrates stigmergy in a more complex sense than Bodi et al.’s
(2012) bees or Garnier et al.’s (2008) ’roaches. The actions of another robot
cause a target object to change its state, to be come a captured stick, rather
than a free stick (see also Labella et al. (2006), Ishiwata et al. (2011) and Liu
et al. (2007) for other controllers reliant on such change in object state).

Although each machine is autonomous, a single machine would be fully ca-
pable of meandering around the arena, grasping sticks and letting the grip time
parameter expire on its own. It is the interactions between pairs of these au-
tonomous machines that provide the information necessary to complete the task.
Martinoli et al. (2004) refers to this stigmergic coordination as communication
via a “shared blackboard”, which is the environment. They also emphasise that
this project is an instance of “swarm intelligence” referring to the “biological
examples provided by social insects.”

The stick-pulling robots also exemplify a key swarm concept: temporal order
is implicit. The robots with the sticks have no means of calling other agents
to help them, they must wait until their need is recognised. If a swarm task
has a critical execution order, then it is assumed that there are enough agents
that one will eventually identify the need and perform the next step. The task
‘hangs’ until this occurs.

Thus there is a strong relationship between agent timeout, swarm size and
cooperation rate (Ijspeert et al. 2001), demonstrating the need to appreciate
intuitive probabilities in swarm cooperation. The probability of agents encoun-
tering each-other and interpreting the current environmental cues must be suf-
ficiently high.

At a similar level of complexity to the stick-pulling project is the leaf-curling
project of Phan & Russell (2012). In a successful attempt to replicate the
activities of the weaver ant (see Figure 2.11), this project again demonstrates
simple manipulative agents and communication “via long term traces, physical
practical outcomes, useful environment modifications. . . ” (Castelfranchi 2006).

Once again, the agent is a simple wheeled machine with “infrared-based
sensors” and a single gripper. Neither were Phan & Russell’s (2012) robots
“equipped with any wireless, infrared or similar communication devices. . . the

7see Figure 2.10 or www.k-team.com, although the exact robots used in this particular
experiment appear to be discontinued.

26

www.k-team.com

Figure 2.11. Phan & Russell’s (2012) leaf curling robots (right) and the
weaver ants they were modelled upon. From Phan & Russell
(2012) page 103

simplicity of [the robots] is also emphasised by not allocating memory to remem-
ber the robot’s path nor [by] providing any ability to recognise specific robots.”
Again the task is beyond the capabilities of any one robot.

See also Holland & Melhuish (1999) Ishiwata et al. (2011) for further exam-
ples of insect-like swarm robots and tasks.

Both the “stick-pulling” and “leaf-curling” projects demonstrate swarms
where the agents are strongly dependant on each-other. The half-complete
task is in itself the communication channel. Other examples of this stigmergy
through construction approach can be found in Werfel et al. (2006) Matthey,
Berman & Kumar (2009). Both these projects use local interactions among
construction materials and agents to produce finished, two-dimensional struc-
tures. However, they also use active communication between the agents and the
building components. Both projects employ magnets for collection and carefully
defined construction blocks in assembly.

If the environment itself is the only communication channel, perception be-
comes critical. The robots must be able to interpret the environment accurately;
classification of objects and object states must be real-time and unambiguous.
In most the projects examined so far this is facilitated via essentially empty
environments. The stick-pulling and leaf-curling robots, as well as the building
robots of Werfel et al. (2006) and the foraging robots of Labella et al. (2006)
exist in an environment comprised of target objects, obstacles (arena walls) and
other robots. Limited sensors can thus be employed without much danger.

2.5.3 Recruitment, Signalling and Advanced Swarms

The next phase in complexity are swarms that permit robots to recruit other
agents, to manipulate objects collectively and, frequently, to transmit infor-
mation through the swarm by simple signalling schemes. Ultimately, these
advanced cooperatives lead out of the swarm field altogether, becoming co-
operating groups of complex robots, rather than true swarms.

The foraging task of Nouyan et al. (2009) Typifies many of these advanced
swarm features. This project creates a swarm of several s-bots (see Figure 2.12)
“that can operate both autonomously and as a group”8.

Foraging is a common swarm task (see Liu et al. (2007) and Labella et al.

8See also the related work of Mondada, Gambardella, Floreano, Nolfi, Deneuborg & Dorigo
(2005).

27

(2006)), but both Mondada et al. (2005) and Nouyan et al. (2009) emphasise
the ability of the individual s-bots to form physical links with other robots in
the swarm and the importance of these connections in solving physical tasks.

As they do so, they achieve “teamwork” and demonstrating a “division of
labour characteristic of social insects” (Nouyan et al. 2009). Their chains carry
echos of the army ant chains discussed in Wilson (1979).

In Nouyan et al.’s (2009) work, a swarm of up to twelve autonomous robots
is used in a foraging and recovery task, locating a “prey” object and returning
it to a “nest”. This is done under the constraints of swarms:

1. The prey requires concurrent, physical handling by multiple robots – it is
too large and heavy to be moved by one robot alone.

2. The robots have a small perceptual range compared to the distance be-
tween the nest and the prey. Perception is also unreliable.

3. No robot has any (explicit) knowledge about the environment beyond its
perceptual range.

4. Communication among robots is unreliable and limited to a small set of
simple, local signals.

Nouyan et al. (2009) rely on the robots cooperating as a much closer unit
than customary. A sequence of stills from this process is depicted in Figure 2.12.
The s-bot robots explore their environment and form “chains” between the nest
and the prey. These chains form paths along which other s-bots transport the
captured prey to the nest – in a process reminiscent of the chemical trail markers
of ants and termites, although a physical robot is needed to form each link in
the trail, with the robots themselves becoming “landmarks or beacons” (Nouyan
et al. 2009).

A foraging task requiring looser cooperation may be seen in Labella et al.
(2006).

The s-bots are larger and more complex than most swarm robots, but they do
not depart from the sense, move and manipulate paradigm. Although the s-bot
had “five degrees of freedom (DoF). . . ” two DoF for the wheel/treads system,
one to rotate the s-bots upper part “called the turret”, one for the grasping
mechanism and a final DoF for elevating the grasping mechanism (Nouyan et al.
2009).

Although clearly possessing more mechanical complexity than the previous
examples of swarm agents, the s-bot is really an elaboration on the same idea: the
locomotion system, although unorthodox, is still a differential drive system as
previously, just more robust. The other degrees of freedom are clearly connected
with the more complex gripper, which is more general than the system used by
Phan & Russell (2012) and more robust than that of Ijspeert et al. (2001).

The s-bot really sets itself apart with a much more complex sensor suite.
Nouyan et al. (2009) discusses a variety of proximity sensors, providing read-
ings around the turret and underneath the robot9. Manipulator sensors, on both
the gripper, the elevation mechanism and the turret, provide more sophisticated

9Nouyan et al. (2009) has fifteen and four of these (respectively), while Baldassarre et al.
(2007) mentions sixteen and four.

28

Figure 2.12. Top: stills from the foraging task of Nouyan et al. (2009),
showing eight s-bots moving the red “prey” to the blue “nest”.
From Nouyan et al. (2009) page 703. Bottom: the s-bot. From
Baldassarre et al. (2007) page 255.

Figure 2.13. The controllers for the s-bots of Nouyan et al. (2009). The
three modules of the foraging task are boxed, with circles rep-
resenting the states (behaviours) of a finite state machine. The
labelled arrows signify the state change triggers. From Nouyan
et al. (2009) page 700.

29

control over manipulation. Robot orientation is determined by a three-axis incli-
nometer and the local environment is perceived by a unidirectional camera and
eight light sensors. Unusually, the robot is also fitted with four unidirectional
microphones and a pair of speakers. More conventional local communication
is provided by eight RGB LEDs distributed around the robot. Finally internal
motor information “such as torque, position and speed” is also available. All of
this combines to give the robot a much richer perception of itself and its envi-
ronment, illustrating that while swarm agents should be mechanically simple,
they need not be limited in their sensors or software.

Nouyan et al.’s (2009) s-bots depart from simple projects with their signalling
abilities. Neither Ijspeert et al.’s (2001) nor Phan & Russell’s (2012) machines
could signal with more than their physical presence – a change in the environ-
ment, rather than a change in any properties of the agents. In contrast Nouyan
et al.’s (2009) project requires that agents change their physical properties to
identify them as a class. Thus they can identify the agents who comprise the
trail from the “prey” to the “nest”. This reflects the increasing complexity
of the project – there are more possible states in the environment, the simple
presence or absence of objects does not necessarily convey sufficient information
for coherent cooperation. By using their LEDs to send broadcast signals, the
s-bots employ a local signalling system akin to the chemical pheromones of real
insects.

Other projects that employ local signalling in this or a related fashion are
Schmickl et al. (2007), Payton et al. (2005).

These projects advance upon Nouyan et al. (2009) and create a swarm-wide
communications net, created by robot-to-robot interactions. This approach is a
common theme and is often termed “virtual pheromones” – although Schmickl
et al. (2007) object that “. . . as biologists we do not think [this is] appropriate.”
They are probably correct, but the name has stuck.

The broad purpose of virtual pheromones in both these projects is to dis-
seminate information throughout the swarm, to allow individuals to take advan-
tage of their nest-mates’ discoveries. This effectively represents an attempt to
broaden the perspective of each robot. Like real insects, the virtual pheromones
do not carry direct instructions, each robot is required to make decisions based
upon the information available.

In simpler swarms, such as those of Parker & Zhang (2006) and Ijspeert
et al. (2001) information does not propagate directly, rather robots use a more
limited form of stigmergy by interpreting objects in the environment.

Other projects employ similar semi-implicit, decentralised communications.
One of the most notable is the “belief sharing” system of Isik, Stulp, Mayer
& Utz (2007) (see also Stulp, Isik & Beetz (2006) and Buck, Schmitt & Beetz
(2002)), where a robot’s internal “belief state” is broadcast locally.

Despite the differences in hardware and perception, all the swarm robots
examined so far have some common elements. They can recognise other agents
– although not usually as individuals, but as members of the object type “other
agents”. All agents can detect obstacles – such as the walls of their arena –
and they can usually detect at least one class of target “object of interest”, the
manipulation of which is essential to their task.

30

2.6 General Cooperative Architectures

Many previous projects have attempted to broaden robot cooperation, allow-
ing the robots in the group to attempt several tasks without fundamental re-
programming. These projects usually produce a behaviour-based system and a
central program infrastructure for selecting behaviours. In this they have much
in common with insects. However, they are often aimed at non-swarm robots
or tasks.

2.6.1 Robot Behaviours

“A behaviour, simply put, is a reaction to a stimulus.” (Arkin 1998)

“. . . behaviours [are motor] control laws that encapsulate sets of con-
straints so as to achieve particular goals.” (Matarić 1994)

Behaviours are fundamentally reactive, responding to what occurs rather
than relying on a master plan. “Causality flows into the system from the world,
drives the roles which choose what to do, resulting in action which changes
the world and back again into the system, which responds to the changes. . . An
agent engaging in a routine [behaviour] is not driven by a preconceived notion
of what will happen. When circumstances change, other responses become
applicable. . . ” (Agre & Chapman 1987).

Robotic behaviours are often traced back to the “Subsumption” architecture
of Brooks (1999) and are usually the basis of general cooperative architectures.
Brooks advocated for a horizontal approach to robot programming, where a
series of simple behaviours are implemented in parallel, rather than attempting
to abstract and deliberate on the robots’ environment.

In Brooks’ system, each behaviour was a simple Finite State Machine, with
limited objectives. Numerous behaviours were implemented in layers, produc-
ing complex behaviours in the summation of their outputs. “Each module is
an instance of a fairly simple computational machine. Higher level layers can
subsume (italics added) the roles of the lower levels by suppressing their out-
puts. However, lower levels continue to function as higher levels are added.”
(Brooks 1999)

This is a priority-based arbitration system (Pirjanian, Huntsberger, Trebi-
Ollennu, Aghazarian, Das, Joshi & Schenker 2000) and forms a linkage between
action and perception, with cognition not being explicitly included in the algo-
rithm and merely in the eye of the external observer (Brooks 1999). This has
obvious parallels with the complexity of the insect hive – the hive’s responses
appear to be coordinated on a global scale, but this is an illusion created by the
interaction of large numbers of autonomous agents. The global coordination of
the hive’s response is only apparent to the observer, while the finite-state be-
havioural structure also resonates with the threshold model of Theraulaz et al.
(1998).

Brooks originally outlined nine dogmatic ideas upon which the design was
based, which were subsequently refined and are summarised in Arkin (1998) as
follows (slightly paraphrased):

• Complex behaviour need not be the product of a complex control system.

31

Figure 2.14. Matarić’s (1994) “Nerd Herd” of cooperative robots. From
Arkin (1998) page 371.

• Intelligence is in the eye of the observer (see also Agre & Chapman (1987)).

• The world is its own best model (further abstraction is not needed).

• Simplicity is a virtue.

• Robots should be cheap.

• Robustness in the presence of noisy or failing sensors is a design goal.

• Planning is just a way of avoiding deciding what to do next.

• All on-board computation is important.

• Systems should be built incrementally.

• No representation. No calibration. No complex computers. No high
bandwidth communication.

This system is fundamentally reactive. “. . . complexity. . . may be the result
of the interaction of simple opportunistic strategies with a complex world.”
(Agre & Chapman 1987).

Pirjanian (2000) also points out that behavioural solutions are not neces-
sarily optimal, mentioning that achieving “good-enough” solutions have been
“. . . an implicit agenda in behaviour-based robotics all along”.

Again, this is closely related to the ‘swarm ethos’ described in Chapter 1.
The “Nerd Herd” of Matarić (1994) is a widely cited example of the Sub-

sumption approach implemented upon a group of robots (see Figure 2.14). The
Nerd Herd’s control architecture was based on the belief that “. . . for each do-
main a set of behaviours can be found that are basic in that they are required
for generating other behaviours, as well as being a minimal set the agent needs
to reach its goal repertoire” (Matarić 1994). The implication is that there will
usually be a tractably small number of basic behaviours.

32

The idea of basic behaviours corresponds well with eusocial insects: “. . . the
same piece of behaviour can serve different functions in different ants (or even
in the same ant)” (Sudd 1970).

The Nerd Herd’s basic behaviours; “safe-wandering”, “following” “aggrega-
tion”, “dispersion” and “homing” are employed in various combinations to per-
form “flocking”, “foraging” and “docking” tasks (Matarić 1994). More universal
primitive behaviours are available in Huntsberger, Aghazarian, Baumgartner
& Schenker (2000), who use hardware-derived basics such as “crab”, “turn”,
“stop”, “move”, etc. However, the gulf in scope between these primitives and
the precision required of the final task necessitates many intermediary linkages.
These sources exploit the desired tasks to formulate the base behaviours, they do
not place firm limitations on the number of these atomic units – Huntsberger,
Pirjanian, Trebi-Ollennu, Das Nayar, Aghazarian, Ganino, Garrett, Joshi &
Schenker (2003) implies that the physical structure of their robots drives these
primitives (see Huntsberger et al. (2003), Fig 3).

Other examples of loosely similar designs based on finite action-spaces are
Fujisawa et al. (2014) and Nouyan et al.’s (2009) Similar ideas can be found in
the work of Arkin (1992) and Arkin & Balch (1997), while the much grander
210 strong swarm of Rubenstein et al. (2014) also employs three basic be-
haviours to create a self-assembly algorithm by linking the three elemental
behaviours together “with finite state automation.” See also Pagello, DAn-
gelo, Montesello, Garelli & Ferrari (1999), Adouane & Le Fort-Piat (2004),
Stroupe, Okon, Robinson, Huntsberger, Aghazarian & Baumgartner (2006)
Lötzsch, Bach, Burkhard & Jüngel (2004), Alfredo, Arkin, Cervantes-Perez,
Olivares & Corbacho (1998), Kernbach (2013), Ruiz & Uresti (2008), Zhang,
Xie, Yu & Wang (2007), Schmickl & Crailsheim (2008a) for other behaviour-
based examples in a great variety of environments.

Several systems exist for selecting or weighting behaviours. In Brooks’s
(1999) Subsumption system, layers of finite state machine can suppress other
elements (Brooks 1999). Combined outputs by means of summation are dis-
cussed in Arkin & Balch (1997) and by Matarić (1994). Parker (1998) employs
time-based motivation to activate behavioural sets, while the “motivational be-
haviours” are allowed to cross-inhibit other motivations. This motivational in-
put may also come from other agents (Parker 1998, Bekey 2005). Similar cross-
inhibition is also demonstrated by Werger & Matarić (2000). Both of these
systems assume explicit communication between agents.

Finally some, less general projects use “locker-room” agreements based on
an exploitation of a priori task and environmental knowledge (Kok, Spaan &
Vlassis 2005) (Pagello et al. 1999).

2.6.2 Architectures and Swarms

While general cooperative systems have been successfully implemented, they do
not usually support the definition of a swarm agent (see Chapter 1).

There are two major problems with the architectures discussed above in
relation to swarms:

Not aimed at swarms agents. Previous general architectures are often aimed
at more complex robots non-swarm tasks. From a swarm perspective, this
leads to several problems:

33

• Many behaviour primitives – The possible robots may have many de-
grees of freedom and be required to undertake very precise motions.
See Huntsberger et al. (2003), Stroupe et al. (2006) and Arkin &
Balch (1997). Because there may be great heterogeneity among com-
plex robots the behaviour primitives are often without firm limits,
the numbers and type of primitive behaviours are instead deduced
from task constraints (see Matarić (1994)).

• Abstract behaviours – The many possible configurations of complex
robots place considerable responsibility for low-level behaviour im-
plementation in the hands of the robots’ designers. The emphasis of
the control architecture becomes higher-level decision making – see
Parker (1998) and Parker (2008). High-level abstractions can also
lead to very long tool-chains (see Arkin & Balch (1997), the com-
plexity of which is inimical to the swarm ethos.

Reliance on explicit communications. Many previous architectures rely heav-
ily upon explicit, direct wire-less communication between agents (Parker
1998), (Huntsberger et al. 2003), (Werger & Matarić 2000), (Isik et al.
2007). Although some systems can function without this (Isik et al. 2007),
the concept is considered un-swarm-like, relying upon data-transfer rather
than stigmergy and self-organisation.

The data-transfer is often used in behaviour selection, activating or in-
hibiting behaviours on the basis of other agent’s decisions (Parker 1998),
(Werger & Matarić 2000). The implication of this is that single agents are
sufficiently complex to solve tasks on their own. However, swarm agents
should be “relatively incapable or inefficient on their own with respect to
the task at hand” (Şahin 2005). Redundancy is an integral part of swarm
cooperation.

The above sources have all implemented successful cooperative robot groups.
However, for swarm agents, these features are undesirable.

34

Chapter3
The Swarm Architecture: Design

. . . and such machines had often been used to
break the ice at parties, by making all the
molecules in the hostess’s undergarments
simultaneously leap one foot to the
left. . . Respectable physicists said they weren’t
going to stand for that sort of thing; partly because
it was a debasement of science, but mostly because
they didn’t get invited to those sort of parties.

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy

Summary

This chapter describes the architecture developed in this project. The Architec-
ture draws upon the outline of insect swarms discussed previously in its design.

Contents
3.1 Design Overview . 37

3.1.1 Parallelism and Computing Requirements 39

3.1.2 The Designer and User 40

3.2 The Object List . 40

3.2.1 Object Types . 41

3.2.2 Confidence . 43

3.2.3 Insect Sensor Comparisons 43

3.3 Actions . 44

3.3.1 Blocking Actions . 47

3.3.2 Agent Survival . 48

3.4 Behaviours . 49

3.4.1 Behaviour Selection 49

3.4.2 The Null Behaviour and Zeroth Object 53

3.4.3 Composition – Building Behaviours 53

3.4.4 Behaviour Execution 55

35

3.4.5 Behaviour Evolution and Historical Notes 56

3.4.6 Survival Selection and Execution 56

3.5 Designing Behaviours 57

3.6 Summary – The Complete Robotic Insect 58

The Architecture developed in this project created a framework for the
control of insect-like swarm robots. The Architecture is designed to:

• Provide the central program in each robot.

• Reduce features that would exclude a given class of swarm-like behaviours
(task-agnostic). The Architecture does not exploit task-specific knowl-
edge, although the task is assumed to be amenable to implicit decentralised
control.

• Strictly limit the number of behaviour primitives to reduce system com-
plexity.

• Be implemented on any “insect-like” robot without major modifications
(hardware-agnostic).

• Provide insect-inspired control, using the concepts of self-organisation and
stigmergy to reduce complexity, but not to slavishly reproduce eusocial
insect traits.

• Provide cooperation that is not limited by swarm size.

To realise this, several key assumptions were central:

1. Agents are inexpensive and mechanically simple. A swarm-like robot uses
the bare minimum of moving parts necessary to move, manipulate objects
and perceive its environment.

2. Moving parts are complex and expensive, powerful computers are cheap.
While control should be simple, we can assume that relatively high-level
computational tools are available.

3. Communications should be implicit, local and obvious. Complex global
broadcasts of whatever medium are not consistent with swarms1.

4. A given hardware design restricts a swarm to a specific broad environment
(eg, ground, air, water, space, etc.) and is not suitable for another. This
limits the number of tasks possible for a given design.

5. There are a tractably small number of useful object types in each en-
vironment (see Section 3.2). While task knowns may not be exploited,
environmental knowns can be, as a given machine is limited to one envi-
ronment in any event.

1 While some previous swarms have used local communications and Isik et al. (2007)
demonstrate that groups can cooperate better in the presence of communications, it was
believed that if this Architecture was built on fully silent robots, such communication could
be added at a later date – see Section 5.1.2 for a discussion on how this might be done.

36

6. Individual swarm agents make mistakes. Meaningful results from simple
agents is the objective, not maximum efficiency and speed. We expect
mistakes and failure.

7. Users want simplicity. The persons controlling the swarm want to be able
to do so with the the minimum of fuss. They do not want to learn a
new language, complex graphical user interface or multi-step compilation
process and the field of swarm robots is too small for such a paradigm to
be widely adopted.

3.1 Design Overview

Arkin (1998) quotes Matarić’s 1992 definition of an architecture:

“An architecture provides a principles way of organising a control
system. However, in addition to providing structure, it imposes
constraints on the way the control problem can be solved.”

The Architecture developed in this work2 provides just such a structure. By
exploiting the inherent limitations of swarm agents, The Architecture strives to
provide a software basis for swarm agents that allows for many different swarm
tasks and insect-like swarm robots to be accommodated.

To achieve this, there are a number of broad features:

• The robot’s raw sensor data is reduced to a list of objects (see Section
3.2) that are stored in a central location. This “Object List” is the only
legal source of information on the robot’s external environment.

• Each robot’s physical actions are limited to a list of five basic motor
schema or actions. By drawing on the definition of a swarm agent devel-
oped previously we argue that these basic actions are all a non-specialised
“worker” agent requires.

• Users couple relevant objects to actions to create behaviours. Behaviour
creation process is not considered a language, although it has language
like features. The creation process is not designed to be extensible (new
fundamental features are not expected) and is intended remain simple, in
keeping with the swarm ethos.

These features are intended to be run in parallel. Strict order is not im-
portant, as long as all are run at sufficient speed to keep pace with real-world
events.

There is significant standardisation and little scope for the agent designer
to add non-standard embellishments and only a narrow window for user inter-
action3.

The Architecture processes are:

2The design does not have a name, in all notes and subsequent writings the author just
referred to it as “The Architecture”, which, in the author’s opinion, ultimately sounds better
than any contrived phonetic acronym.

3In this chapter, flow-charts indicate where low-level implementation is unimportant, pro-
vided procedure is followed, pseudo-code indicates where algorithms are important, but code-
implementation non-critical and plain-C code indicates that low-level data-types and function
input/output is critical. The level of abstraction used indicates the degree of designer freedom.

37

Shared Memory

Sensor
Interpreter

Process

object list

Sensors

raw sensor

data

Behaviour
Selection
Process

active

behaviour

object list,

relevance

flags

Behaviour
Execution
Process

relevance

flags,

exception

types

object

list, active

behaviour

Survival
Selection
Process

motor

override flag

object list,

exception

types

Effectors

second

priority

motor

commands

Survival
Execution
Process

first priority

motor

commands

object list,

exception

types

Figure 3.1. The complete Architecture showing all processes and their in-
teractions. The blue elements represent separate, parallel pro-
cesses, with the shared memory in the centre providing inter-
process communications. Note: any method of inter-process
communication will suffice, specifically using shared memory is
not critical.

38

sensor interpreter – accesses the raw sensor data and updates the object list.

behaviour selection – decides current active behaviour.

behaviour execution – calls the currently active behaviour.

survival selection – decides upon the need to execute survival actions, such as
avoidance.

survival execution – calls currently active survival process (if any).

See Figure 3.1 for the interrelation of these processes. Shared memory is
used to transfer information between processes. The exact form of inter-process
communication is not critical, threads could also have been used.

3.1.1 Parallelism and Computing Requirements

The Architecture is intended to run on small, single-board computers with
UNIX-like Operating Systems4. The Architecture is not intended to be firm-
ware on a micro-controller.

The operating system need not be real-time in the strict sense, but there
should be sufficient computational resources that The Architecture sub-processes
run “fast enough” to keep approximate pace with physical events outside the
robot.

As the robots’ perception system relies heavily upon computer vision, robots’
computers must be powerful enough to recognise objects visually with no no-
ticeable lag between object appearance and visual identification. In practice,
this means that there must be sufficient memory to hold multiple frames and
a clock-speed commensurate with processing many frames per-second. The au-
thor found that 256MB and 700MHz (respectively) are barely adequate for five
frames per second (see Appendix B for more information).

The Architecture’s component processes communicate via a POSIX shared
memory structure. Read and write race conditions are prevented by use of
POSIX semaphores. The shared memory data structure is small and it is as-
sumed that any processes read/write duration is very short.

The Architecture does not enforce an ordered sequence among its sub-
processes, instead it is assumed that all processes are running fast enough that
all shared information is keeping approximate pace with physical events.

The Architecture simply uses the default Linux process scheduler to assign
computational resources. In practice it was found that only the sensor pro-
cessor (vision system) imposed any significant computational load. All other
processes were negligible by comparison (using an order of magnitude less sys-
tem resources).

As an aside we should note that the simulated version of The Architecture
(see Chapter 4) is implemented in a sequential form that could be ported to

4Recent developments in high-performance, ultra-low-cost, small-scale computers (see Ap-
pendix B) leads the author to respectfully disagree with Brooks’s (1999) assertion that be-
haviour based robots should have “No complex computers”. As these machines are now
readily avaliable, computationally complex tools such as vision are now accessable by small,
inexpensive agents. It is the author’s belief that all available tools should be used to expedite
design.

39

a more limited micro-controller. However, this is an artefact of the simula-
tor’s step process and is not an intended design direction. The author believes
that, given the extreme cheapness of single-board Linux computers, developing
a system for tiny micro-controllers represents a technological dead-end.

3.1.2 The Designer and User

The Architecture strives to maintain a sharp distinction between the designer
and the user. The designer is the individual or organisation who designs the
individual robot agents. It is assumed that a given swarm machine will be
designed with a broad, but limited environmental and task range in mind. For
example: it may be a basic “worker” unit designed to manipulate objects on a
two dimensional ground. Regardless of how broad the intentions of the governing
architecture, the designer will introduce inherent limits.

In regards to this Architecture, it is the designer’s responsibility to produce
the agent’s mechanical and electrical systems and implement The Architecture
framework upon them. Low level sensor interpretation (see Section 3.2), action
functions (Section 3.3) and Architecture basics are all the designer’s responsibil-
ity. The designer should produce a mechanically, electrically and Architecturally
functional tabula rasa suitable for a given environment and wide variety of tasks
– exactly as personal computers and operating systems are created.

The user is the second party, who may have no connection with the designer
and is responsible for applying the designer’s work to real-world tasks. The
user is expected to understand The Architecture as a concept, but not to have
any knowledge (or real interest) in the minutiae of the implementation on their
unit – exactly as a person may know how to work their personal computer and
understand operating system concepts, but may not understand (or care about)
the kernel’s source code. The user is expected to create behaviours suitable to
the desired task according to The Architecture’s strict laws (Section 3.4).

3.2 The Object List

How an agent senses its environment is fundamental to its operation and is
central to The Architecture. What it is required to see, is dependant on the
agent’s physical construction and task parameters, respectively. Regardless of
how general an architecture is, these are still unknowns that cannot be accounted
for in The Architecture design without exploiting a priori task and hardware
knowledge. Thus, these unknowns should not influence the decision-making
process. The Object List provides the necessary isolation between perception
and decision making.

In The Architecture, the only legal source of information about the environ-
ment outside5 the robot is via the object list. A dedicated process is responsible
for accessing all external sensors and reducing the data to entries in the list.
Each entry defines at minimum the object type, its position relative to the robot
and the robot’s confidence in its existence (see below). Designers may add what-
ever else they think will help them, but these quantities are mandatory. This

5Interior information, such as inertial sensors, odometers, clocks, etc. that describe the
robot’s internal state are a separate case and will be addressed in Section 3.3 and in more
depth in Section 5.1.3.

40

sensor interpreter process is the perception component of the agent.
As the Object List is the only legal source of external data, it is required

by all other processes in the system and is implemented as a shared memory
structure, protected from race conditions by semaphores.

How the sensor interpreter accesses and processes sensor data is irrelevant
to The Architecture and is a matter for the designer. The only constraints are
that the object data must accurately identify the object, its position relative to
the robot and be updated fast enough to keep approximate track of its motion.

Each object contains the following data:

• The object type. This is an int flag. Objects are not defined with any
finer detail. Like Agre & Chapman (1987) objects are “not defined in
terms of specific individuals”.

• The object’s range relative to the camera. This is measured in metres
from the camera and is stored as a float.

• The object’s bearing left and right relative to the camera (left is negative,
dead ahead is zero). This is measured in radians and stored as a float6

• The object’s confidence (see below). This is a value between 0 and 1 and
is recorded as a float.

• The object’s temporal duration in seconds, employed in object tracking,
projection (see Appendix B.1.4) and confidence calculation (see Section
3.2.2) and is recorded as a float.

• The quality of recognition match. This is a value between 0 and 1 and is
recorded as a float (see Section 3.2.2 and Appendix B.1.4).

When implemented, the object list is simply a shared structure containing
these quantities. Each of these quantities is an array of size 1×obj max (50
in the real-world or 100 in the simulations). The actual method of object list
implementation is unimportant as long as the above quantities are available at
high speed.

3.2.1 Object Types

By making raw sensor data interpretation the responsibility of the designer,
the number and range of object types is of necessity defined a priori. This is
a limitation on generality, however it is not as significant as it first seems. A
given agent design inherently limits the swarm to a relatively narrow range of
environments and tasks; a underwater robot cannot function in space, a drilling
robot will be of limited use in a cleaning task and so on. This is a fundamental
limiting factor discussed previously; an agent’s physical form is defined by its
environment and any given environment is presumed to have a limited number
of interesting object types.

6In practice, it was found best to limit scope of the perception system. Robots with a
very wide field-of-view found too many potential obstacles and spent much time avoiding. By
contrast robots with too narrow a field-of-view recognised too few objects for decisions to be
made.

41

Type ranges can be very broad, but some objects are obviously mandatory.
All agents would need to recognise other agents, for example. Object type
descriptions can be very general – “round object”, “big object”, etc. – but must
be unambiguous (see Section 5.1.3 for more on general type implementations). It
is basically assumed that the designer would use a camera as the primary sensor,
possibly supported by simpler devices. Such as infrared proximity sensors.

In both the simulation and real-world incarnations of the architecture, the
following objects were defined and represent a basic minimum for The Archi-
tecture:

target-object
Any object that the robot would have to manipulate or interact with. For
some of the tasks there were several types of target object and associated
types7. These other targets are labelled TARGET OBJ 1,2,3...n. The
designer may implement as many of these as the sensors can discriminate.

target-object-group
Collections of target objects in physical proximity. Proximity was estab-
lished by means of the cosine rule and comparison to a limiting distance.
Experience shows that a description of semi-completed structures is neces-
sary to allow for grouping, building or similar activities (see Section 4.3.4
for more on this). Objects of this type were also represented in the object
list as individual target objects.

As we shall see, the real-world objects are represented by repeating pat-
terns, meaning that a physical object might be (and usually was) detected
more than once. To prevent individual objects being falsely identified as
groups, the real-world implementation defined a group as three or more
instances of an object in proximity.

captured-object
An object that is within the robot’s control. In practice, a captured-
object is anything that trips the infrared sensor attached to the scoop (see
Appendix B). There should be as many captured object types as there are
target object types, but in practice, it was found difficult to distinguish
between different captured object types and thus a single general capture
type was implemented. This was found acceptable for the tasks attempted.
See Section 5.1.3 for a discussion on a more general version. Objects of
this type were not recognised as separate target objects.

capture-by-other
An object under the control of another agent. This type was found to be
necessary to prevent agents from trying to steal objects from each other.
In practice this is simply any target object that was sufficiently close to
another agent. There were as many captured by other object types as
there are target object types. Objects of this type were not recognised as
separate target objects.

7For historical reasons, the target object is sometimes referred to in commentary as the
“ball”. The original task was “ball” passing and the name stuck, even though the final target
looked nothing like a ball.

42

agent
Any other agent. Agents were not identified as individuals, so this was
anything bearing “agent” markings. Notice that it is the designation of
agent that is important. Anything the designer fancies may be designated
another agent, provided it is consistent with the assumption that it is an
animate swarm member, working towards the swarm’s greater goals and
can be recognised as such by the rest of the swarm. Thus “agent” may be
any variety of robotic or even non-robotic agents. Agents do not reason
about their “kin” or receive explicit instructions from them (as in Werger
& Matarić (2000)), they are simply another object.

proximity-object
An object that tripped the robot’s low-level proximity sensors. These
objects could (although usually were not) be recognised as other object
types, if they were within visual range.

In all cases, the object type was identified by a unique integer flag.

Once again designers can include whatever other types they think may be
useful, but our experience suggests that the above comprise a practical mini-
mum. However, designers should make their sensor interpreters and type def-
initions modular, support for extensions should be comprehensive. More ideas
on expanding object recognition can be found in Chapter 5.

For a detailed discussion on how these objects were recognised in this project,
sensor development and associated problems, see Appendix B.1.4.

3.2.2 Confidence

Along with type identification and positional data, each object in the list is
required to have a “confidence” value. As real-world sensors tend to be noisy and
unreliable, false positives and negatives are possible (experience would suggest
common). As objects are integral to the decision making process, ignoring
sensor uncertainty results in unstable decision making. Thus by convention, all
aspects of The Architecture that have to deal with discrete objects (rather than
types), make their decisions and calculations based on confidence, rather than
counting instances of the relevant type.

See section B.1.4 for details on how confidence was implemented in the real-
world and simulated architecture.

3.2.3 Insect Sensor Comparisons

We should pause here briefly and compare the sensory system as can be produced
with a CCD camera to the sensory perception of social insects, covered in Section
2.1. As mentioned, insects such as ants and termites have limited vision and
rely heavily on touch and chemical detection.

Touch type sensors exist for robots in many forms, but all are effectively
limited to detecting an “object” in a Boolean sense. To classify objects by this
type is not, by itself, sufficient. In our implementation we include proximity
objects to cover this type of sensor and employ them in both the hardware and
simulated robots.

43

Chemical analogue sensors have been implemented in robots, both as vir-
tual pheromones (Payton et al. 2005) and as literal chemical secretions (usually
alcohol applied to a flat surface with a pen) (Kallel et al. 2008).

The former was considered an inappropriate starting point as it would imply
some means of explicit global or peer-to-peer communication. It was believed
that The Architecture should not rely on such methods from the beginning,
instead using them to enhance an existing design – see Chapter 5 for more on
this.

Literal chemical markers were considered and discarded as an overly spe-
cific requirement. Although the hardware exists, it is not common and has not
had the development lavished upon cameras. Cameras have recently become
cheap and commonplace and are highly suitable as an object classification sen-
sor. The author does not believe that chemical detection technology exists in a
comparable form.

Nevertheless, a computer vision system does provide some of the features
of an ant or termite’s chemical perception. It is a passive, agent centred per-
ception system, needing no global information or actions by other agents. It
can recognise objects as classes, often at some range. It lacks the “field effect”
of odour-based chemical systems – it is generally not practical to lay down a
visual trail in the same sense that an ant may deploy a chemical one. Visual
recognition is thus limited in temporal scope. Likewise, perception cannot be
reinforced the way repeated path use can be reinforced among ants. The visual
robot has no easy means of judging how many agents have used a path in the
past.

By accepting these constraints, the visually controlled robots became more
reactive in their perception than their biological counterparts and they must
have line-of-sight to an object at some point in that object’s life for detection
to occur.

However, assuming that some functional analogue of insect chemical mark-
ers could be built (or has escaped the author’s attention), it could be easily
integrated into the Object List concept. A trail left by another agent simply
becomes another instance of the agent object type, with the confidence denot-
ing the strength of the trail. The physical position of the agent object instance
created by this trail would shift as the observing robot moved along the path,
always staying ahead of observer until the trail ends. As mentioned, ant trails
are non-directional, thus the robots would not need to know which way the trail
laying robot travelled on its path.

More static chemical markers – such as those used by termites to mark the
soil pellets in their construction – are here considered an extension of type-based
visual recognition. Instead of using their eyes, the termites use their olfactory
sensors to distinguish object type.

3.3 Actions

The atomic unit of the behavioural side of The Architecture is the action. An
action is a single function that controls the robot towards one, simple goal and is
the direct link between the Object List to the motors. The Architecture exploits
the expected features of a swarm agent to reduce the number of supported
actions to five.

44

An action is the direct and only link between the Object List and the effec-
tors. They are reactive functions and have one goal that focuses on controlling
the robot relative to the physical location of the “best instance” of a single
object type.

In The Architecture, we make a number of assumptions about robot hard-
ware, based on the perception, manipulation and locomotion triple and the
swarm ethos:

Sensors Fixed to Robot
A robot’s sensors have no independent articulation, to change the sensor
focus the robot must physically move. This is because such a machine can
“look around” without needing additional motors. Because the individual
robots should be as mechanically simple as possible it follows that if they
can sense without additional equipment, then they should.

Each Robot Has One Manipulator
While it is necessary for each robot to possess a manipulator it is assumed
that they only need one. It is further assumed that this one gripper is
limited in motion, that it only grips and is not independently articulated.
To move the gripper, the robot should have to move its body. This is an
extension of the fixed sensors assumption.

The Robot can Control its Position
The motors can move the robot relative to other perceived objects.

Creating actions is the responsibility of the designer and while the designer
may use whatever internal source of information they deem necessary, their only
legal source of external information is via the Object List. It is forbidden to
access external sensor data directly from actions.

We do not rely heavily on internal sensors in either the simulated or real-
world implementations of The Architecture (aside from the system clock). This
was because both versions were implemented on fairly simple machines in straight-
forward environments. More complex implementations with better object track-
ing or more sophisticated locomotion may wish to employ inertial sensors,
odometers, etc. Section 5.1.3 discusses how this may be done within the re-
quirements of The Architecture.

Previous group and swarm architectures have also used small libraries of
primitive behaviours to construct more complex patterns (for example: Matarić
(1994), Arkin & Balch (1997), Arkin (1992) etc.), but this Architecture sharply
constrains the number of primitives based upon the expected features of a swarm
agent. If the agents’ effectors are restricted to manipulation and locomotion
and perception formalised as objects, then only four main primitives present
themselves:

Move To Object
Move the robot from its current location to the best instance of object type
T . An optional range minimum may be passed as an argument. Upon the
successful completion of this action, the object should be at the specified
range from the robot and the robot should be facing the object.

Move From Object
Corollary of the move to action; remove the robot from the best instance of

45

object type T . An optional range minimum may be passed as an argument.
Upon successful completion of this action, the object should be at least
the specified range away from the robot and the robot should not be facing
the object. These two actions represent the locomotion aspect of a swarm
agent.

Grasp Object
Capture the best instance of object type T with the robot’s manipulators.
Upon successful completion of this action, the object should be as fully
under the physical control of the agent as practical.

Drop Object
Corollary of the grasp object action. In this case the target object type is
implicit, it is whatever is currently grasped. Upon the successful comple-
tion of this action the object should be fully outside the robot’s physical
influence and (as much as possible) outside its perception. These two
actions represent the manipulation aspect of the swarm agent.

Each of these actions performs its objective and that objective only. Other
considerations such as avoidance are the responsibility of survival actions (see
below). Nor do we advocate the vector summation of Arkin & Balch (1997).
Each of the four actions above is a complete function for the physical output of
a swarm agent and is expected to have its own control loop and command the
effectors in a winner takes all fashion.

How the four actions complete their goals is the responsibility of the robot’s
designer, who must integrate them with their physical design. However, there
are some minimum constraints:

• All internal action loops must be sensitive to The Architecture shut-
down flag, which is stored in shared memory and is accessed via the
get shutdown flag() method. All loops must be broken out of if The
Architecture is shutting down.

• All internal action loops must be sensitive to the current active behaviour.
Actions are called via behaviours (see below) and terminate if their parent
behaviour changes. The current active behaviour index is stored in shared
memory and is accessed via the get active b() method. The action must
be passed the index of its calling behaviour as an argument.

However, only the locomotion actions must terminate immediately if the
behaviour changes. Grasp and drop are both permitted to complete their
motions and are thus partially blocking (see below).

• If an action achieves its goal, or terminates due to active behaviour change
or Architecture shutdown it returns success. If its target object type
disappears from the object list, or there is a technical programmatic error,
it returns fail. Upon the receipt of a fail the calling behaviour will
terminate (see below).

• Actions are program functions and have the following prototype:

int action(shared memory* shm,

int obj type,

int behave id,

float min range);

46

However, some of these inputs are implicit: in the grasp and drop actions
the minimum range is implied by the robot’s manipulator dimensions. The
target object type of the drop action will be whatever is in the manipula-
tors at that time. The details of actual implementation in both simulation
and hardware are discussed in Appendix B.

Notice that the input into the action functions is an object type, not an
individual instance. Actions must follow a standard for selecting which in-
stance of that type they focus on. This is achieved through the get active obj()

shared memory method and is based on object type and confidence – the
object of the specified type of the highest confidence is defined as “active”
by Architecture-wide convention.

As all actions are implicitly or explicitly focused on a single object, a global
position and navigation system is unnecessary, only the location of the object
relative to the robot is significant. Swarm agents are presumed to be reactive
and respond only to concrete objects they can perceive. The Architecture does
not support abstract movements, all agent motion must be object-orientated.

Four fairly simple commands may seem little enough with which to construct
a coordinated swarm of unbounded size, but consider again the generalisation
of eusocial insects in Section 2.1. Like Matarić (1994) we believe that for each
domain, a basic set of actions exist. However, we define the domain as only
tasks that a perceive-move-manipulate swarm agent is capable of and limit the
basic action set by considering the limitations of such an agent and enforcing
the use of the object list.

The reader may notice some similarity between this architecture’s “actions”
and the motor “schema” discussed in Section 2.6. They represent the same
concept, but here we have exploited the limitations of swarm agents to strictly
control the number and content of the individual schema. Arkin’s (1998) motor
schema idea is a broader one than that used here. The approach described in
Arkin & Balch (1997) and Arkin (1998) creates a design feature that could be
employed in any machine, not just in a swarm agent. To control their robots they
create a schema for every possible action, we are not interested in duplicating
that generality. Swarm robots should not be able to perform every possible
action, they are limited as individuals by the requirements of the swarm concept.
Thus the actions used in this project could be viewed as a subset of the larger
“schema” set.

3.3.1 Blocking Actions

If an action causes an object to change state (eg: “drop” causes an object to
transition from “captured-object” to “object”), it should complete before the
next action is executed. This is to ensure that the object state transition is
complete, once the object changes type, new behaviours may become relevant.
If the system reacts too fast, a new behaviour may be implemented before the
object is fully gripped or dropped.

To prevent this from occurring, the “grasp”, “un-grasp” and “avoid” actions
should wait for several seconds before returning from a successful execution.
This wait is most easily implemented by a simple loop that cycles until timeout
seconds have elapsed. The exact mechanism is unimportant as long as the
behaviour execution process is unable to call new behaviours for a small period.

47

These blocking actions have a small impact on the robot’s reaction speed,
but it is considered that tasks that require highly a precise, rapid response in
less than a few seconds are not swarm tasks.

Originally, all actions were required to be sensitive to behaviour termination.
If the calling behaviour ceased to be the active behaviour, then its current child
action would also be required to terminate, regardless of other considerations.

The trouble with this approach is that it encouraged poor performance. A
robot that engaged the drop action was supposed to turn from the dropped
object, once the object left the robot’s control, to prevent it from being re-
acquired. However, as soon as the object left the robot’s control, the captured-
object type no longer existed, causing that behaviour’s relevance to crash to
zero. Thus the drop action was never properly completed.

Once the drop action execution became blocking, the dip in relevance became
inconsequential, as the relevance conditions would be re-set by the next action
block to match the changed environmental conditions.

It was found that “drop/un-grasp”, “grasp” and “avoid” should be made
blocking for this reason.

Blocking actions were introduced piecemeal over the testing process, with
both the avoidance and drop actions having their sensitivity to behaviour termi-
nation removed. There was little observable affect on macro swarm behaviour,
as the motions of other agents and the inaccuracies in individuals do not allow
stop-start loops to run for long. There is however, a observable improvement in
small areas of individual performance.

3.3.2 Agent Survival

As the reader may have observed, the four behaviour actions above do not de-
scribe how a robot is to protect itself against collisions, power loss and other
disasters. These difficulties are handled by the “survival actions” that are sum-
moned and selected by separate processes that operate in parallel to the base
behaviour actions (see Figure 3.1). Survival action outputs commands with a
higher priority in motor control than the four behaviour actions, allowing the
robot to protect itself.

Avoidance is the most obvious omission in the base behaviour actions and the
only one corrected in the actual implementation of The Architecture (although
the potential for others exists – see Section 5.1.5). The base behaviour actions
do not require that the control loop considers anything more than the target
object, the termination criteria (if any) and the technical flags as described
above. Given this single-mindedness, the behaviour actions would be quite
content to drive the robot into or through any object that comes between the
agent and the target object.

It would have been possible to specify that the action functions must consider
avoidance in the specifications, however this would imply that each action had
two objectives. If the user wished to consider alternative behaviour when agent
battery power ran low, that would necessitate base actions with three objectives,
and so on. Clearly, if every special case were to be included into the action
functions, they would swiftly become overly complex and defeat their purpose.

A survival action has one function. As there is expected to be only a few (less
than four), they are hard-coded into The Architecture’s survival selection and
execution processes. The former checks a simple criterion to see if the survival

48

action is necessary, the latter executes any necessary survival actions. As the
implementation version only used “avoid”, there was no need to discriminate
between survival actions (see Section 5.1.5 for how to do this in future versions).
If a survival action is necessary, a flag is set and that action function is called by
the survival execution process. Survival actions are stand-alone units, there is no
“survival behaviours”. Recall that according to the swarm ethos, individuals are
expendable and survival execution does not have to be perfect in all situations.

Survival actions have a higher priority in their control of the motors than the
regular behavioural actions. When a survival action is necessary (see Section
3.4.6) a motor override flag is set. In the implementation of The Architecture
used in this project, the motor control function discriminated between input
from the regular behaviour actions and the survival actions on the basis of this
flag. If the motor override flag is set, only the output from the survival actions
is considered, while output from the regular behaviour actions is jettisoned.
Notice that the enacting of a survival action does not affect the execution of
regular behaviours, it simply causes their motor commands to be ignored.

3.4 Behaviours

A behaviour is a sequence of actions that need to be executed sequentially to
physically alter the state of either the agent or the environment in order to
achieve a single task goal.

Behaviours are the building blocks of The Architecture. It is through de-
signing behaviours that the user is able to apply the swarm to new tasks. The
behaviour selection governs what an individual robot actually does and the
relevance of its constituent behaviours determine when this is done.

To do this correctly, it was necessary to narrowly define what is possible
within a behaviour – if The Architecture is to be truly general, the user should
not need to give too many explicit instructions. To this end, behaviours are
constructed from discrete “action blocks” that are executed in strict sequential
order and contain everything necessary for the behaviour at that point – all the
relevant objects, which objects to avoid and which actions to perform on which
objects. If any action block fails (ie, its action returns a fail code) then that
behaviour is terminated.

Behaviours are selected via a modification of the insect model described in
Theraulaz et al. (1998). This mechanism is a combination of an internal time
variable and external stimulus in the form of the presence or absence of relevant
objects.

The entire behaviour process is intended to be as close to full automation
as possible, requiring the least input from the user and constraining such as
necessary to a formulaic structure that could ultimately be machine written.

3.4.1 Behaviour Selection

Behaviour selection is a separate process that runs constantly and in parallel to
the execution process. The selection algorithm was inspired by the method of
Theraulaz et al. (1998) – see Section 2.4, but ultimately evolved into a distinct
method under the pressures of implementation.

49

It should be stressed that The Architecture is for swarm robot control. Al-
though inspiration and design elements are drawn from biological sources, the
direct replication of biological systems is not the principle objective.

Thresholds

Equation 2.1 provides a means via which behaviours may be selected in an
insect-inspired fashion. However, whilst it is relatively easy to implement the
self-reinforcing threshold (θ), realising the stimulus proved to be much more
challenging.

In Theraulaz et al.’s (1998) model, the stimulus for each behaviour, like the
threshold, is time driven. Originally, The Architecture implemented a similar
system, but struggled to reconcile this with behaviour relevance.

Originally, it was believed that a behaviour that relied on object type T could
not be implemented unless an instance of object T existed in the object list. It
was assumed that behaviour selection was a process of making a decision among
possible behaviours, with a distinct search or “null” behaviour comprising a fall-
back.

To implement this, the threshold model (Equation 2.1) was adapted by re-
moving stimulus and replacing it with relevance; an evaluation of how relevant
a behaviour is based on that behaviour’s focus and the contents of the object
list at that time (see below).

The following equation combined these ideas and provided the basis for
behaviour selection:

Pi,j =
reli,j

reli,j + θi,j
(3.1)

Where:

Pi,j The current ranking for robot i, behaviour j.
reli,j The relevance of behaviour j to robot i.
θi,j The threshold for behaviour j on robot i

The relevance value computed from the presence or absence of objects in the
object list. The relevance for a behaviour will be different for each robot, as
relevance is calculated based on that robot’s observations only (see below).

Each behaviour has a threshold (θ), which is incremented if the behaviour
is inactive and decremented if the behaviour is active. Thresholds are floating
point numbers constrained between zero and one and are initialised to 0.5. Orig-
inally a random initialisation was used, but this was abandoned during debug-
ging in an effort to reduce the number of differences between robots. Thresholds
are incremented and decremented at the same rate (see Table 3.4.1).

The behaviour with the highest value of P is the current active behaviour.
Unlike Theraulaz et al.’s (1998) system this is not a probability – Section 5.1.1
discusses this difference in more detail.

If two or more behaviours have the same P value, then a random choice is
made. Relevance is computed from criteria set by the behaviours (see below).
The behaviour selection process adjusts the threshold, assesses behaviour rel-
evance, computes P and sets the active behaviour flag in an endless cycle. It

50

Quantity Simulation Value Real-World Value

behave time
(bt)

20 seconds 30 seconds

wander time 10 seconds 5 seconds
threshold
change

1
2∗bt per second 1

4∗bt per second

Table 3.1. Behaviour selection constants in both the real-world and the sim-
ulation.

is assumed that this can be done “fast enough” to keep pace with real-world
events.

The Architecture also incorporates a fail-safe procedure to ensure that a be-
haviour is not locked in operation. This is to prevent a robot from continually
striving to achieve a behaviour that is impossible (for whatever reason), despite
being relevant. A behaviour may only run continuously for behave time sec-
onds before being terminated. Once this has occurred the null behaviour (see
below) is forcibly activated for wander time seconds so the robot may move
through the environment and obtain fresh sensory input.

This cap on behaviour run-time was found to be important. Remember,
swarm robots are not prescient. It is possible (usually highly probable) that their
sensors are often wrong and the object list is an incomplete guide to the world.
What may appear rational to the termite-like robot could be very different
when viewed from the Olympian perspective of the human user. Mandatory
behaviour termination ensures that robots do not get stuck in corners (for long)
attempting to do impossible tasks on sketchy information.

Such behaviour termination can also mean that individual robots abandon
half-completed tasks because of an arbitrary time-out. This is not considered
important as it is assumed that some other member of the swarm will be along
presently to complete them.

In implementation, the threshold system proved less significant in decision
making than the relevance value for each behaviour (see Section 4.5). For this
reason we shall not hold the differences between the real-world and the simula-
tion to be any more significant than the physical differences between the robots.
Basically, they represent a known bug.

Relevance

Regardless of the condition of a behaviour’s threshold, it makes little or no sense
to engage it, if it is not relevant. A behaviour that focuses on object type T
must have a case of object T to be useful.

When a behaviour is defined, the user selects which object types are needed
for that behaviour to be relevant (see Section 3.4.3 below). The user may define
any number of object types as relevant and may specify their relationship as:
exist, or exist or not exist. Only one of these flags may be used per object
type, but object types may be joined in any and all combinations. Users define
relevant object types at each stage in the behaviour (see Figure 3.2).

These existence flags enable The Architecture to form a simple sentence of
sorts for each behaviour step, for example: behaviour n defines object types a

51

and b as relevant and flags them as exist and not exist respectively. This
yields:

For behaviour n to be relevant, object type a must exist and object
b must not exist.

A practical example of this would be a “pick-up” or “acquire object” action,
the target object must exist and the captured object must not exist.

This arrangement is relatively simple and, in an ideal world, could be im-
plemented very swiftly as simple Boolean statements. However, real-world im-
plementations have uncertainty and to directly implement these statements in
their simplest form would create great instability as false positives and negatives
of short duration add noise to the Object List.

To avoid this a more complex logic was implemented, based around the
object confidences. Objects existence is checked using a floating point value
between zero and one, not simple Boolean exist/not-exist. When confidences
need to be combined (in exist, or exist or not exist patterns) max and min

operators are used. These terms are borrowed from fuzzy-logic (see Terano,
Asai & Sugeno (1992), Bojadziev & Bojadziev (1995), etc.) but confidence does
not imply that an object is a member of more than one type.

The algorithm for this process is described in Algorithm 1.

Algorithm 1: Calculating behaviour relevance using floating point object
confidence values. As the confidence is a float, the minimum value was
used as a logic and and the maximum value a logic or. The return value
is the relevance of this behaviour and is between 0 and 1.

Data: relevance list — a list of the relevant object types for this
behaviour and their existence criterion (EXIST, OR EXIST,

NOT EXIST).
Data: object list — all the objects currently in view.
Result: relevance — the relevance of this behaviour

begin
for t ∈ relevance list do

conf t = max (confidences of all instances of type t);

exist = min (conf [types flagged EXIST]);
or exist = max (conf [types flagged OR EXIST]);
not exist = max (conf [types flagged NOT EXIST]);
relevance = min ((1-not exist), max (exist,or exist));
return relevance;

The fundamental assumption of the relevance/threshold behaviour selection
system is that a robot’s information is local. The relevance algorithm does not
consider the location of objects in its calculations and hence will consider all
objects in the object list that are of a type flagged as relevant by the behaviour.
To prevent the robot from being overwhelmed by objects from across the arena,
it is assumed that the limitations of the agents’ point of view and sensors will
restrict detection.

The lack of location consideration is intentional. Location was omitted from
relevance computation for the sake of simplicity and is an exploitation of the

52

expected limitations of swarm sensors. However it has implications for the future
expansion of The Architecture, as discussed in Section 5.1.2.

3.4.2 The Null Behaviour and Zeroth Object

When designing behaviours, there was one reoccurring behaviour that always
gave trouble; all tasks need to search. Agents obviously needed the ability to
look for relevant objects and even with perfectly idealised sensors occlusion and
movement would ensure that there would be times when the agent could see
nothing to do.

Unfortunately, it proved quite difficult to fit search into the behaviour pat-
tern. This was because of the requirement that all behaviours be comprised of
actions that focused on one object. The trouble with a search behaviour is that
it requires an action to focus on a non-existent object, which simply did not fit
the object list concept.

However, a search function was essential. To implement the random walk
pattern seen in earlier swarm searching projects without violating the funda-
mentals of The Architecture, an imaginary object was created. Entry zero in
the Object List was reserved for the “zeroth object”8. This object has no phys-
ical existence, but is always at index zero in the Object List and recorded as
a fixed distance from the agent with a variable bearing. The zeroth bearing
was permitted to wander in a random fashion9, in effect creating an object on
a perpetual random walk.

The creation of the zeroth object allowed all “search” behaviours to be de-
preciated. Instead, a null behaviour was created. The null behaviour had only
one action, move to obj(), which focused on the zeroth object causing the robot
to wander randomly as it steered towards the imaginary object.

The null behaviour had a fixed relevance of zero and threshold of one. It
was not included in probability calculations. Instead it was only invoked if all
other behaviour had a probability of zero. Thus a search behaviour was always
present, needed no special actions and no object focus.

The bearing of the zeroth object was controlled from the sensor process, as
though it was another object that could be detected via sensors. Every five
seconds (both real-world and simulation), a random number was selected. If
this number was less than or equal to half the maximum random range, then
the bearing of the zeroth object was set on the left of the robot, if greater it
was set to the right. The range of the zeroth object was always fixed at two
metres and the confidence at one. The zeroth object was permanently exempt
from avoidance.

3.4.3 Composition – Building Behaviours

While behaviours were intended as the user’s interface into the architecture,
they are closely constrained. The behaviour function structure was built with
firm rules and an eye towards eventual automatic compilation.

8Interestingly, in Brooks’s (1999) original Subsumption architecture, the “Zeroth compe-
tency” was avoidance, not search. The similarity of names in this case is coincidental.

9When random numbers were used in this architecture true randomness (or an accurate
pseudo-random approximation) was not usually needed. Thus not much effort was expended
in creating or checking the random distribution. The stdlib C function rand() was used
throughout, seeded from the clock.

53

Start Behaviour

Action Block 1

Set relevant object types
and their logical flags. Any
number of objects may be
set, valid flags are: exist,
or exist or not exist.

Set the object types that
are exceptions to the

survival process functions.
Any number of types

may be set as exceptions.

Run the Action Function.
Action Function
returns success?

no

Action Block 2

Action Block n

End Behaviour,
return result

of last action.

yes

Figure 3.2. The behaviour action block design, showing the first action
block.

54

Each behaviour takes the form of a series of actions in the form of action
blocks. These are sections of code in a standard sequence that set up every-
thing necessary for a given action. Support for multiple actions was needed as
many behaviours are too complex to be expressed as one action, for instance an
“acquire” behaviour needs to move to an object, then grasp the object, which
is two distinct action calls.

There was no formal limit to the number of action blocks in any behaviour,
but experience showed that overly complex behaviours comprising many action
blocks were both unstable and unnecessary.

An action block is comprised of the following steps:

Setting Relevant Objects
Which objects are relevant for this part of the behaviour and what are their
relationship. There may be any number of these in whatever relationship
the user desires. Again, experience showed that simple was best.

For readers interested in the code, it is important to note that for the first
block, this section is repeatedly called by the behaviour selection process to
determine behaviour relevance. Thus in the code this section is protected
by an if statement to ensure that the selection process does not execute
the behaviour. This is a coding convenience and has no relationship with
architecture functionality.

Exception Objects
Which object types are to be ignored by survival functions (see Section
3.3.2 below). These can be all of the object types or none and is necessary
to ensure that behaviours that involve close proximity to objects (such as
those involving “grasp”) do not trigger avoidance.

Actions
Call the action function. Action arguments are a pointer to shared mem-
ory, the relevant object type (if necessary), a calling behaviour identifier
and an optional conditional for-loop termination (if relevant).

This process is illustrated in Figure 3.2.
Once the action function has been called, it will proceed until the target

object no longer exists, the loop termination criterion has been achieved, the
active behaviour changes (unless blocking) or The Architecture shuts down. All
of these things are checked each time the action loop cycles to prevent pro-
cesses lock-up and to allow clean shutdown. It is important to note that how
a behaviour terminates is important. A behaviour’s return value reflects on
the behaviour selection. If an action terminates with a fail code, for whatever
reason (the most likely being that the relevant object has disappeared), that
behaviour is summarily terminated and its relevance is re-computed from ac-
tion block 0, as it is assumed that action block n always relies upon successful
completion of action block n− 1. This also prevents a failed action from being
continually re-called by accident.

Notice that action blocks are implemented in sequential order.

3.4.4 Behaviour Execution

Behaviours are called from a separate behaviour execution process. This paral-
lelism enables the active behaviour to be continually updated without waiting

55

for the current behaviour and action functions to return, thus behaviour execu-
tion is non-blocking for the rest of The Architecture.

This process is simply a continuous loop that calls the current active be-
haviour function, which is blocking to this process. Aside from termination flag
handling, there is no other functionality in this process.

3.4.5 Behaviour Evolution and Historical Notes

The behaviour selection processes described above is the culmination of a lengthy
and rather painful evolution. Earlier versions had a murkier division between
behaviours and actions (the original design had no separation at all). Behaviour
selection long remained an ad-hoc and subjective process with much vaguer def-
initions and an internal rising imperative “stimulus” instead of relevance, closer
to that discussed in Section 2.4.

The relevance based system was considered cleaner and less arbitrary – the
original stimulus design struggled to reconcile a disconnected internal imperative
with the object existence and employed an arbitrary function to do so. With
the benefit of hindsight a better system that represents a potential advance on
relevance is discussed in Section 5.1.

3.4.6 Survival Selection and Execution

The final process relates to the preservation of the individual agent. At the time
of writing only “avoid” was supported as a survival action.

Survival selection is a hard-coded process. Unlike behaviour selection, which
relies on the insect-derived threshold model and relevance, survival selection is
a specific and unalterable procedure for each survival action. This reflects the
fundamental expectation that there will be very few survival actions necessary
and that they will all be self-evident. Agent survival is the exclusive province of
the designer. Users are not empowered to alter or control the survival processes
of their agents, because survival is individually focused and does not necessarily
act to advance the common goals of the swarm.

In this implementation of The Architecture, avoidance selection was fairly
simple. The object list was scanned on a continual basis to see if any object fell
within a minimum range (0.25m for the real-world robots and twice the robots’
radius, 0.17m, for the simulated).

If an object fell within this physical range and its type was not set as an
exception by the active behaviour, then a random number (between 0 and 1)
was produced. If this random number was less than or equal to the avoidance
object’s confidence, then the motor override flag was set in shared memory.
This flag was the signal for the survival execution process to call the avoidance
action.

The random number call acted as a low-pass filter, making it improbable
that very brief duration false positive objects would be identified as collision
hazards. This filtering was found to be a practical real-world necessity.

In early implementations, the survival execution process called an avoidance
function that was sensitive to the motor override flag, returning if this was
re-set. Later implementations used a blocking avoidance function that executed
a sequence of time-controlled motor revolutions without reference to the outside
world once commenced (see Section 3.3.1 for more on blocking actions).

56

3.5 Designing Behaviours

When designing new behaviours, the swarm user must follow a deductive pro-
cess, sequentially reducing large-scale abstracts to the atomic units of the archi-
tecture. They must keep in mind the limitations of the individual swarm agents
and the guiding principles of the swarm itself to avoid making overly complex
behaviours or inappropriate demands on swarm agents.

In Section 2.2 we saw how no swarm agent has the wherewithal to grasp the
entirety of any project, their entire universe is circumscribed by what is before
them – the object list. What they can do is limited to the action functions.
These are ultimately the only tools the user has with which to implement their
project.

Recall from Section 3.4 that a behaviour is a sequence of actions representing
the smallest sub-component of a task that may be attempted in isolation by a
single agent. Thus behaviours are designed by considering the action sequence
necessary to achieve this single goal; which actions are needed and in what
order? What are the relevant objects for each action block? In what logical
relationship do they exist? What is the active object type needed by each
action?

By considering these questions behaviours are constructed, action block by
action block. For this project these stages were hard-coded in both the real-
world robots and the simulation – a higher level interface would simply have
added to the complexity of the code, without having any effect on architecture
execution. More user-friendly possibilities are discussed in Chapter 5.

Thus the design process can be summarised as follows:

1. Decide on the desired outcome of the project. eg: the construction of a
structure, such as a insect nest. This is a task.

2. Determine the smallest components of these tasks that may be done in
isolation, which objects need to be gathered, which need to be grouped or
moved, etc. These components are behaviours. For example an “assemble
component rooms” task implies that an “acquire building block object”
behaviour exists.

3. For each behaviour determine the action blocks, the relevant objects and
their logical relationship necessary for relevance. For instance: an “ac-
quire building block object” behaviour would need to employ the “move
to object” and “grasp object” actions. An instance of the “building block
object” would need to be present for this action to be relevant, and so on.

See Pirjanian (2000) for another example of a related behaviour design pro-
cess.

The designer needs to bare in mind that each behaviour is only one goal.
Complexity is achieved through the interaction of many behaviours and robots,
subsuming lower level behaviours into more complex outcomes10. This is related
to Brooks’s (1999) original subsumption approach.

10While it is in theory possible to define only one long, complex behaviour that does “ev-
erything”, this is strongly discouraged. Experience shows that a behaviour of more than three
action-blocks is unlikely to be completely executed. The odds of all criteria being filled in the
correct order (with faulty real-world execution and sensing) is simply too great.

57

It should be emphasised that only step 3 requires any actual computer input,
the proceeding steps are simply intended to illustrate the deductive process
which is necessary for behaviour development.

The final point that needs to be understood relates to logical order. It is
possible that behaviours would need to be executed in a logical sequence. How-
ever, there are no features in The Architecture that permit this to be explicitly
stated. The designer cannot specify that behaviour X must be executed before
behaviour Y becomes relevant. Instead, this is implied through the objects de-
fined as relevant in each behaviour. In accordance with stigmergic principles,
robots react to the results of previous robots’ actions. In this way temporal
precedence is enforced, not by a single robot’s actions, but by the actions of the
swarm as a whole.

3.6 Summary – The Complete Robotic Insect

Thus the full system is an architecture in five processes11. Although it is possible
to accumulate all these parallel processes into a single sequential process (as
was done with the simulation), it is easier to consider them to be fully parallel,
running independently and communicating through a central, shared repository
– as depicted in Figure 3.1.

The five Architecture processes are:

Sensor Process
The only input for data from the outside world. All sensor data is pro-
cessed and analysed in this process only, where it is turned into objects
in the list (see Section 3.2). Filling the Object List is the only responsi-
bility of this process. As part of that responsibility, the zeroth object (see
Section 3.4.2) is maintained here.

Behaviour Selection Process
The behaviour selection process is responsible for updating behaviour rel-
evance (by using the relevance calculation described in Section 3.4.1 and
illustrated in Algorithm 1), behaviour thresholds and nominating the ac-
tive behaviour by setting the active b flag. If a behaviour has been active
for too long, the null behaviour will be forcibly engaged for a set period,
preventing failed behaviours from being continuously run.

Behaviour Execution Process
Responsible for calling the behaviour functions, which in turn call action
functions. If a behaviour returns a fail code, the null behaviour and tasks
are set as active. Actions and behaviour functions are sensitive to the
active b flag and will terminate if this flag changes (except if blocking).
If the active t flag changes, the active behaviour will change as a matter
of course.

11If the reader peruses the code for the live robots they will find that there are actually
six separate processes and a final “main” The sixth process is a data-logging process and is
supernumerary. The final main return is largely historic and handles motor communication,
which, for technical reasons, is easier to do as a separate process to the action functions. Note
also, that the processes could also be threads.

58

Survival Selection Process
Assess the necessity for the survival actions. In the current version of
The Architecture only “avoid” is supported here. If the survival action is
needed, set the motor override flag in shared memory.

Survival Execution Process
Calls the relevant survival actions (if any).

The complete Architecture may also be seen in Figure 3.1. See Appendix B
for implementation.

59

60

Chapter4
The Swarm Architecture: Testing

“. . . the Answer, the Ultimate Answer, to Life
the Universe and Everything. . .

is. . .

is. . .
42!”

“. . . we are going to get lynched, do you know
that?”

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy

Summary

This section discusses The Architecture in practice. In this project implemen-
tation is intended as a proof-of-concept, and employs idealised insect-like swam
tasks to demonstrate The Architecture’s functionality. The Architecture is im-
plemented upon two distinct insect-like swarm agent designs (real-world and
simulated), as well as three different tasks.

Contents
4.1 The Tasks . 62

4.2 Ball Passing Task 64

4.2.1 Task Behaviours . 64

4.2.2 Simulation Results 66

4.2.3 Real-World Results 66

4.2.4 Observations and Discussion 66

4.3 Object Grouping1 69

4.3.1 Task Behaviours . 69

4.3.2 Simulation Results 70

4.3.3 Real-World Results 73

4.3.4 Observations and Discussion 76

4.4 Object Grouping2 78

61

4.4.1 Task Behaviours . 78

4.4.2 Simulation Results 80

4.4.3 Real-World Results 81

4.4.4 Observations and Discussion 84

4.5 General Observations 86

When implemented, The Architecture produces swarm-like cooperation.
The robots function adequately as both individuals and a collective.

The Architecture demonstrates:

• Successful execution of tasks set.

• Adaption to new swarm-tasks without fundamental modification.

• Successful implementation on two distinct swarm robot designs – one real-
world, one simulated. For details on these robots see Appendix B.

• Scalability, tasks with 100 agents and four agents were attempted with
comparable results.

• Emergence of cooperative aspects – such as a rough division of labour
and swarm-wide agreements – without the user explicitly requesting these
aspects.

We conclude that The Architecture is functional in implementation and
workable as a concept.

In practice, it was found that successful implementation of The Architec-
ture’s current form is heavily dependant on:

• Comprehensive local perception. As well as clear identification of object
type, robots must be able to discriminate between atomic objects and
semi-complete structures.

• Comprehensive searching.

• Sufficient robot density. Due to lack of communication, information does
not propagate through the swarm. The probability of at least one robot
encountering all relevant objects must be high.

• Environmental containment. Lacking a swarm cohesive mechanism, robots
will disperse without firm bounds on their universe. Peer-to-peer commu-
nication may address this – see Chapter 5, Future Work.

4.1 The Tasks

The Architecture was tested upon three tasks. These tasks were designed to be
idealised versions of swarm tasks, reduced in complexity to make implementation
tractable with limited time and physical resources. They were intended as a
test of The Architecture’s functionality, not an exhaustive test of every possible
swarm task.

The three tasks were implemented in both simulation and hardware. Simu-
lated results were the most successful (as real-world problems did not intrude)
and provide the basis of the observations. Real-world tests were intended to
demonstrate the efficacy of the simulation.

62

Ball-Passing
One target object (a “ball”) was passed between the swarm members, the
task objective being to keep the target object in motion.

This simple task was the fundamental task used for initial testing, debug-
ging and the gathering of basic quantitative data in both the simulation
and real-world experiments. The length of time each robot gripped the
ball was measured and used as a basis of comparison between swarms. A
broadly equal division of labour was found, without explicitly program-
ming for this result.

Additionally, such object transfer is redolent of Turner’s (2011) “bucket
brigade” termite building (Dorigo et al. 2000). The individual agents in a
swarm may be too limited to move an object from A to B without assis-
tance. The distance may be too far, the agent too weak, or its perception
too limited to the location of grasp point B in any more than a general
directional sense. Thus it is logical for one agent to pass its burden to
another if it can find no more constructive use for it in its immediate
environment.

Grouping1
Gathering n scattered objects and combining them in a group. The group
could be in any arbitrary location in the arena.

By executing this task, the swarm demonstrated its ability to explore the
environment, manipulate objects, assemble them in some more ordered
structure and maintain that structure over time. Such gatherings are the
basis of foraging, construction and other practical tasks.

This task demonstrated the auto-catalytic self-organisation discussed in
Dorigo et al. (2000) and Garnier et al. (2007). One robot combining two
objects creating the seed of the group. All agents subsequently used this
start, placing their objects at the same location without global knowledge.

To prevent the groups from be disassembled, this task introduced a new
object type – the “group” object (see Section 4.3.4 for a discussion on
the necessity for this). In the real-world this was any collection of target
objects greater than one within 0.5 metres of each-other (later dropped
to 0.35 metres, from experiment 4). Although the depth detection in the
real-world robots had a marked tendency to under-read. In the simulation,
objects needed to be within one robot diameter (17cm) to qualify.

The component objects in the group maintained their individual existence
in the object-list as target objects.

Simulated experiments are run over a 3600 “second” period, but have
usually achieved a group within the first few hundred seconds, thus real-
world experiments are of (roughly) 1200 seconds.

Grouping2
Identical to Grouping1, except that the objects were required to be clus-
tered around a specific point – a central pillar – marked by a third object.
This task indicated that the user may exert some measure of control over
the self-organisation process, by stipulating an arbitrary collection point.

63

Both grouping tasks were also successful in a very large-scale (800 target
objects, 100 robots) simulation to demonstrate the scalability of The Architec-
ture.

4.2 Ball Passing Task

4.2.1 Task Behaviours

To implement the ball passing task, both the real-world and simulated robots
were equipped with the following three behaviours:

ACQUIRE – move to and grasp the ball target object.

action block one – Move to object

Relevant Objects: target-obj = exist
captured-obj = not exist
capture-by-other = not exist

Exception Objects: target-object
captured-obj

Action: move-to-object(target-obj)

action block two – Grasp object
Relevance relations and Exception objects are unchanged.
Action: grasp-obj(target-obj)

BALL TO AGENT – pass the captured ball.

action block one – Move to agent

Relevant Objects: captured-obj = exist
agent = exist

Exception Objects: captured-obj
agent
captured-by-agent

Action: move-to-object(agent)

action block two – Drop ball
Relevance relations and Exceptions are unchanged.
Action: drop-object()

RECEIVE – if an agent with a ball is sighted, move to receive the ball. This
assumes that the other agent wants to pass.

action block one – Move to agent.

Relevant Objects: captured-by-agent = exist
captured-obj = not exist

Exception Objects: none.
Action: move-to-obj(capture-by-agent)

There are no other action blocks in this behaviour.

64

F
ig
u
re

4
.1
.

A
se

q
u
en

ce
o
f

st
il
ls

fr
o
m

3
:5

9
:0

1
2
,

p
a
ss

in
g

ex
p

er
im

en
t

1
3
,

sh
ow

in
g

a
n

in
st

a
n
ce

o
f

b
a
ll

p
a
ss

in
g
.

C
lo

ck
w

is
e

fr
o
m

to
p

le
ft

,
th

e
fi
rs

t
ro

b
o
t

w
it

h
th

e
b
a
ll
,

a
p
p
ro

a
ch

in
g

a
n
o
th

er
ro

b
o
t,

tr
a
n
sf

er
(i

n
th

is
ca

se
re

su
lt

in
g

in
co

ll
is

io
n
),

th
e

se
co

n
d

ro
b

o
t

w
it

h
th

e
b
a
ll
.

65

4.2.2 Simulation Results

For thirty six-hundred second simulations, each robot held the ball for an average
of approximately 9.215 percent of the simulation (σ = 4.377%).

4.2.3 Real-World Results

Table 4.1 shows the mean time an individual robot held the target ball as a
percentage of the overall task. This is broken into four categories: the individual
mean for scoop-equipped robots, the individual mean for hook-equipped robots
and the means for both as computed from the total experimental duration as
measured from a wall clock1.

Table 4.2 gives the overall time that the swarm had the ball in motion as a
percentage of the overall experiment duration. This data is broken down in the
same fashion.

It should be noted that the real-world times are not exact (see Appendix
B). They are intended to represent reasonable, although rough values that give
a basis for demonstrating The Architecture as a concept.

Experiment Mean Time Gripped
(% – individual)

standard
deviation

scoop robots, wall-time
mean

7.10 2.19

scoop robots, internal
time mean

6.11 1.83

hook robots, wall-time
mean

11.45 2.36

hook robots, internal time
mean

10.44 2.11

Table 4.1. Individual real-world robot results for the ball-passing task, this
is the time that individual robots spend gripping the “ball” as a
percentage of the experiment. These results are an average of all
robots over all experiment. Separate results exist for the scoop
robots and the hook equipped robots and both sets are computed
based on the wall-time length of the experiment and the robot’s
internal measurement. The time each robot spends with the ball
in its scoop is always its own measurement.

4.2.4 Observations and Discussion

Conclusions From the Data

From Table 4.1 and 4.2 we can see that the results of both real-world sets are
roughly comparable to the simulated results.

In all cases, the robots hold the ball for a roughly equal percentage of the
experiment (as evidenced by the fairly low standard deviation) and the aggregate

1The stopwatch used as the “wall-clock” had a precision of one-hundredth of the second.
The precision of the results reflects this. see Appendix B for details on time.

66

Experiment Mean Time Gripped
(% – swarm)

standard
deviation

scoop robots, wall-time
mean

28.38 2.97

scoop robots, internal
time mean

24.45 2.84

hook robots, wall-time
mean

45.81 2.84

hook robots, internal time
mean

41.76 5.39

Table 4.2. Swarm real-world results for the ball-passing task. This is an
average of the summed times for each experiment and is separated
into scoop and hooked robots and clock and internal time as
previously.

time the ball was in motion was a reasonably significant proportion of the total
time.

From this we conclude that The Architecture is:

• Successfully completing this task in these environments on these robot
platforms, with the platforms comparing reasonably well.

• Capable of useful emergent behaviour. The robots all hold the ball for
comparable times, yet this rough division of labour was not explicitly
encoded into the behaviours.

• Capable of keeping a swarm of four robots engaged in a task in such a
way as the principle objective of the task is being fulfilled for a significant
percentage of the time.

Comment from Observations

Several general observations can be made from the experiments and debugging
experience:

• The “receive” behaviour had a noticeable effect on the robots. By using
the captured-by-other object type, this behaviour enabled a robot’s overall
behaviour to be affected by the actions of another agent. On several occa-
sions one or more robots were observed following the ball-carrying robot
as it searched for a passing mate. This is a clear instance of recruitment,
as one machine attracts others to it by the execution of its task.

Frequently, these recruitment episodes manifested themselves as a “staring
contest,” with the ball held static between two facing agents2. We believe
that in these situations, both machines identified the ball as the property

2See also Lerman & Galstyan (2002) for more on how robots may interfere with each-other.
They note that performance growth is sub-linear to group size growth. Further discussion on
robot-environment interaction and behaviour-based run-time improvement can be found in
Goldberg (2001).

67

Figure 4.2. Three illustrations of the receive behaviour. From Top: two
agents following a third, two agents facing each-other with the
ball in between them with a third watching, two agents with the
ball between them. From experiment 3, 100 seconds, experiment
1, 154 seconds and experiment 16, 135 seconds respectively.

68

of the other and, having deposited it, were unwilling to leave. See Figure
4.2 for examples of both types of receive behaviour

This is an illustration of the actions of one agent stigmergically effecting
the actions of another.

• Without boundaries on the arena, the robots’ search behaviour gradually
pulls the swarm apart. A minimum number of robots is needed in an area
to allow swarm cooperation.

• Thresholds were noticeably less significant than relevance. Robots did not
develop noticeable specialisation – one machine always grasping the ball.
Each behaviour’s relevance criteria usually provided a logically exclusive
set of conditions.

• A series of bugs and hardware failures, especially with the real-world
robots, is discussed in Appendix B. With the knowledge gained as part of
the development discussed in this appendix, more effective robots could be
built. However, this project is a proof-of-concept, which has been demon-
strated. There was insufficient time and resources to justify rebuild the
real-world robots from scratch.

4.3 Object Grouping1

4.3.1 Task Behaviours

ACQUIRE – move to and grasp the ball target object. Identical to its counter-
part in the ball-passing task, except that target-obj-group = not exist.

BALL TO AGENT – pass the captured target object. This behaviour was
identical to its counterpart in the ball-passing task, except that target-
obj-group = not exist. This behaviour was eventually discontinued as
a distraction (experiment 7).

RECEIVE – if an agent with a ball is sighted, move to receive the ball. This
assumes that the other agent wants to pass. This behaviour was identical
to its counterpart in the ball-passing task.

GROUP1 – move captured target object to another target object or existing
group of target objects.

action block one – Move to object

Relevant Objects: captured-obj = exist
target-object = exist

Exception Objects: captured-obj
target-obj
target-obj-group

Action: move to obj(target-obj)

action block two – drop object
Relevance relations and Exception objects are unchanged.
Action: drop object()

69

Figure 4.3. The object Grouping1 task in the simulator. Left: at the be-
ginning of the simulation with the robots in the corners and the
targets randomly distributed. Right: the final stage after 20
simulated minutes, two clear groups and one spare.

It should be noted that for the real-world robots, a fully blocking drop action
was employed (from experiment 1) and complemented from experiment 2 with
fully blocking avoidance. This was in an attempt to overcome the perceived
poorer execution in the real-world robots. All of these modifications led to
incremental observed improvements in individuals.

4.3.2 Simulation Results

Reasonably successful grouping was achieved by the simulation – see Figures
4.3 to 4.10.

The Grouping1 task was quantified by investigating the nearest neighbour
distance for each target object. The assumption was that as the simulation
progressed, the mean nearest neighbour distance would decrease (as would the
variance). Eventually, it should converge on the “grouping distance” (two or
more objects within “grouping distance” are seen as a group by the robots).
Figure 4.4 shows that this this mean distance is usually below the grouping
distance for a all simulations, with Figure 4.5 showing the complete evolution of
the mean nearest-neighbour distance for a single simulation selected at random.

These results show that a minimum group size is reached, but is not neces-
sarily stable. The group may expand and contract several times over the course
of the simulation.

The results of the large-scale simulation (800 target objects, 100 robots,
20×20 metre arena) can be seen in Figures 4.6, 4.7 and 4.8. Over the course of
the 30 minute simulation, the random distribution gave way to distinct clusters
of target objects.

It is noted that the clusters of the large-scale simulation are not of equal
size, as can be seen in Figure 4.3. Collections of target objects larger than one
are considered “groups” by the robots and are generally left alone.

70

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

T
im

e

Simulation No.

Percent of Simulation Target-Objects in Group: Grouping1

Figure 4.4. Percentage of each simulation that target objects within a group
for the small-scale Grouping1 simulation. This is computed by
measuring the mean nearest-neighbour distance for each target
object. Each simulation ran for 3600 seconds, contained four
robots and ten target objects.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000 3500

M
ea

n
 N

ea
re

st
-N

ei
gh

b
ou

r
D

is
ta

n
ce

 (
m

)

Time (sec)

Mean Nearest-Neighbour Distance: Grouping1, Simulation 9

sim. 9
std

group def.

Figure 4.5. Plot of the target-object nearest-neighbour distances for a typ-
ical Grouping1 simulation run (chosen at random). This plot
shows the mean distance of one target object to another over
the experiment.

71

Figure 4.6. The object grouping task in a very large (20 by 20 metre) arena.
The objects were initially arranged in a uniform random dis-
tribution (left), while small clusters of target objects are dis-
cernible at the end of the 30 minute simulation (right). In this
simulation there were 800 target objects and 100 robots.

Figure 4.7. A close up view of the large-scale Grouping1 task, left: the ini-
tial uniform random distribution (slightly skewed by the image
perspective), right: the grouped objects at the end of the 30
minute simulation.

72

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200 1400 1600 1800

M
ea

n
 N

ea
re

st
-N

ei
gh

b
ou

r
D

is
ta

n
ce

 (
m

)

Time (sec)

Mean Nearest-Neighbour Distance: BigGrouping1
typical simulation

Mean Nearest Neighbour Distance
Std

Group Definition

Figure 4.8. The mean nearest neighbour distance for objects in the very
large arena, Grouping1. The mean distance trails off as the
target objects are grouped closer and closer together. This is a
typical simulation.

4.3.3 Real-World Results

The real-world results are qualitative for this experiment. In the absence of
the simulator’s easy ability to record the position of objects3 we shall discuss
observations from the experiments.

The real-world results of this task depended critically on the availability of
the gripper. When executed by gripper equipped robots small groups could be
observed, although not with the same speed, clarity or stability that had been
observed in the simulation4.

The gripper tests are ambiguous as the target objects still had to be pushed
from the walls. This was because the protruding forward touch sensors would
be triggered before the gripper had a chance to engage. The external move-
ment of the target objects certainly adds to the “grouping” cohesion. However,
occasionally, groups were observed in clear space (see Experiment 2 from 215
seconds and Experiment 3 from 55 seconds) and the instances of individual
agents grouping objects are too clear to be overlooked, although their groups
are usually short-lived.

Without the gripper the result was decidedly negative. Although groups did
form, they were clearly an artefact of the arena/robot interaction – as robots
touched the wall they backed up and turned according to the avoidance action
discussed in Section 3.3.2, which caused the scoop to lose control of the tar-
get object. Thus target objects had a higher probability of being dropped at
the walls and in corners than anywhere else, forming loosely defined artificial

3 Over-head cameras and tracking could have been employed, but the constraints of time
and resources rendered this impractical.

4See Appendix B for more on robot gripper development.

73

F
ig
u
re

4
.9
.

T
w

o
ta

rg
et

o
b

jects
b

ein
g

g
ro

u
p

ed
in

th
e

G
ro

u
p
in

g
1

ta
sk

.
C

lo
ck

w
ise

fro
m

to
p

left:
a

ro
b

o
t

(circled
)

w
ith

a
ca

p
tu

red
o
b

ject
b
rin

g
in

g
it

tow
a
rd

s
a

T
a
rg

et
o
b

ject,
th

e
ca

p
tu

red
o
b

ject
b

ein
g

d
ro

p
p

ed
a
n
d

th
e

ro
b

o
t

b
a
ck

in
g

u
p
,

th
e

ro
b

o
t

tu
rn

in
g

aw
ay

fro
m

th
e

n
ew

g
ro

u
p
,

th
e

ro
b

o
t

resu
m

in
g

sea
rch

in
g
.

F
ro

m
G

ro
u
p
in

g
1
,

ex
p

erim
en

t
7
,

4
2
.5

seco
n
d
s.

74

Figure 4.10. Grouping1 with grippers. Top: the beginning of the Grouping1
task showing the dispersal of the target objects. Bottom: a
later stage in the same experiment showing the objects in two
clusters. From experiment 6, 3.5 seconds and 220.2 seconds,
respectively.

75

“groups”. At no time were stable groups of target objects observed to form
in free space. Although this illustrates how environments can be exploited to
achieve swarm objectives, it does not demonstrate The Architecture per se.

4.3.4 Observations and Discussion

Overall, the Grouping1 task illustrates the amplification of initial random fluc-
tuations necessary for self-organising cooperation (Garnier et al. 2007). The
objects begin in a random initial configuration, one robot makes a group of two
objects. The other robots in the swarm all place their captive objects near this
initial seed pair. There is no explicit communication of the first pair’s location,
yet a global “decision” is made regarding the final group’s location.

Simulation

The simulated version of the Grouping1 task produced clear groups, occasion-
ally more than one per simulation. Groups were stable in the long-run, but
prone to periodic disturbances as outlying target objects were “snipped off” by
passing robots. These snipped objects were usually returned to the main group
eventually – as can be seen in Figures 4.4 and 4.5 the objects are grouped for
the majority of the experiment.

It is believed that these instabilities stem from group description and shape.
Groups are built in an unstructured fashion and often grow “tails” as objects are
placed next to the first target object an agents sees. These tails are vulnerable
to wandering agents who can see the lone object, but not the rest of the group.

When a stable group size is eventually reached, its nearest neighbour distance
is generally much smaller than the definition of a group. This is probably due
to objects being “bumped” by robots as they wander the arena. As there is no
real resistance for the robots that side-swipe an object, the object is shunted
closer to its group-mates. If the object is moved out from the group it is usually
snapped up by another robot as a free object and placed back in the group.
These factors would tend to condense the groups as far as physically possible.

Figure 4.3 shows the initial random distribution reduced to two distinct
groups. Multiple groups occasionally form because the robots cannot perform
quantitative analysis – a group of two target-objects is a target-object-group, as
is a group of n objects. The object type classification does not include a rating
system or means of assessing the membership degree of types in a fuzzy sense.
See Section 5.1.3 for more on this.

The large-scale simulations reveal that The Architecture functions just as
well with very large swarms as it does with the very small. Figures 4.6, 4.7 and
4.8 illustrate that, just as in the small-scale version, coherent groups consistently
form and, as Figure 4.8 shows, maintain great stability over time.

The large-scale Grouping1 task illustrates an important component of swarm
behaviour; the ability to cooperate on tasks on a much greater scale than the
agents are individually capable of.

The robots do not have enough memory or sensor range to detect all objects
in the environment. Despite this, grouping follows much the same pattern ev-
erywhere. This emphasises that swarm agents do not need global maps, plans
or communication to create a global structure from local interactions.

76

Figure 4.11. Illustration of the problems of target-object occlusion in the
Grouping1 task. The two left-hand robots are trying to place
their captured object near other target objects, unaware that
they are pushing such objects before them. From experiment
2, 357 seconds.

Real-World

Grouping was occasionally observed in the real-world task (with hooked robots).
However it did not have the same crisp definition seen in the simulation.

This problem was caused by rogue members of the swarm demolishing groups
constructed by others. Nascent groups of target objects were observed, but
frequently had no longevity. This was observed in the simulator, but was more
pronounced in the real-world.

It is believed that this self-destructive behaviour was based in the limitations
of the hardware, the robots could not reliably perceive the target object groups.
The problem is illustrated in Figure 4.11, where an agent is searching for other
target objects to deposit its capture, unaware that there are two more in front
of its scoop.

Occlusion was the biggest problem. When two target objects were in close
proximity, there is only a finite zone where the object markers on both ob-
jects were visible to an observing robot, the two objects occluded each others’
identifying markers.

In The Architecture, information promulgates between agents by means of
observable changes in the environment, either a change in the physical orien-
tation of objects or a change in object type. To build any type of structure
the robots must be able to distinguish between three phases of object: “compo-
nent”, “half-state” and “finished” which must be explicitly or implicitly defined
as object types.

A “component” object would be the atomic object of the structure, in this
case the single target object that comprises the basis of the groups. Other
examples would be bricks for a wall, debris for a midden, etc. A “half-state”
object is the incomplete structure, two target objects grouped together, two
stacked bricks, etc. Notice that there would not need to be a distinction between

77

a group of two target objects and a group of N target objects, any number
greater than one is acceptable to define a half-state object.

The final type phase is “finished”, designating a completed structure. This
type would probably not be defined explicitly, as an individual swarm agent
would be unlikely to possess the perceptual scope to comprehend the completed
structure, unless it was very small. Instead, the finished phase would be defined
by a lack of component objects or locations in the half-state structure to place
them. See Section 2.5.2 for a previous example of this.

The instability of the real-world grouping task illustrates the importance of
these distinctions. Because the individual agents in the swarm do not know
explicitly that their companions have completed a structure, the completion
must be self-evident if they are not to pull it apart again. For any structure
to be completed the swarm agents must be able to distinguish reliably between
the atomic components of a structure and the structure itself.

In this case, the robots’ limited perception and the identically sized objects
ensured that such distinctions could not be reliably made. This also demon-
strates that the target component objects should not be large relative to the
robots’ sensor field of view – insect-like, the object or part of an object must be
small enough for an agent to manipulate.

4.4 Object Grouping2

The Grouping1 task was a qualified success, but in that task the swarm was
free to assemble groups wherever it saw fit. The groups of target objects form
in clear space with no further influencing factor other than the original position
of the robots and target objects.

While success in this task is not insignificant, there will be times when
the user wishes the swarm to move objects to an arbitrary point. Owing to
the object list requirements this point must be an identifiable object, but its
location in the arena may be arbitrary. Thus the Grouping2 task was attempted,
requiring the swarm to group target objects around a central object or “pillar”.

4.4.1 Task Behaviours

ACQUIRE – move to and grasp the ball target object. Identical to its counter-
part in the ball-passing task, except that target-obj-group and target-obj2
= not exist.

BALL TO AGENT – pass the captured target object. This behaviour was
identical to its counterpart in the ball-passing task, except that target-
obj2 = not exist.

This behaviour was included in the belief that – as the robots are very
limited and there will occur times when a robot has a captured object
and cannot see the central pillar – it is best to give a captured object
to a passing robot who may find the pillar rather than do nothing. This
worked fairly well in simulation, however it had to be discontinued in later
tests of the real-world architecture as it created too much confusion. As
the real pillar was much harder for the real robots to find, they tended

78

Figure 4.12. Top: the beginning of the real-world Grouping2 task, showing
the target objects, the robots and the central “pillar” object
in their initial positions, bottom: the same experiment after
approximately 624 seconds, showing the partial grouping of
the target objects. From experiment 7.

79

to spend the majority of their time passing target objects to each-other.
Some target objects were in constant motion, never finding their group.

RECEIVE – if an agent with a ball is sighted, move to receive the ball. This
assumes that the other agent wants to pass. This behaviour was identical
to its counterpart in the ball-passing task.

GROUP2 – move captured target object to another target object or existing
group of target objects.

action block one – Move to object:

Relevant Object Types: captured-obj = exist
target-obj2 = exist

Exception Object Types: captured-obj
target-obj2
target-obj1
target-obj1-group
proximity-obj

Action: move-to-obj(target-obj2)

action block two – drop object:
Relevance relations and Exception objects are unchanged.
Action: drop-object()

For the real-world robots, a fully blocking avoidance function was employed
from experiment 1 of this task, from experiment 3 onward it was joined by a
partially blocking un-grasp action (backup, blocking but not turning). Two
channel U and V space object colour recognition for the pillar objects was
introduced from experiment 4 onward.

4.4.2 Simulation Results

In simulation the second grouping task was successful both on a small scale and
a large. On the small scale, Figure 4.13 illustrates that the robots were able to
group all the target objects around a central pillar and keep them there over a
60 minute simulation (although the group is basically achieved in the first 1000
or so seconds). Figures 4.16 and 4.17 show that this was also successful on a
much larger scale.

The small-scale simulations measure the distance from the individual target
objects to the central pillar directly and Figure 4.13 records the mean of this
distance for all ten target objects in the simulation.

The small-scale simulations had four robots and ten target objects.

The large scale simulation results are presented in the form of nearest neigh-
bour distance as in the previous Grouping1 task. This is because, with many
pillars, it is impossible to tell which target object belongs to which pillar5.

5“distance to closest pillar” could have been used, but nearest-neighbour was already im-
plemented. This plot is really a quantitative representation of Figures 4.16 and 4.17.

80

75

80

85

90

95

1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

T
im

e

Simulation No.

Percent of Simulation Target-Objets in Group: Grouping2

Figure 4.13. Percentage of each simulation that target objects within a
group for the small-scale Grouping2 simulation. This is com-
puted by measuring the mean distance from the central pillar
for each target object. Each simulation ran for 3600 seconds,
contained four robots and ten target objects.

The large simulations were conducted in a 20 by 20 metre arena, with 100
pillars arranged in a two by two metre grid. Grouping was performed with 800
target objects by 100 agents.

4.4.3 Real-World Results

In the early real-world experiments, the scoop robots were unable to group the
target objects at the “pillar”. The results were similar to those of the scoop
robots in the first grouping task, with an inability to grip causing an endless
movement of target objects through the arena. Also, most of the target objects
were eventually abandoned by the robots at the edges, rather than near the
target object. This failure was probably the result of poor object detection (the
scoop robots used an early target-object2 print that was the wrong colour).

Later experiments with hooked robots and a different coloured pillar object
were more successful (see Figure 4.19), although never quite at the levels of
the simulation. The most number of objects grouped at the central pillars was
five of eight and this group never attained stability. The real-world robots had
significant trouble locating the central pillar, even in its final colour and it is
suspected that three colours was the limit of the recognition system. However,
clear instances of grouping were observed.

81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500

D
is

ta
n
ce

 (
m

)

Time (sec)

Mean Nearest-Neighbour Distance: Grouping2 Simulation4

mean dist
 std

group definition

Figure 4.14. One Grouping2 simulation chosen at random, showing the
mean distance of the target objects from the central pillar over
the course of the simulation.

Figure 4.15. Left: the beginning of a typical Grouping2 small-scale simula-
tion. Right: the final grouping result of a typical simulation.
The red grouping pillar object is at the centre of the arena.

82

Figure 4.16. The second object grouping task in a very large (20 by 20
metre) arena. The objects and robots are initially arranged in
a uniform random distribution with 100 grouping pillars in a
two metre by two metre grid (left). Small clusters of target
objects are discernible around each pillar at the end of the 30
minute simulation (right). In this simulation there were 800
target objects and 100 robots.

Figure 4.17. A close up view of the large-scale Grouping2 task, left: the ini-
tial uniform random distribution (slightly skewed by the image
perspective), right: the objects grouped around the pillar grid
at the end of the 30 minute simulation.

83

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500 2000 2500 3000 3500

M
ea

n
 N

ea
re

st
-N

ei
gh

b
ou

r
D

is
ta

n
ce

 (
m

)

Time (sec)

Mean Nearest-Neightbour Distance: BigGrouping2
typical simulation

Mean Distance
Std

Group Definition

Figure 4.18. The mean nearest neighbour distance for objects in the very
large arena, Grouping2. The mean distance trails off as the
target objects are grouped closer and closer together. This is
a typical simulation.

4.4.4 Observations and Discussion

Simulation

The small-scale simulation achieved notable success in grouping the target ob-
jects. Figure 4.13 shows that objects rapidly condense to a small, central group
and remain there consistently. There are only a few occasions when a group is
disassembled.

This improved group stability is believed to be due to two factors:

1. The measuring process is subtly different in the Grouping2 task. The
presence of the central pillar enables us to measure the group as mean
distances from the simulation origin (which is the centre of the arena),
rather than nearest neighbour distances. Thus for each group we can
accurately measure the size of the group.

2. A “better” group definition exists in Grouping2. The Grouping2 robots
do not look for existing groups, instead focusing upon the central pillar.
Unlike the Grouping1 robots, identification of groups is not critical, the
existence or absence of the pillar object is the deciding factor. Any target
object near the pillar is implicitly part of the group.

This means that groups are less likely to form elongated “tails”, con-
stituent objects are deposited near a central marker, not the last object
dropped.

Compare the elongated groups in Figure 4.3 (right) with the tight, cen-
tralised group in Figure 4.15 (right) to see this.

84

F
ig
u
re

4
.1
9
.

T
w

o
ta

rg
et

o
b

je
ct

s
b

ei
n
g

g
ro

u
p

ed
in

th
e

G
ro

u
p
in

g
2

ta
sk

(h
o
o
k
ed

ro
b

o
ts

).
C

lo
ck

w
is

e
fr

o
m

to
p

le
ft

:
a

ro
b

o
t

(c
ir

cl
ed

,
re

d
)

w
it

h
a

ca
p
tu

re
d

o
b

je
ct

b
ri

n
g
in

g
it

to
w

a
rd

s
th

e
ce

n
tr

a
l

p
il
la

r
o
b

je
ct

,
th

e
ca

p
tu

re
d

o
b

je
ct

b
ei

n
g

d
ro

p
p

ed
a
n
d

th
e

ro
b

o
t

b
a
ck

in
g

u
p
,

th
e

ro
b

o
t

tu
rn

in
g

aw
ay

fr
o
m

th
e

n
ew

g
ro

u
p
,

th
e

ro
b

o
t

re
su

m
in

g
se

a
rc

h
in

g
.

N
o
ti

ce
th

a
t

th
er

e
a
re

a
lr

ea
d
y

th
re

e
o
b

je
ct

s
g
ro

u
p

ed
a
ro

u
n
d

th
e

ce
n
tr

a
l

p
il
la

r
w

h
il
e

a
n
o
th

er
ro

b
o
t

(c
ir

cl
ed

,
b
lu

e)
a
ls

o
h
a
s

ca
p
tu

re
d

a
ta

rg
et

o
b

je
ct

,
b
u
t

fa
il
s

to
p

er
ce

iv
e

th
e

ce
n
tr

a
l

p
il
la

r.
F

ro
m

G
ro

u
p
in

g
2
,

ex
p

er
im

en
t

4
,

5
5
7
.7

se
co

n
d
s.

85

Essentially, Grouping2’s behaviour set-up is structured to produce more
compact stable groups than Grouping1.

The large-scale simulations of both styles of object groupings illustrate the
importance of a dynamic environment and agent interaction. Although the
robots do not need the direct help of their fellows to move the objects, they do
rely on other mobile robots in an unexpected way.

In both large-scale simulations, small numbers of robots could be observed
wandering in small loops, circles or not moving at all. Upon the arrival of
another agent, these non-productive cycles could be broken as the new agent
wandered within the first’s proximity field and the first executed avoidance.

Observation of these inactive agents showed that the non-productive cycles
were the result of special physical conditions; robots trapped in closed circles of
obstacles (including some memorable instances where other agents bricked them
up), or special target object arrangements where repetitive “acquire”, “drop”,
“acquire” loops could develop. These situations are analogous to the corners of
the arena in the real-world experiments, where robots could become trapped if
they approached the corner at a critical angle.

These problems, while not occurring with sufficient frequency to threaten the
swarm as a whole, are probably due to the simplicity of the agent’s responses.
With their physical responses to stimuli limited to five discrete actions, some
failure was probably inevitable and not too significant across the swarm as
a whole. From these episodes we can conclude that the architecture would
function best in a mildly dynamic environment. Low density swarms, or small
swarms operating in environments where little independent movement can be
expected will be more strongly affected, some continual noise in the environment
is necessary to simulate the randomness created by fellow agents in a dense
swarm.

Real-World

The real-world versions of this grouping task suffered from poor recognition.
Three colours were about the limit of the vision system and the pillar object
was frequently overlooked or accidentally seen in the reflections from the floor.

These false positives and negatives made finding the central pillar object
problematic and encouraged the robots to disassemble nascent groups, exacer-
bating the problem observed in the small-scale simulations (see above), as in the
real-world they struggled to re-assemble the groups. In general the real-world
Grouping2 task emphasised the importance of wide, rapid searching (to find
static objects) and good recognition.

4.5 General Observations

The following are some general observations made during the course of the
experiments and implementation on factors effecting robot performance:

• Sensor field-of-view influences the robots’ performance. Simulated robots
with a very narrow field of view (below about 30 degrees) identified very
few objects and spent much of their time searching. A very wide field-of-
view (over about 90 degrees on these robots) caused the robots to identify

86

too many proximity objects and spend too much time avoiding. Clearly
ideal sensor resolution is dependant on the sophistication of the actions
and the hardware, there will be a complementary range between sophisti-
cation and execution for each design.

• Robots must be likely to encounter all relevant target objects in their local
environment. The user cannot assume that robots travel far, even in a big
environment. This idea was tested by placing all the pillars of the large-
scale Grouping2 task in one corner, all the target objects in another and
the robots in the middle. No target objects arrived at the pillars, event
though the edges of the whole swarm overlapped both areas.

• Thresholds are less important than relevant objects. The relevance re-
quirements and the limited number of objects likely to be known to any one
individual at a time often means that correct behaviours are self-evident.
When permitted to perform both large-scale Grouping1 and Grouping2
tasks in the same arena, robots overwhelmingly executed the Grouping1
task. This reflected the number of target objects (800), as opposed to the
number of pillars (100) or robots (100). The threshold decreases for this
behaviour, but it is also the easiest behaviour to implement.

87

88

Chapter5
Future Work and Applications

“. . . departure will take place when flight-stores
are complete. We are currently awaiting our full
complement of small, lemon-soaked paper
napkins for your comfort and convenience.”

“Have you seen the world outside this ship? It’s a
wasteland, a desert! Civilisation’s been and gone,
there are no lemon-soaked paper napkins on their
way from anywhere.”

“The statistical probability is that other
civilisations will arise. There will, one day, be
small, lemon-soaked paper napkins. Until then,
there will be a short delay.”

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy

Contents
5.1 Developments . 90

5.1.1 Thresholds and Stimulus 90

5.1.2 Peer-to-Peer Communications 90

5.1.3 Improved Perception 91

5.1.4 New Agents . 92

5.1.5 Other Survival Actions 93

5.1.6 User Control . 93

5.2 Applications . 93

The Results discussed in Chapter 4 demonstrate that The Architec-
ture is operational in a controlled laboratory setting. We shall now discuss
several improvements which would render The Architecture more robust in less
structured “real-world” environments and lead to a publicly usable “release”
version.

89

5.1 Developments

5.1.1 Thresholds and Stimulus

Section 3.4 discusses The Architecture’s behaviour selection mechanism, in-
spired by the method of Theraulaz et al. (1998) (see Equation 2.1).

With the benefit of hindsight, the use of P as a ranking value is probably a
misinterpretation of the scope of Theraulaz et al.’s (1998) behaviours. Realising
behaviours in computer languages requires a very high degree of precision and
consistency, a process which the author found led to a narrowing of scope. It
is suspected that Theraulaz et al. (1998) would have intended for the stimulus
and threshold selection process to operate in a vacuum, if a behaviour was
not relevant. It would then have impelled the robot to search for the relevant
components.

We took the design in a subtly different direction, employing as a behaviour
selector the same basic form as Equation 2.1, but replacing s with relevance. To
more elegantly implement their method (Equation 2.1), the following changes
would be made to The Architecture:

• Re-introduce stimulus s by changing equation 3.4.1 to:

Pi,j =
1

2
(reli,j +

si,j
si,j + θi,j

) (5.1)

As rel, s and θ are fixed between one and zero, equation 5.1 would always
be between these values.

Stimulus s would increment with time as in Theraulaz et al. (1998). Pi,j
would become the probability of robot i implementing behaviour j at a
given time. A random number r would be compared to all values of P and
a single behaviour randomly selected from all behaviours with a P value
larger than r.

This selection process would take place at regular intervals, implicitly
enforcing a timeout.

• “Search” would become an implicit part of all behaviours, if the relevance
of the selected behaviour was zero, the robot would engage the search be-
haviour. This would be calculated constantly. Thus the active behaviour
would not be rigidly tied to relevance and robots may implicitly ‘search
for’ objects.

It is believed that these modifications produce a more elegant system, with
more emphasises on thresholds than the current design. However, it does not
represent a major alteration.

5.1.2 Peer-to-Peer Communications

As discussed in Chapter 3 The Architecture does not include a direct analogue to
chemical signals. This could be partially remedied by introducing peer-to-peer
object sharing to allow knowledge of objects to propagate through the swarm.

This system would be a ‘blind’ process, with agents broadcasting their cur-
rent object list to any other agents in proximity. Such transfer would allow the

90

swarm to act on the knowledge gained by widely separate agents. However, it
would require several broad assumptions:

• The agents are in close physical proximity when the transfer occurs.

• Agents pass an object’s data in close physical proximity to the observation
point, or they can keep an accurate “dead-reckoning” account of their
movement.

• Receiving agents have to translate directions from the transmitting agent’s
frame of reference to their own. Therefore, all agents have access to the
same global directional reference – such as magnetic north, or a nest bea-
con.

• Only object bearing would be transmitted, agents would have to move
“over there” to find objects. It would be expected that an agent’s own
sensors would perform finer localisation once in the object’s vicinity.

Objects would need to be time-stamped to allow them to decay over time as
they are transferred (thus preventing old and possibly false objects for cluttering
an agent’s object list). This would be implemented via a “local time since last
observation” field, rather then a globally synchronised time-stamp.

5.1.3 Improved Perception

The current recognition of objects is clearly insufficient. Object detection on
the basis of closely defined shapes and colours is a limitation.

To move beyond this, object recognition could be partially generalised by
exploiting the size of the robot and its environment. Swarm robots are expected
to be much smaller than their tasks, therefore any object resolvable from the
robots’ limited perspective is of a “nice” graspable size. On this scale primitive
shapes (round, not-round, rectangle, etc.) and crude colour distinctions (plant-
green, not-plant-green, etc.) could be employed. This approach is far less
specific than the current system.

The ambiguity of real-world sensors could be partially countered by “fuzzi-
fying” object type membership, making an object a member of each type to a
degree and reflecting this in relevance calculation. Degrees of membership could
also improve identification of composite objects such as groups. A group with
more objects would rate higher as a member of type “group”.

This would improve decision-making in the presence of similar objects.
The localisation of objects could be rendered more general by removing the

requirement for exact bearings and ranges and replacing them with a “close”,
“far”, “left”, “right” categorisation. This would help to divorce the object
localisation process from hardware specifics such as camera focal-length. Such
vague positioning could be based upon perceived object size, assuming that all
objects in the agent’s small field are of a similar “nice” size.

Experience with real-world hardware would also suggest that robots would
benefit from a more accurate picture of its own movement. Sensors such as
odometers, and gripper feedback would enable better action implementation.
Accessing these sensors would be an matter internal to the actions themselves
and does not impinge on The Architecture as a whole.

91

5.1.4 New Agents

Castes

Provided that agent physical design obeys the model of a swarm agent discussed
in Section 2.1 there are no firm restrictions on the physical appearance of an
agent.

A agent “caste” would be a design focused on a smaller sub-set of swarm
tasks. Examples of possible castes are:

• “Scout” – a design emphasising locomotion and perception over manipu-
lation. Such an agent might be fast (such as a quad-copter), with several
powerful cameras but no pincers. Instead, it could permanently search for
objects and spread information through the swarm by means of peer-to-
peer communication.

• “Storage” – an agent with battery or solar cell. Such a caste could be slow
or even immobile with grippers replaced with charge contacts.

• “Excavator” – a caste with a powerful or precise manipulator for heavy
or fine work. This could be at the expense of perception, with this caste
relying on other agents to scout its world.

The majority of the swarm would still be the basic “worker” caste.
Notice that these four ideas do not deviate from locomotion, perception and

manipulation fundamentals (see Chapter 3). New castes should not introduce
specialised hardware that cannot be handled by the original four behaviour
actions – the bare minimum of moving parts is still assumed. For instance, a
drilling caste would mount a drill instead of a manipulator and use the “grip”
and “un-grip” actions to engage the drill. Specialised castes are a reduction of
generality, not an expansion of the base concepts.

Physical Design

The real-world robots used in this project were not overly sophisticated, even
for swarm robots. Regardless of caste, the next generation of robots could
incorporate several design improvements without becoming more than swarm
agents:

• Internal Sensors – The need for a universal reference bearing has already
been mentioned in relation to communications. A magnetic compass could
serve this ambition.

Feedback from other internal sensors, such as odometers and an accelerate
(to measure robot ‘tilt’) could be incorporated into the action control loops
and provide better response.

• Improved Manipulation – The real-world robots’ “scoop” gripper is clearly
inadequate, a more sensitive gripper with better tactile sensing (more
reliable assessment of “captured-objects”) and better articulation would
be a great improvement. This could include more articulated “finger”
joints, to better grip objects and more degrees of freedom. This last would
be essential if the robots are to “stack” objects in three-dimensions, as
would be needed for a complex building task.

92

Advanced manipulators would still focus on one object at a time and obey
the “drop” and “grasp” actions exclusively.

5.1.5 Other Survival Actions

This project only implements one survival action: avoid. A more polished ver-
sion of The Architecture should also include a “recharge” action. This would
imply the need for a “re-charge-station” object and battery monitoring hard-
ware.

The recharge action would simply be activated when the battery charge falls
below a hard-coded threshold and would consist of “moving-to” the re-charge
station object. Docking with the station would be integral to this action.

As avoidance would still need to be usable during the re-charge action, ex-
ecution of survival actions would need to be sensitive to avoidance and set the
re-charge-station object as an exception.

This action was not implemented in this version of The Architecture as it
was felt to be a time and resource consuming distraction to the main project.

5.1.6 User Control

The behaviours in both the simulated and real-world robots were in actual fact
hard-coded into The Architecture’s executable program. This was to save time,
as a universal, user-friendly behavioural system would function exactly the same
and neither version of The Architecture was intended for general release. Release
versions of The Architecture would need to take a more universal approach.

The author does not believe that the behaviour creation process should be
formalised as a language. The process is not designed to be extensible – for
example; new user defined actions are not expected.

Instead, the best option is probably a graphical interface that defines which
actions and relevant objects are needed for each behaviour. The configuration
data generated from such an interface would be very small.

New behaviours could be disseminated to agents by several methods:

• General Broadcast – requiring all agents to be sensitive to some global
channel. The easiest method to implement, but the one most opposed to
the swarm ethos.

• Upon Recharge – all agents must eventually recharge their batteries. The
re-charge stations could also serve as dissemination points for new be-
haviours. This is a more decentralised approach.

• By Agent Interaction – New behaviours could be disseminated by a peer-
to-peer mechanism, similar to that discussed above for objects. This is
the most “swarm-like” and could be combined with the either of the two
above approaches.

5.2 Applications

The Architecture is intended for swarm-like tasks only. As discussed in Section
1.3 these are tasks that do not require tight precision from the agents.

Good examples would be:

93

• Cleaning – ordering randomly dropped debris, either in piles or at a depot
are variations on the grouping tasks.

Examples of this type of task are:

– Floor cleaning.

– Contaminant removal – such as weeds from a water supply.

– Removal of dirt from sensitive plant.

Cleaning is a specific case of foraging.

• Foraging – a classic swarm task. Collecting objects of interest in a dynamic
environment would be essential for a large swarm and could conceivably
include:

– Construction materials, such as bricks, stones, etc.

– Collection of the raw materials for manufacturing useful objects, such
as building materials, structures or other agents. Rapid-prototyping
technologies, such as 3D-printing, could be employed to manufacture
useful objects.

• Construction – building along the lines discussed in Chapter 2 (or in
Dorigo et al. (2000), Turner (2011), Franks & Deneubourg (1997)), small,
repeating units being brought together to form a larger assembly. Exam-
ples of such constructions could be:

– Earth or natural bunkers around sensitive plant.

– Paths or carriageways through recurring growth.

– Unpacking and moving/assembling modular plant components.

A large swarm could attempt all of these tasks simultaneously, by assigning
each task to a smaller sub-swarm. The ultimate objective would be to create a
self-organising colony that produces, assembles or maintains useful artefacts.

Ultimately, it must be remembered that swarm agents are insect-like. They
cannot be taxed with over-complex tasks and are not likely to be the “best”
(most efficient, most precise, etc.) solution. They are likely to be most useful
in environments where more complex agents cannot be deployed, such as:

• Space, the moon, asteroids, etc.

• Underwater.

• Inhospitable urban zones, such as pipes, conduits, etc.

• Underground.

• Inhospitable terrain, such as deserts, Antarctica, mountains, jungle, etc.

• Hazardous environments, such as environments with extremes of heat,
cold, radiation, presence of caustics, high or low pressure, etc.

94

Chapter6
Conclusions

. . . huh? oh sure. . . why does the human want dried
leaves in boiling water? Answer: because he’s an
ignorant monkey that doesn’t know any better!
Cute, huh?

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy

Contents
6.1 Implementation . 95

6.2 The Architecture and The Swarm Ethos 96

6.3 The Architecture Scope 97

6.3.1 Biological Inspirations 97

6.3.2 Task Agnosticism . 97

6.3.3 Hardware Agnosticism 98

6.3.4 Swarm Size Indifference 98

The Architecture functions on simple, idealised swarm tasks upon both
real-world and simulated swarms. The simulated swarm shows a high-degree
of scalability. Architecture controlled swarms can cooperate on several swarm-
tasks without fundamental modification of their control programs.

The agents controlled by The Architecture are not complete insects, they
have fewer behaviours and their focus on visual identification is not quite com-
patible with insects chemical markers (see Section 3.2.3). However, key aspects
of swarm cooperation have been identified and these components could be added
without major revision of The Architecture (see Sections 3.2.3 and 5.1.3).

6.1 Implementation

The following points are important in Architecture implementation:

• Unambiguous object recognition is critical. The real-world sensors were
noisy and inexact in localisation, this was far less important than accurate
recognition of objects.

95

• Agents need to distinguish between free objects and objects captured by
other agents if they are not to work against each other.

• Agents need to distinguish between atomic objects and objects that form
part of a larger complete or semi-complete structure. See Section 4.3.4.

• It can be expected that the above points will fail for some interactions
and some agents. A certain amount of agent failure is inevitable.

• The Architecture is capable of facilitating emergent behaviour – collec-
tively, swarms may achieve objectives that are not explicitly coded, such
as the division of labour in the ball-passing task and the location of groups
in Grouping1.

• Robots will “specialise” in whatever behaviour is most probable. Be care-
ful that behaviour criteria are not set so one behaviour pre-dominates.

• A minimum “agent density” exists for each task and environment. The
agents must be encouraged to interact by environmental constraints and
be sufficiently likely to encounter one another.

• Like sensing, gripping must be reasonably effective. The agents should
be able to keep control of objects despite environmental considerations.
They should be mechanically simple, but also need to be effective.

6.2 The Architecture and The Swarm Ethos

The following is a brief discussion of The Architecture in the context of the
Swarm Ethos, discussed in Chapter 1. We shall answer each point in the ethos,
comparing the final Architecture design to the original description of a swarm.

1. Physically small. The real-world robots are reasonably small and inex-
pensive. With the continuing development of embedded computers, it
is expected that much smaller machines with equivalent computational
power could be built.

2. Mechanical simplicity. The Architecture only supports five basic be-
havioural actions and two sets of moving parts: the gripper and the loco-
motion motors – both of these are expected to be minimalist.

3. Local interactions and local peer-to-peer communication only. At the
current time, The Architecture is deaf and mute, although as Section 5.1.2
illustrates, it would also be amenable to local peer-to-peer, low-bandwidth
data-transfer.

4. Perception is local only and may be subject to error and misinterpreta-
tions. As has been discussed, The Architecture needed to be made robust
to the noise in real-world sensors – see Section 3.2.2 for detail on object
confidence – but perception is utterly local and, in practice, noisy.

5. No maps, plans etc. As discussed in the previous chapter, such abstrac-
tions are not part of The Architecture, which can drive a swarm to tasks
beyond the comprehension of its individual members.

96

6. Global cooperation is an illusion that exists only in the eye of the (human)
observer. See above point.

7. Swarm agents are cheap and disposable as individuals. The real-world
robots were neither overly expensive or mechanically sophisticated.

8. Swarm agents are fallible. Examples in Sections 4.5, 4.4.4, 4.3.4, 4.2.4
provide ample evidence of this.

Thus we conclude that The Architecture conforms to our definition of a
swarm.

6.3 The Architecture Scope

The Architecture also compares well to the original specifications discussed in
Chapter 1. The Architecture has fulfilled the original requirements and, as
shown previously in chapter 5, laid the foundations for far more sophisticated
developments.

6.3.1 Biological Inspirations

While more limited than real-world insects (see recruitment, above) The Archi-
tecture displays a number of the key features of insect swarms:

• Stigmergic cooperation. As discussed in Chapter 3, all decisions are ul-
timately based on observed objects, thus cooperation among the swarm
is the “emergent result of the collective dynamics of either interacting
autonomous agents or basic control units in a single agent. . . ” (Trianni
et al. 2011) as discussed in Section 2.3.

• Division of Labour. As demonstrated by the ball-passing task, The Ar-
chitecture is able to divide the work among the swarm on a roughly equal
basis. This is implicit in the behaviour selection and is not explicitly coded
for.

See Section 4.2 for results details.

• Emergent behaviour. As discussed in Section 4.2.4 a primitive recruitment
emerges from the “receive” behaviour.

• Tasks beyond the individual. As discussed in Section 4.3.4 the large-scale
simulations demonstrate that the individual robots can cooperate on tasks
as a group that they cannot conceive of as individuals.

6.3.2 Task Agnosticism

The Architecture demonstrated its task agnosticism by functioning on three dif-
ferent (although related) swarm-tasks. Although these tasks were not radically
different in concept, only minor changes needed to be made to the robots to
effect quite different overall swarm results. The simplicity of task modification
has the potential for multi-task swarms, as described in Section 5.1.1.

97

6.3.3 Hardware Agnosticism

The differences between the simulation and the real-world robots; their differ-
ent physical appearance and their differing interactions with their environment,
illustrate that The Architecture can operate on more than one swarm robot
design. This fundamental requirement of generalisation is demonstrated by the
comparable results in Chapter 4 and gives the possibility of multi-caste swarms,
as discussed in Section 5.1.4.

6.3.4 Swarm Size Indifference

The flexibility of The Architecture with respect to swarm size is demonstrated
by the successful results of the large and small-scale grouping tasks (see Section
4.3 and 4.4). The swarms may be arbitrarily scaled from four to one hundred
robots without controller modification. The only caveat is that there must be
enough work for all members of the swarm.

98

Bibliography

Adouane, L. & Le Fort-Piat, N. (2004), Hybrid behavioral control architecture
for the cooperation of minimalist mobile robots, in ‘Robotics and Automa-
tion, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference
on’, Vol. 4, pp. 3735 – 3740 Vol.4.

Agre, P. E. & Chapman, D. (1987), Pengi: An implementation of a theory
of activity, in ‘Proceedings of the Sixth National Conference on Artificial
Intelligence - Volume 1’, AAAI’87, AAAI Press, pp. 268–272.

Alfredo, W., Arkin, R. C., Cervantes-Perez, F., Olivares, R. & Corbacho, F.
(1998), A neural schema architecture for autonomous robots, in ‘Int. Sym-
posium on Robotics and Automation’, pp. 12–14.

Arkin, R. C. (1992), ‘Cooperation without communication: Multiagent schema-
based robot navigation’, Journal of Robotic Systems 9(3), 351–364.

Arkin, R. C. (1998), Behavior-Based Robotics, MIT Press.

Arkin, R. C. & Balch, T. (1997), ‘Aura: principles and practice in review’,
Journal of Experimental & Theoretical Artificial Intelligence 9(2-3), 175–
189.

Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M. & Nolfi,
S. (2007), ‘Self-organized coordinated motion in groups of physically con-
nected robots’, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 37(1), 224 –239.

Bekey, G. A. (2005), Autonomous Robots, From Biological Inspiration to Imple-
mentation and Control, MIT Press.

Bodi, M., Thenius, R., Szopek, M., Schmickl, T. & Crailsheim, K. (2012),
‘Interaction of robot swarms using the honeybee-inspired control algorithm
beeclust’, Mathematical and Computer Modelling of Dynamical Systems
18(1), 87–100.

Bojadziev, G. & Bojadziev, M. (1995), Fuzzy Sets, Fuzzy Logic, Applications,
Vol. 5 of Advances in Fuzzy Systems — Applications and Theory, World
Scientific.

99

Bradski, G. & Kaehler, A. (2008), Learning OpenCV – Computer Vision With
The OpenCV Library, O’Reilly Media.

Brambilla, M., Ferrante, E., Birattari, M. & Dorigo, M. (2013), ‘Swarm robotics:
a review from the swarm engineering perspective’, Swarm Intelligence
7(1), 1–41.

Brooks, R. A. (1999), Cambrian Intelligence, The Early History of the New AI,
The MIT Press.

Brooks, R. A. (2002), Robot: The Future of Flesh and Machines, Penguin Books.

Buck, S., Schmitt, T. & Beetz, M. (2002), Reliable multi-robot coordina-
tion using minimal communication and neural prediction, in M. Beetz,
J. Hertzberg, M. Ghallab & M. Pollack, eds, ‘Advances in Plan-Based Con-
trol of Robotic Agents’, Vol. 2466 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 157–190. 10.1007/3-540-37724-7 3.

Caprari, G. & Siegwart, R. (2005), Mobile micro-robots ready to use: Alice,
in ‘Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ
International Conference on’, pp. 3295 – 3300.

Castelfranchi, C. (2006), Silent agents: From observation to tacit commu-
nication, in J. Sichman, H. Coelho & S. Rezende, eds, ‘Advances in
Artificial Intelligence - IBERAMIA-SBIA 2006’, Vol. 4140 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, pp. 98–107.
10.1007/11874850 14.

Chapman, R. F. (1998), The Insects: Structure and Function, 4 edn, Cambridge
University Press.

Cicirello, V. & Smith, S. (2001), Ant colony control for autonomous decen-
tralized shop floor routing, in ‘Autonomous Decentralized Systems, 2001.
Proceedings. 5th International Symposium on’, pp. 383 –390.

Şahin, E. (2005), Swarm robotics: From sources of inspiration to domains of
application, in E. Şahin & W. Spears, eds, ‘Swarm Robotics’, Vol. 3342 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 10–
20. 10.1007/978-3-540-30552-1 2.

Deag, J. M. (1980), Social behaviour of Animals, number 118 in ‘Studies in
Biology’, Edward Arnold Ltd.

Deneubourg, J. & Goss, S. (1989), ‘Collective patterns and decision-making’,
Ethology Ecology & Evolution 1(4), 295–311.

Detrain, C. & Pasteels, J. M. (1992), ‘Caste polyethism and collective de-
fense in the ant, pbeidole pallidula;: the outcome of quantitative differ-
ences in recruitment’, Behavioral Ecology and Sociobiology 29, 405–412.
10.1007/BF00170170.

Dorigo, M., Bonabeau, E. & Theraulaz, G. (2000), ‘Ant algorithms and stig-
mergy’, Future Generation Computer Systems 16(8), 851 – 871.

100

Drickamer, L. C., Vessey, S. H. & Jakob, E. M. (1996), Animal Behavior: Mech-
anisms, Ecology, Evolution, 5th edition edn, McGraw-Hill Higher Educa-
tion.

Duarte, M., Christensen, A. & Oliveira, S. (2011), Towards artificial evolution
of complex behaviors observed in insect colonies, in ‘Progress in Artificial
Intelligence’, Vol. 7026 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, pp. 153–167. 10.1007/978-3-642-24769-9 12.

Dugatkin, L. A. & Reeve, H. K., eds (1998), Game Theory and Animal Behavior,
Oxford University Press.

Florczyk, S. (2005), Robot Vision, Video-based Indoor Exploration with Au-
tonomous and Mobile Robots, Wiley-VCH.

Franks, N. R. & Deneubourg, J.-L. (1997), ‘Self-organizing nest construction
in ants: individual worker behaviour and the nest’s dynamics’, Animal
Behaviour 54(4), 779 – 796.

Fujisawa, R., Dobata, S., Sugawara, K. & Matsuno, F. (2014), ‘Designing
pheromone communication in swarm robotics: Group foraging behavior
mediated by chemical substance’, Swarm Intelligence 8(3), 227–246.

Garnier, S., Gautrais, J. & Theraulaz, G. (2007), ‘The biological principles of
swarm intelligence’, Swarm Intelligence 1, 3–31. 10.1007/s11721-007-0004-
y.

Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R.,
Grimal, A. & Theraulaz, G. (2008), ‘The embodiment of cockroach aggre-
gation behavior in a group of micro-robots’, Artificial Life 14(4), 387–408.

Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G. &
Theraulaz, G. (2005), Collective decision-making by a group of cockroach-
like robots, in ‘Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings
2005 IEEE’, pp. 233 – 240.

Goldberg, D. (2001), Evaluating the Dynamics of Agent-environment Interac-
tion, PhD thesis, School of Engineering, Los Angeles, CA, USA.

Gordon, D. M. (1999), Ants at Work, How an Insect Society Is Organised, Simon
& Schuster Inc.

Grassé, P.-P. (1959), ‘La reconstruction du nid et les coordinations interindi-
viduelles chezbellicositermes natalensis etcubitermes sp. la théorie de la
stigmergie: Essai d’interprétation du comportement des termites construc-
teurs’, Insectes sociaux 6(1), 41–80.

Gullan, P. J. & Cranston, P. S. (1994), The Insects; An Outline of Entomology,
Chapman & Hall.

Hecht, E. & Zjac, A. (1974), Optics, Addison-Wesley.

Holland, O. & Melhuish, C. (1999), ‘Stigmergy, self-organization, and sorting in
collective robotics’, Artif. Life 5(2), 173–202.

101

Hölldobler, B. K. & Wilson, E. O. (1989), ‘Paths of glory: Following army ants
as they march through the tropics.’, Sciences 29(6), 18.

Hölldobler, B. & Wilson, E. O. (1995), Journey to the Ants: a story of scientific
exploration, Harvard University Press.

Howse, P. E. (1970), Termites: A Study in Social Behaviour, Biological Sciences,
Hutchinson and Co.

Hu, M.-K. (1962), ‘Visual pattern recognition by moment invariants’, Informa-
tion Theory, IRE Transactions on 8(2), 179–187.

Huntsberger, T., Aghazarian, H., Baumgartner, E. & Schenker, P. (2000),
Behavior-based control systems for planetary autonomous robot outposts,
in ‘Aerospace Conference Proceedings, 2000 IEEE’, Vol. 7, pp. 679 –686
vol.7.

Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Das Nayar, H., Aghazarian,
H., Ganino, A., Garrett, M., Joshi, S. & Schenker, P. (2003), ‘Campout: a
control architecture for tightly coupled coordination of multirobot systems
for planetary surface exploration’, Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 33(5), 550 – 559.

Ijspeert, A., Martinoli, A., Billard, A. & Gambardella, L. (2001), ‘Collabora-
tion through the exploitation of local interactions in autonomous collective
robotics: The stick pulling experiment’, Autonomous Robots 11, 149–171.
10.1023/A:1011227210047.

Ishiwata, H., Noman, N. & Iba, H. (2011), Emergence of cooperation in a bio-
inspired multi-agent system, in J. Li, ed., ‘AI 2010: Advances in Artificial
Intelligence’, Vol. 6464 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, pp. 364–374. 10.1007/978-3-642-17432-2 37.

Isik, M., Stulp, F., Mayer, G. & Utz, H. (2007), Coordination without ne-
gotiation in teams of heterogeneous robots, in G. Lakemeyer, E. Sklar,
D. Sorrenti & T. Takahashi, eds, ‘RoboCup 2006: Robot Soccer World
Cup X’, Vol. 4434 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, pp. 355–362. 10.1007/978-3-540-74024-7 33.

Kallel, I., Chatty, A. & Alimi, A. (2008), Self-organizing multirobot explo-
ration through counter-ant algorithm, in K. Hummel & J. Sterbenz, eds,
‘Self-Organizing Systems’, Vol. 5343 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, pp. 133–144. 10.1007/978-3-540-92157-8 12.

Kernbach, S., ed. (2013), Handbook of Collective Robotics: Fundamentals and
Challanges, CRC Press Taylor & Francis Group.

Kok, J. R., Spaan, M. T. & Vlassis, N. (2005), ‘Non-communicative multi-robot
coordination in dynamic environments’, Robotics and Autonomous Systems
50(23), 99 – 114. Multi-Robots in Dynamic Environments.

Labella, T. H., Dorigo, M. & Deneubourg, J.-L. (2006), ‘Division of labor in a
group of robots inspired by ants’ foraging behavior’, ACM Trans. Auton.
Adapt. Syst. 1(1), 4–25.

102

Lee, G., Chong, N. Y. & Defago, X. (2007), Robust self-deployment for a swarm
of autonomous mobile robots with limited visibility range, in ‘Robot and
Human interactive Communication, 2007. RO-MAN 2007. The 16th IEEE
International Symposium on’, pp. 925 –930.

Lerman, K. & Galstyan, A. (2002), ‘Mathematical model of foraging in a group
of robots: Effect of interference’, Autonomous Robots 13(2), 127–141.

Liu, W., Winfield, A. F. T., Sa, J., Chen, J. & Dou, L. (2007), ‘Towards energy
optimization: Emergent task allocation in a swarm of foraging robots’,
Adaptive Behavior 15(3), 289–305.

Lötzsch, M., Bach, J., Burkhard, H.-D. & Jüngel, M. (2004), Designing agent
behavior with the extensible agent behavior specification language xabsl, in
D. Polani, B. Browning, A. Bonarini & K. Yoshida, eds, ‘RoboCup 2003:
Robot Soccer World Cup VII’, Vol. 3020 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 114–124.

Martinoli, A., Easton, K. & Agassounon, W. (2004), ‘Modeling swarm robotic
systems: a case study in collaborative distributed manipulation’, The In-
ternational Journal of Robotics Research 23(4-5), 415–436.

Matarić, M. J. (1994), Interaction and Intelligent Behavior, PhD thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology.

Matthey, L., Berman, S. & Kumar, V. (2009), Stochastic strategies for a swarm
robotic assembly system, in ‘Robotics and Automation, 2009. ICRA ’09.
IEEE International Conference on’, pp. 1953–1958.

McGavin, G. C. (2001), Essential Entomology, an Order-by-Order Introduction,
Oxford University Press.

Merkle, D. & Middendorf, M. (2004), ‘Dynamic polyethism and competition for
tasks in threshold reinforcement models of social insects’, Adaptive Behav-
ior 12(3-4), 251–262.

Min, H. & Wang, Z. (2010), Group escape behavior of multiple mobile robot
system by mimicking fish schools, in ‘Robotics and Biomimetics (ROBIO),
2010 IEEE International Conference on’, pp. 320 –326.

Mondada, F., Gambardella, L., Floreano, D., Nolfi, S., Deneuborg, J.-L. &
Dorigo, M. (2005), ‘The cooperation of swarm-bots: physical interactions
in collective robotics’, Robotics Automation Magazine, IEEE 12(2), 21–28.

Nouyan, S., Gross, R., Bonani, M., Mondada, F. & Dorigo, M. (2009), ‘Team-
work in self-organized robot colonies’, Evolutionary Computation, IEEE
Transactions on 13(4), 695 –711.

Pagello, E., DAngelo, A., Montesello, F., Garelli, F. & Ferrari, C. (1999), ‘Coop-
erative behaviors in multi-robot systems through implicit communication’,
Robotics and Autonomous Systems 29(1), 65 – 77.

Parker, C. A. C. & Zhang, H. (2006), ‘Collective robotic site preparation’, Adap-
tive Behavior 14(1), 5–19.

103

Parker, L. (1998), ‘Alliance: an architecture for fault tolerant multirobot co-
operation’, Robotics and Automation, IEEE Transactions on 14(2), 220
–240.

Parker, L. E. (2008), Multiple mobile robot systems, in B. Siciliano & O. Khatib,
eds, ‘Springer Handbook of Robotics’, Springer Berlin Heidelberg, pp. 921–
941. 10.1007/978-3-540-30301-5 41.

Payton, D., Estkowski, R. & Howard, M. (2005), Pheromone robotics and the
logic of virtual pheromones, in E. ahin & W. Spears, eds, ‘Swarm Robotics’,
Vol. 3342 of Lecture Notes in Computer Science, Springer Berlin Heidel-
berg, pp. 45–57.

Phan, T. A. & Russell, R. A. (2012), ‘A swarm robot methodology for collabo-
rative manipulation of non-identical objects’, The International Journal of
Robotics Research 31(1), 101–122.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gam-
bardella, L. M. & Dorigo, M. (2012), ‘ARGoS: a modular, parallel, multi-
engine simulator for multi-robot systems’, Swarm Intelligence 6(4), 271–
295.

Pirjanian, P. (2000), ‘Multiple objective behavior-based control’, Robotics and
Autonomous Systems 31(12), 53 – 60.

Pirjanian, P., Huntsberger, T. L., Trebi-Ollennu, A., Aghazarian, H., Das, H.,
Joshi, S. S. & Schenker, P. S. (2000), CAMPOUT: a control architecture
for multirobot planetary outposts, in G. T. McKee & P. S. Schenker, eds,
‘Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series’, Vol. 4196 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, pp. 221–230.

Rubenstein, M., Ahler, C. & Nagpal, R. (2012), Kilobot: A low cost scal-
able robot system for collective behaviors, in ‘Robotics and Automation
(ICRA), 2012 IEEE International Conference on’, pp. 3293–3298.

Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J. & Nagpal, R.
(2013), Collective transport of complex objects by simple robots: Theory
and experiments, in ‘Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems’, AAMAS ’13, International
Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, pp. 47–54.

Rubenstein, M., Cornejo, A. & Nagpal, R. (2014), ‘Programmable self-assembly
in a thousand-robot swarm’, Science 345(6198), 795–799.

Ruiz, M. & Uresti, J. (2008), Team agent behavior architecture in robot soccer,
in ‘Robotic Symposium, 2008. LARS ’08. IEEE Latin American’, pp. 20
–25.

Schmickl, T. & Crailsheim, K. (2008a), An individual-based model of task se-
lection in honeybees, in M. Asada, J. Hallam, J.-A. Meyer & J. Tani, eds,
‘From Animals to Animats 10’, Vol. 5040 of Lecture Notes in Computer

104

Science, Springer Berlin / Heidelberg, pp. 383–392. 10.1007/978-3-540-
69134-1 38.

Schmickl, T. & Crailsheim, K. (2008b), ‘Taskselsim: a model of the self-
organization of the division of labour in honeybees’, Mathematical and
Computer Modelling of Dynamical Systems 14(2), 101–125.

Schmickl, T., Möslinger, C. & Crailsheim, K. (2007), Collective perception in
a robot swarm, in E. ahin, W. Spears & A. F. Winfield, eds, ‘Swarm
Robotics’, Vol. 4433 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp. 144–157.

Schmitt, T., Hanek, R., Beetz, M., Buck, S. & Radig, B. (2002), ‘Cooperative
probabilistic state estimation for vision-based autonomous mobile robots’,
Robotics and Automation, IEEE Transactions on 18(5), 670 – 684.

Stroupe, A., Okon, A., Robinson, M., Huntsberger, T., Aghazarian, H. & Baum-
gartner, E. (2006), ‘Sustainable cooperative robotic technologies for hu-
man and robotic outpost infrastructure construction and maintenance’,
Autonomous Robots 20, 113–123. 10.1007/s10514-006-5943-4.

Stulp, F., Isik, M. & Beetz, M. (2006), Implicit coordination in robotic teams
using learned prediction models, in ‘Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on’, pp. 1330 –1335.

Sudd, J. H. (1970), An Introduction to the Behaviour of Ants, Edward Arnold,
London.

Terano, T., Asai, K. & Sugeno, M. (1992), Fuzzy Systems Theory and Its Ap-
plications, Academic Press.

Thalmann, D. & Musse, S. R. (2007), Crowd Simulation, Springer.

Theraulaz, G., Bonabeau, E. & Denuebourg, J.-N. (1998), ‘Response threshold
reinforcements and division of labour in insect societies’, Proceedings of the
Royal Society of London. Series B: Biological Sciences 265(1393), 327–332.

Trianni, V., Tuci, E., Passino, K. & Marshall, J. (2011), ‘Swarm cognition: an
interdisciplinary approach tothestudy of self-organising biological collec-
tives’, Swarm Intelligence 5, 3–18. 10.1007/s11721-010-0050-8.

Turner, J. (2011), ‘Termites as models of swarm cognition’, Swarm Intelligence
5, 19–43. 10.1007/s11721-010-0049-1.

Wagner, I. A., Altshuler, Y., Yanovski, V. & Bruckstein, A. M. (2008), ‘Co-
operative cleaners: A study in ant robotics’, The International Journal of
Robotics Research 27(1), 127–151.

Werfel, J., Bar-Yam, Y., Rus, D. & Nagpal, R. (2006), Distributed construction
by mobile robots with enhanced building blocks, in ‘Robotics and Automa-
tion, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on’, pp. 2787 –2794.

105

Werger, B. B. & Matarić, M. J. (2000), Broadcast of local eligibility for multi-
target observation, in L. Parker, G. Bekey & J. Barhen, eds, ‘Distributed
Autonomous Robotic Systems 4’, Springer Japan, pp. 347–356.

Wilson, E. (1976), ‘The organization of colony defense in the ant pheidole den-
tata mayr (hymenoptera: Formicidae)’, Behavioral Ecology and Sociobiol-
ogy 1(1), 63–81.

Wilson, E. O. (1979), The Insect Societies, Harvard University Press.

Wilson, E. O. & Hölldobler, B. (2005), ‘Eusociality: origin and consequences’,
Proceedings of the National Academy of Sciences of the United States of
America 102(38), 13367–13371.

Zhang, D., Xie, G., Yu, J. & Wang, L. (2007), ‘Adaptive task assignment for
multiple mobile robots via swarm intelligence approach’, Robotics and Au-
tonomous Systems 55(7), 572 – 588.

106

AppendixA
Relevant Publications

107

A Cooperative Architecture Based on Social Insects

Iain Brookshaw, Dr. Tobias Low
University of Southern Queensland

w0086292@umail.usq.edu.au

October 31, 2013

Abstract

In the last two decades, cooperative robotic
groups have advanced rapidly; beginning with sim-
ple, almost blind box pushing tasks and advancing
to the complexity of robocup’s autonomous soccer
matches. Groups of machines have been employed
to build structures, search for targets, mimic in-
sects and enact complex formations with precision
and aplomb. The complexity of the tasks accom-
plished have been both impressive and practical,
clearly illustrating the potential power of robotic
groups and demonstrating how they may be ap-
plied to solve real-world problems.

Building on this success, we have created a
software architecture that was intended to remove
the robotic agents’ dependency on complex com-
munications or detailed task specific information.
By incorporating biological models of stigmergic
social insect cooperation into the architecture, we
aim to ensure that the robots will be able to coop-
erate implicitly, without regard to group size and
with only a weak dependency on task specific in-
formation and group homogeneity.

We have conducted preliminary investigations
into the design’s feasibility by using computer sim-
ulations of a simple object passing task. This sim-
ple task has enabled us to establish that coopera-
tion is possible using this system. This paper will
discuss the system’s origins, design and future ex-
pansion.

1 Introduction

Given that cooperation among simple agents is more de-
sirable than a single complex machine, it follows that

a cooperative system should be as general as possible,
without being wedded to a single objective or based on
strong assumptions about other robots.

Many cooperative projects are based around one goal:
to play soccer [Pagello et al., 1999], to sort or group
objects [Holland and Melhuish, 1999], mimic an aspect
of insect behaviour [Phan and Russell, 2012], to pull
sticks or pegs [Ijspeert et al., 2001] and so on. Each
of these tasks may possess a number of components or
sub-tasks, implemented through a number of behaviours,
but usually the groups’ principle objective is explicitly
hand coded. This means that any minor change in ob-
jective usually implies starting from scratch. Thus in
may projects, it would be difficult to add new behaviours
without rebuilding the whole decision making process.

There are several systems that have addressed this,
creating broader software structures that permit multi-
ple tasks to be attempted. However, many of these em-
ployed direct, explicit communications between agents.
We will address the disadvantages of this in more detail
in Section 2, but the basic objections are the limitations
on group size, the strong requirement of homogeneity
and the fragility of radio-based networks.

We believe that these limitations are too restrictive
and present an architecture aimed at overcoming them.
We began with the biological inspiration of cooperative
insects, employing a model of stigmergic hive coopera-
tion that negates the need for both central control and
explicit cooperation (although insects do use explicit
communication channels, we focused on their implicit
methods. See Section 3 for details). By combining this
concept with ideas taken from behaviour-based architec-
tures of previous experiments we believe that we have
created a system that has the potential to be fully gen-
eral and not limited by group size, homogeneity or task.

In general, we sought to include the following key
points in our design:

1

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

• Agents should not explicitly communicate. This is
a restriction in both hardware homogeneity (neces-
sitating transmit and receive units and protocols)
and group size as well as being unnecessary.

• Agents should not need to be aware of a ‘global’
world model. Each agent should be able to cooper-
ate with the others based only on what it alone can
‘see’ at any given time. Long memories, maps and
global world models are not needful.

• Exact control is unnecessary. Because this is a
group architecture, it is not necessary to direct a
robot to do that job there and then. Instead, it
can be assumed that all tasks will be addressed by
a member of the group at some point. By taking
advantage of the distributed nature of cooperative
groups, the definite article has been discarded in
favour of more generality.

• Robots should be easily re-programmable for a va-
riety of tasks without modification to their decision
making mechanism. Behaviours should form ba-
sic interchangeable structures that provide the tools
necessary for the robots to solve a task.

Ultimately, tasks should be assigned by another
computer. While this is beyond the scope of this
project, the design should reflect this by clearly
defining the rules for behaviours.

These ideas have been implemented in a simple simu-
lated task.

2 Past Cooperative Robots

When building cooperative groups it is imperative that
they possess some form of communication. In some fash-
ion, all cooperative agents have some means of coordi-
nating their actions with others in the group.

In general, there are two ways of doing this: explic-
itly, by broadcasting their desired and intentions and
implicitly, by observing the actions of others. As de-
fined in Kernbach [2013] pg 120: “In explicit coopera-
tion, robots elaborate locally the preferences for their be-
haviours, based on local, eventually shared, world mod-
els.” Castelfranchi [2006] describes implicit cooperation
as a communication method where “[the] practical be-
haviour itself is the message,” where observation is the
foundation of cooperation.

Many cooperative projects employ explicit communi-
cations to simplify the cooperative task. Schmitt et al.
[2002] and Montijano et al. [2011] use explicitly linked
groups to improve localisation, while Bekey et al. [2011],
Arkin [1998] and Schwertfeger and Jenkins [2007] de-
scribe means by which groups may employ communica-
tions to engage in collective decision making.

By contrast other projects employ communications to
enable individual robots to make decisions on their own.
This decentralised approach removes a central controller
by giving all robots a finite list of behaviours. Robots
select the correct behaviour based on the information it
can perceive, input from other individuals in the swarm
and an internal decision making mechanism. This ap-
proach has its origins in the work of Brooks [Brooks,
2002]. In cooperative robotics the Alliance system
of Parker [1998] is probably the most widely reported.
Other general, decentralised, behaviour-based architec-
tures include the early ‘nerd herd’ of Matarić [1997] and
the campout architecture of Huntsberger et al. [2003].
In all of these explicit radio communications are a factor
in the design.

However, explicit communications have been criticised
as being power intensive, fragile and (most critically),
difficult to scale arbitrarily [Şahin, 2005]. Agent groups
cannot usually be easily supplemented in an ad hoc fash-
ion and so this approach is limited in a real world envi-
ronment [Agmon and Stone, 2011].

Despite the common usage of explicit communications,
some elegant systems have been created that employ
fully or partial implicit observation. The work of Ijspeert
et al. [2001] is often cited as one of the most significant.
In this elegant experiment, an number of very limited
robots cooperated to pull a series of sticks from match-
ing holes in the table-top. Each robot was too limited
to remove the entirety of the stick by itself, but relied
on other robots observing its difficulty and coming to its
aid.

The stick pulling project seems simplistic, but it
helped establish an important principle; that robots
can successfully attempt manipulative tasks without the
need for dense communication. This has been rein-
forced by a number of experiments: Kok et al. [2005]
created a robot-soccer team based on implicit coopera-
tion and ‘locker-room’ agreements, Pagello et al. [1999]
also produced a behaviour-based robotic soccer team us-
ing implicit cooperation. Behaviours were selected by
and arbitration module “. . . hand-coded by intensive use
of heuristic from soccer domain experience. . . ”. Phan

2

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

and Russell [2012] successfully attempted to reproduce
weaver ant nest building behaviour by employing a group
of limited robots to curl a rubber “leaf”. Holland and
Melhuish [1999] used stigmergic ant sorting behaviour
(ants are able to sort different classes of young into
groups) to create a hardware system that grouped ob-
jects.

All of these implicit cooperative projects were success-
ful, in that the robots were able to achieve the task de-
sired in the absence of detailed communications. How-
ever, many of them succeeded by explicitly writing that
task into the robots’ software architecture.

3 Cooperative Insects

When describing cooperative systems, many sources
make reference to the impressive complexity of social in-
sects. The capacities of hive insects and the massive dif-
ference between the individuals and the constructs they
build are more fully discussed elsewhere [Turner, 2011;
Hölldobler and Wilson, 1995; Sudd, 1970; Theraulaz et
al., 2003] and will not be examined further here. How-
ever, the behavioural models developed to explain coop-
erative hive behaviour contain the basis for combining
implicit, decentralised cooperation and general architec-
tures.

Individual social insects are quite diminutive and have
no central controller. Instead, they cooperate through
the local interactions of individuals, [Theraulaz et al.,
2003] and an individual’s perception of the environment.
For example, Turner [2011] describes termite swarm cog-
nition as being based on three major input elements:
tactile input or sensor information (Turner’s termites
were blind), fluctuations in the local environment and
a “rich medium of chemical communication between ter-
mites. . . ”

Theraulaz et al. [2003] makes this more general,
expressing social insect spatial patterns in terms of
“template-based patterns” – where the building activ-
ities are controlled by the physical or chemical het-
erogeneity in the environment – and “stigmergy and
self-organised patterns”, where stigmergy controls the
agent’s actions. They also postulate that, in social in-
sects, positive feedback results from social interactions –
such as recruitment, imitation, etc., while negative feed-
back is caused by the environment.

In our architecture it is the stigmergic interactions and
environmental feedback that are of most interest. Hol-
land and Melhuish [1999] describe stigmergy as:

“. . . a mechanism that allows an environment to
structure itself through the activities of agents
within the environment: the state of the envi-
ronment, and the current distribution of agents
within it, determines how the environment and
distribution of agents will change in the future”

In other words, the agents gain the information they
need from the current state of the environment; an envi-
ronment that is being actively modified by other agents;
they observe an environment that bears the marks of
other agents’ actions and base their own actions accord-
ingly.

While insects do possess the ability to explicitly inter-
act and communicate with nest-mates (chemical trails
or markers, recruitment, etc.), we do not include such
elements in our design. Such explicit avenues of commu-
nication suffer from the same problems as explicit com-
munication among robots; we do not want to force the
group into tight restrictions.

Instead, we focus on the observable environment to
control behavioural selection. In this sense, our archi-
tecture could be considered an insect comprising only
of Turner’s first, sensory input element and Theraulaz’s
negative, stigmergic feedback. Probably the most suc-
cinct description of the insect we wish to copy is to be
found in Gordon [1999]:

“An ant is not very smart. It can’t make com-
plicated assessments. it probably can’t remem-
ber anything for very long. Its behaviour is
based on what it perceives in its immediate en-
vironment.”

Theraulaz et al. [1998] discuss a response-threshold
function for behavioural selection aimed at just such a
creature. We use this model as the basis for our system
of stigmergic observation based cooperation.

They base this model on three quantities: stimulus
(s), threshold (θ) and probability (P), related by the
following equation:

Pi,j =
sni,j

sni,j + θni,j
(1)

3

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Figure 1: An overview of the architecture showing the
three parallel spheres of operation and the Object List
linking them.

Where:

i refers to the agent i and j to behaviour j.
Pi,j defines the probability of agent i enacting

behaviour j
si,j refers to the stimulus for that agent and

behaviour. This is an increasing quantity
that drives up Pi,j .

θi,j is the threshold for this agent and be-
haviour.

n represents the degree of non-linearity de-
sired in the relationship.

Brambilla et al. [2013] describes this relationship as a
Probabilistic Finite State Machine (PFSM), as there are
a finite number of behaviours available to each agent
and some probability for the activation of each be-
haviour. According to Theraulaz et al. [1998] “individual
i engaged in task j with probability” P . The thresh-
old decreases with successful behaviour implementation
and thus encourages successful behaviours to be re-
implemented. It forms a primitive learning mechanism,
leading ultimately to specialisation. This model reap-
pears (with various differences) in a variety of sources
[Schmickl and Crailsheim, 2008; Merkle and Midden-
dorf, 2004]. Brambilla et al. [2013] also lists a number
of other projects who have employed a PFSM of some
form.

4 The Architecture Design

The central component of our architecture is the Ob-
ject List. All sensor information is reduced to a list of

recognised objects, recording their type and location rel-
ative to the observing agent. This is the only informa-
tion about the surrounding world that is available to any
component of the architecture.

In addition to the Object List, the architecture con-
sists of three main areas (see Figure 1). All processes
are intended to be executed in parallel.

1. Sensor Interpreter, responsible for filling the ob-
ject list. It is here that object recognition takes
place and sensor data is reduced to object type and
location information. It was assumed at an early
date that this would be a visually based sensor.

2. Behaviours, the basic building blocks of tasks. Be-
haviours follow fixed rules and are the users’ inter-
face into the architecture. They are intended to
be created as “plug-ins” that could be pulled in or
out without re-building the decision making process.
Section 4.3 discusses the behaviours’ construction
and shows the two processes needed to drive them:
a selection process (based on social insect models)
and execution process. Behaviours are constructed
from actions (see Section 4.2).

3. Survival Process, ensures that obstacle avoid-
ance and other asynchronous survival actions can
respond rapidly to changes in the environment with-
out reference to the behaviours. At any time sur-
vival actions can take control of the motors based on
the contents of the Object List. However behaviours
may declare specific object types as exceptions.

4.1 Sensors and The Object List

While it would be very difficult to interpret the actions
and intentions of another non-homogeneous robot suc-
cessfully [Parker, 1998], it is relatively simple to recog-
nise another agent. We proceeded from the assumption
that all agents could be expected to bear an identify-
ing mark (such as a coloured square or light). This was
considered an acceptable requirement as such a marker
could easily be placed on any machine.

We then took this idea further, assuming that all
recognisable agents could be localised relative to the ob-
serving robot. This is another non-trivial problem, but
modern computer vision is capable of this [Schmitt et
al., 2002]. Thus we could assume that other agents
could be observed and their position known relative to
the observer.

4

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Taking this idea further again, we assumed that an ob-
server robot would be able to identify and localise other
objects besides its companion robots. Objects such as
target object, beacon object, obstacle object and so on
could be expected. This is a minor limitation but we con-
sidered it acceptable on the grounds that in a given en-
vironment useful objects will be fairly consistent across
most conceivable tasks.

This creates a central object list in the local memory
of each agent, comprising of whatever an agent can ‘see’
at that moment. This is the basis of our system and
the only real-world information available to the other
processes in the architecture.

4.2 Motor Actions

Although this is a behaviour based system, we wished
to make the behaviours as formulaic as possible, reduc-
ing the necessary user input in behaviour creation with
an eye for the eventual automation of behaviour con-
struction. To make this possible, behaviours were tightly
constrained and outsourced motor control loops to a pre-
defined set of motor actions.

This was made possible by enforcing the concept of
the Object List as the only legitimate source of infor-
mation. If the only known information is the type and
location of nearby objects, then the physical actions pos-
sible are sharply reduced. The programmer can only ex-
press movements in terms of object types and locations
- either their presence or their absence.

On the surface, this appears to place us in the un-
enviable position of having to write an action for any
conceivable combination of object, location and objec-
tive. Clearly, this is not feasible. However, if we assume
that conceivable tasks are limited to manipulating ob-
jects in three-dimensional space (in any event, stigmergic
cooperation requires that the agent move through and
change objects in the environment [Holland and Mel-
huish, 1999]), all we are actually trying to do is move
the agent to and from objects. Thus actions such as
move to object() are universal for all object types.

The physical structure of the robot further limits the
actions that can be performed. In this sense, the actions
become motor driver functions that take the location of
a given object (of any type) in space as input. A sim-
ple library of these can be written to cover the physical
actions that the machine can perform.

Figure 2: All motor action functions follow this basic
template. The Green Blocks represent sections that are
universal, only the rounded boxes are specific to each
action. The purpose of action functions is to determine
the current motor values for the effectors.

5

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

All actions ultimately comprise of a control loop which
had a single objective describable in terms of one object
type and its ultimate state. By convention they were
written on the assumption that the closest instance of
object type T was the desired specific object. Thus the
input to all actions followed the same pattern: a pointer
to the Object List, an integer object type label and a
floating point number indicating the termination condi-
tion (eg: the minimum distance we wish to move to) if
relevant. Figure 2 shows the action function format.

4.3 Behaviours

Behaviour based design often exhibits a distressing level
of subjective intuition. Brambilla et al. [2013] noted
that:

“Unfortunately, in swarm robotics there are
still no formal or precise ways to design individ-
ual level behaviours that produce the desired
collective behaviour. The intuition of the hu-
man designer is still the main ingredient in the
development of swarm robotics systems”

By combining the Object List with the Motor Actions
to create Behaviours on a standard template, we aim to
constrain this intuition within clear rules, to the point
that behaviours are formulaic and require the absolute
minimum of task-based information.

Behaviour are the users’ interface into the architec-
ture. Assuming that the recognisable objects and avail-
able actions are sufficient, modifying the behaviours al-
lows simple and efficient means of addressing new tasks.
Execution and selection are separate parallel processes.
These components are illustrated in Figure 3.

In this architecture a behaviour is defined as a sin-
gle goal, the accomplishment of which completes one as-
pect of the group’s task. Behaviours are constructed
from “action blocks”, discrete units executed sequen-
tially that define relevant object types and the actions
to be taken. Behaviours are selected by an adaption of
the insect model described in Section 3.

4.3.1 Behaviour Selection

Behaviours are selected based on a modification of Equa-
tion 1:

Pi,j = Ri,j
si,j

si,j + θi,j
(2)

Where:

i refers to the agent i and j to behaviour j.
P is the rank of this behaviour, the be-

haviour with the highest value of P is ac-
tive.

R is the relevance of this behaviour (see Sec-
tion 4.3.2) and is either 1 or 0. This
links the external information of the Ob-
ject List with the internal behaviour se-
lection process.

s is the internal stimulus for this behaviour.
This is a linear function of time and in-
creases if the behaviour is inactive and
decreases if the behaviour is active. All
behaviours have the same rate of increase
and decrease.

θ is the internal threshold. This also evolves
linearly with time, but in the reverse di-
rection to s. Both stimulus and threshold
are constantly moving for all behaviours,
their direction is determined by the active
or inactive status of a given behaviour.

Equation 4.3.1 provides the behaviour selection mech-
anism. This is continually calculated as behaviours are
executed. If the active behaviour does not have the high-
est value of P , it is terminated and replaced with the new
active behaviour. Once this occurs, the new active be-
haviour stimulus is set to 1 and all other stimuli are set
to 0.

In contrast to Theraulaz et al. [1998] P has been sim-
plified to become a first past the post rank.

The constants governing the increase of both θ and s
were calculated by selecting initial conditions for stim-
ulus and threshold (0 and 1) and the desired time re-
quired for an inactive behaviour to return a higher P
value than the active behaviour (assuming in both cases
that R = 1). We found that, if this time is 60 sec-
onds the rate of change for s is ds/dt ≈ 0.0111 and θ
is dθ/dt ≈ 0.0083. The sign depends on whether the
behaviour is active or inactive. In our simulation stimu-
lus was initialised to 0 and threshold randomly allocated
between 0 and 1.

However, not all behaviours will be relevant at all
times; for instance, a robot cannot grasp an object of

6

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Figure 3: The behaviour selection and execution processes. Note that these operate in parallel, behaviour selection
is continuously running. Actions are obliged to recognise when the active behaviour has changed and terminate.
All elements of this diagram have access to the Object List. The rounded boxes represent the behaviour function
elements. These can be set by the user. All else is intended to be part of the architecture and is not modified.

type T if no instances of T exist. Thus we created the
concept of behavioural Relevance and included it into
equation 1.

4.3.2 Relevance Calculation

Each behaviour requires certain object types to exist in
order to be relevant. It may require these to exist in an
and relationship (eg: type1 and type2. . . and typen) or
the user may require a logic or relationship (eg: type1 or
typen). Conversely, there may also be object types that
must not exist for relevance. A search behaviour, for
instance is not relevant unless the target object does not
exist. Once again these non-existing objects may need
to be arranged in and and, or relationship.

From this, we clearly have the and, or, nand and nor
statements of classical logic, which we may view as exist
or exist, not exist and or not exist requirements.

Thus each behaviour must specify what makes it rele-
vant at any given time. There may be any number of ob-
ject types defined in any relationship to each other, but
experience has shown that behaviours work best when
the fewest object types are needed, as there is no formal
requirement preventing over-defined relevance.

When a behaviour is called, it uses functions provided
by the main architecture to store its relevant object types
in a common repository along with their logic require-
ments. The separate behaviour selection process contin-
ually computes the relevance of all the behaviours, along
with P for all behaviours (see Figure 3). The current
value of P is then multiplied by relevance.

Because the robots interact with their environment,
the execution of behaviours will change the objects in
view. What was relevant at the beginning of a behaviour
will very likely be irrelevant by its end. As we did not
wish to be restricted to one action per behaviour, we
needed a mechanism that permitted relevance to be re-
computed and updated as the behaviour advanced. To
this end we created the concept of a Action Block.

4.3.3 Action Blocks

An Action Block is a single section of code that defines all
information related to a single action and then executes
that action. The full structure is described in Figure 4.

Behaviours are created by joining action blocks in se-
quence. This formalisation limits user input to defining
the relevant object types, setting survival excepted types
(see Section 4.4) and selecting the action itself. Each ac-
tion block must check if the behaviour has been changed

7

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Figure 4: The action block format. The square boxes
illustrate what is required, the rounded boxes what the
user may modify for each action block. Note that it is
not necessary to use all possible combinations of exist
and not exist. Any number of object types with any
number of logical conditions may be used. Likewise, any
number of exception types may be set.

before it begins. Action blocks do not contain explicit
loops.

There is no formal limit to the number of action blocks
in a behaviour. Behaviours are defined as a single goal of
a broader task, but this goal may require several actions
to complete. In practice, we found that a minimum of
action blocks was desirable.

4.4 Survival Process

By constraining the behaviours as described above, we
found it necessary to outsource survival actions to a sep-
arate process. This was considered a better solution than
the alternative; forcing obstacle avoidance to be incorpo-
rated into behaviour or action formats. As it is conceiv-
able that there would be times and places when survival
actions would be unnecessary, behaviours can set object
types that were to be ignored by the survival process.
For example, a “pick up object” behaviour must be able
to approach close enough to the object to acquire it.
Therefore that behaviour would flag “object” as a type
to be ignored by the survival process.

In our experiments we only used the one survival ac-
tion: avoid. It simply took control of the motors and
steered away from the closest object, if that object was
not flagged an exception type and was within a minimum
distance.

5 Simulation

To test these ideas we created a simulation using the
ARGoS simulator (Autonomous Robots Go Swarming)
[Pinciroli et al., 2012]. The simulated robots are very
simple agents, consisting (for our purposes) of two wheel
motors arranged in a differential relationship, an omni-
directional camera, a one degree of freedom gripper,
proximity sensors and a coloured beacon (see Figure 5).

The test task was relatively simple: a number of agents
were arranged randomly in a 2x2 meter square in the
centre of a large field. In this square (also placed ran-
domly) was a ‘ball’ (see Figure 5. The purpose of the
task was to pass the ball from one agent to another. This
very limited task enabled us to observe the interactions
between agents. We wished to demonstrate that our ar-
chitecture could fulfil the requirements of the task (pass
the ball) without producing more data than could be

8

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Figure 5: Still from a simulation run showing four robots
and the ‘ball’

easily analysed. We judged the success of the architec-
ture by measuring how long each robot gripped the ball.
This enabled us to assess the division of labour and the
efficiency of the system. In an ideal scenario, the ball
should have been gripped by any agent for nearly 100%
of the simulation (which would indicate that it is being
continually passed) and held for about the same time by
all agents (indicating a equal division of labour).

Each robot was equipped with the following be-
haviours: search for ball, search for agent,
acquire ball, move ball 2 agent and receive ball.

The ball was identifiable by a red light. The robots
were identified by a blue light. The ARGoS two-
dimensional physics engine was used and all objects dis-
tributed using a uniform, Gaussian distribution. The
computer’s system clock was used as the random seed,
ensuring that no two simulations employed the same
pseudo-random number sequence. All simulations were
terminated at 600 seconds.

The robots were permitted to roam around the field
at will, but could only see two meters in any direction.
No artificial noise was added to either the sensors or the
motors, both of these being considered ‘perfect’.

6 Results

We conducted a number of simulations of the type de-
scribed in Section 5. We investigated the length of time

Number of
Robots per
Simulation

Average
Grip Dura-
tion (%)

Standard
Deviation

3 83.45 15.84
4 69.62 9.43
5 57.91 13.14
8 34.15 9.95

Table 1: The average time the ball was gripped by the
robots as a percentage of the 600 second simulation runs
– this is the percentage time the ball was in ‘play’. There
were four different groups sizes and 10 simulations per
group size.

the ball was gripped by a robot and how this was effected
by the number of robots in the simulation.

Initially the task was designed for four machines. We
ran simulations with groups of three, four, five and eight
robots. For each group size we ran ten simulations of
600 seconds duration. Table 1 shows the results of all
simulations. Figure 6 shows the results from the ten
four robot simulations.

7 Discussion

Figure 6 shows that each robot in the four robot group
spends approximately the same amount of time holding
the ball. This illustrates that there is a roughly even
distribution of labour. Interestingly, we found that this
was similar for other group sizes, although Table 1 shows
that the total gripped time decreases with group size.
Thus we would argue that, for these group sizes and task,
there is little evidence of specialisation. Possibly this
would appear if the groups were larger and distributed
over a wider area or the task was more complex. In the
above tests the robots could see a large part of the arena,
which probably retarded specialisation as the object lists
would be similar for all agents.

The fairly equal distribution of labour indicates that
cooperation is occurring. In addition to this, the total
gripped time is not insignificant, especially for smaller
groups. Thus this group is not wasting time. How-
ever, as the total gripped time decreases with group size
(Table 1) larger numbers of robots increasingly get in
each-others way. However, we believe that these results
demonstrates that the architecture functioned as a co-
operative system; work was being done for a significant

9

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

Figure 6: The results of 10 simulations for a four robot group. This plot shows the average time each robot in the
group has the ball (seconds) in each 600 second simulation. The maximum and minimum times for each simulation
are also shown.

percentage of the time and division of labour was rea-
sonably equal.

What would be the practical applications of this sys-
tem? Brambilla et al. [2013] list a number of applications
for swarm and cooperative robots:

“. . . including exploration, surveillance, search
and rescue, humanitarian de-mining, intrusion
tracking, cleaning, inspection and transporta-
tion of large objects”

This is what could be described as the usual list, re-
peated with minor variations in most cooperative robot
sources. While we do not have any particular task in
mind for this architecture, its internal constraints and
observations of the simulation suggest some guidelines
for practical applications.

The most important of these is the absence of the def-
inite article. As mentioned in Section 1, this architec-
ture was not designed with detailed instructions in mind.
This is realised by the description of behaviour relevance
by object type, rather than specific objects and the con-
vention that all actions relate to the closest interest of

type T . This lack of precision means that actions that
may seem vital to a human observer will be ignored by
a robot, thus they may not respond in a fashion that a
human may consider logical (although it is logical from
the robot’s limited point of view). In all tasks what an
individual robot can achieve is limited by its restricted
perspective.

Because of this we consider that the most applica-
ble tasks are ones that enable the relatively simplistic
agents to operate at their own pace. Tasks that require
continuous execution, like cleaning or digging would be
very applicable. Ultimately we envisage a central ma-
chine with a broader understanding of the environment
sending out teams of autonomous agents to solve tasks
without direct oversight. Our architecture would be es-
pecially suited to a colony approach. A colony could be
established with any number of blank worker robots who
could have new behaviours installed at run-time in re-
sponse to new situations and then left to solve them on
their own.

We believe that such colonies would be of most benefit
in very hostile environments where direct human over-
sight is impossible, such as radiation hazard zones, re-

10

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

mote locations, deep sea, or space environments.

8 Future Work

In this paper we have introduced the basic concepts of
our architecture and conducted proof of concept tests. In
the near future we hope to expand the simulation to a
more complex task. Simple ‘construction’, ‘sorting’ and
‘cleaning’ tasks are being considered.

We are also in the process of implementing the ‘pass-
ing’ task in hardware. At the time of writing, the physi-
cal robots are slightly simpler than their simulated coun-
terparts (a non-articulated scoop rather than a gripper
and a forward facing camera), but will provide insight
into the real world problems of the architecture. We an-
ticipate that sensing will be noisier and less reliable than
in the simulation. We have added a ‘confidence’ value
on each detected object and changed Relevance from a
Boolean to floating point value to account for this. We
hope to have the hardware version operational in the
near future.

If successful, the hardware implementation will illus-
trate that the architecture is sufficiently robust to func-
tion in the real world. The more complex simulations
will demonstrate that the architecture is capable of pro-
ducing cooperation on practical tasks.

9 Conclusion

We have presented an new architecture for implicit, de-
centralised robotic cooperation. This architecture was
intended from its inception to be separated as much as
possible from task specific information and not to require
strong inter-agent homogeneity as would be required for
explicit communications. It is based on previous be-
havioural robotic projects and biological models for hive
insect societies.

We have demonstrated through a simple simulated
task that it is capable of successful cooperation and a
consistent division of labour. We hope to shortly ex-
pand this demonstration to more complex tasks and real
world operation.

We believe that this design addresses at least some of
the limitations of previous robotic groups and could be
applied to a number of real-world problems, ultimately
creating autonomous robotic colonies.

References

Noa Agmon and Peter Stone. Leading multiple ad hoc
teammates in joint action settings. In Interactive De-
cision Theory and Game Theory, 2011.

R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

George A. Bekey, Robert Ambrose, Kumar Vijay, David
Lavery, Arthur Sanderson, Brian Wilcox, Junku Yuh,
and Yuan Zhery. Robotics, State of the Art and Future
Chalanges. Imperial College Press, 2011.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari,
and Marco Dorigo. Swarm robotics: a review from the
swarm engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

Rodney A. Brooks. Robot: The Future of Flesh and
Machines. Penguin Books, 2002.

Cristiano Castelfranchi. Silent agents: From obser-
vation to tacit communication. In Jaime Sichman,
Helder Coelho, and Solange Rezende, editors, Ad-
vances in Artificial Intelligence - IBERAMIA-SBIA
2006, volume 4140 of Lecture Notes in Computer
Science, pages 98–107. Springer Berlin / Heidelberg,
2006. 10.1007/11874850 14.

Erol Şahin. Swarm robotics: From sources of inspiration
to domains of application. In Erol Şahin and William
Spears, editors, Swarm Robotics, volume 3342 of Lec-
ture Notes in Computer Science, pages 10–20. Springer
Berlin / Heidelberg, 2005. 10.1007/978-3-540-30552-
1 2.

Deborah M. Gordon. Ants at Work, How an Insect So-
ciety Is Organised. Simon & Schuster Inc., 1999.

Owen Holland and Chris Melhuish. Stigmergy, self-
organization, and sorting in collective robotics. Artif.
Life, 5(2):173–202, April 1999.

Bert Hölldobler and Edward O. Wilson. Journey to the
Ants: a story of scientific exploration. Harvard Uni-
versity Press, 1995.

T. Huntsberger, P. Pirjanian, A. Trebi-Ollennu,
H. Das Nayar, H. Aghazarian, A.J. Ganino, M. Gar-
rett, S.S. Joshi, and P.S. Schenker. Campout: a con-
trol architecture for tightly coupled coordination of
multirobot systems for planetary surface exploration.
Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 33(5):550 – 559, sept.
2003.

11

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

AukeJan Ijspeert, Alcherio Martinoli, Aude Bil-
lard, and LucaMaria Gambardella. Collaboration
through the exploitation of local interactions in au-
tonomous collective robotics: The stick pulling ex-
periment. Autonomous Robots, 11:149–171, 2001.
10.1023/A:1011227210047.

Serge Kernbach, editor. Handbook of Collective Robotics:
Fundamentals and Challanges. CRC Press Taylor &
Francis Group, 2013.

Jelle R. Kok, Matthijs T.J. Spaan, and Nikos Vlassis.
Non-communicative multi-robot coordination in dy-
namic environments. Robotics and Autonomous Sys-
tems, 50(23):99 – 114, 2005. Multi-Robots in Dynamic
Environments.

Maja J. Matarić. Behaviour-based control: examples
from navigation, learning, and group behaviour. Jour-
nal of Experimental & Theoretical Artificial Intelli-
gence, 9(2-3):323–336, 1997.

Daniel Merkle and Martin Middendorf. Dynamic
polyethism and competition for tasks in threshold re-
inforcement models of social insects. Adaptive Behav-
ior, 12(3-4):251–262, 2004.

Eduardo Montijano, Johan Thunberg, Xiaoming Hu,
and Carlos Sagues. Multi-robot distributed visual con-
sensus using epipoles. In Decision and Control and
European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, pages 2750 –2755, dec. 2011.

Enrico Pagello, Antonio DAngelo, Federico Montesello,
Francesco Garelli, and Carlo Ferrari. Cooperative
behaviors in multi-robot systems through implicit
communication. Robotics and Autonomous Systems,
29(1):65 – 77, 1999.

L.E. Parker. Alliance: an architecture for fault toler-
ant multirobot cooperation. Robotics and Automation,
IEEE Transactions on, 14(2):220 –240, apr 1998.

Tuan A Phan and R Andrew Russell. A swarm
robot methodology for collaborative manipulation of
non-identical objects. The International Journal of
Robotics Research, 31(1):101–122, 2012.

Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Gio-
vanni Pini, Arne Brutschy, Manuele Brambilla, Nithin
Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick
Ducatelle, Mauro Birattari, Luca Maria Gambardella,

and Marco Dorigo. ARGoS: a modular, parallel, multi-
engine simulator for multi-robot systems. Swarm In-
telligence, 6(4):271–295, 2012.

T. Schmickl and K. Crailsheim. Taskselsim: a model of
the self-organization of the division of labour in hon-
eybees. Mathematical and Computer Modelling of Dy-
namical Systems, 14(2):101–125, 2008.

T. Schmitt, R. Hanek, M. Beetz, S. Buck, and B. Radig.
Cooperative probabilistic state estimation for vision-
based autonomous mobile robots. Robotics and Au-
tomation, IEEE Transactions on, 18(5):670 – 684, oct
2002.

J.N. Schwertfeger and O.C. Jenkins. Multi-robot be-
lief propagation for distributed robot allocation. In
Development and Learning, 2007. ICDL 2007. IEEE
6th International Conference on, pages 193 –198, july
2007.

John H. Sudd. An Introduction to the Behaviour of Ants.
Edward Arnold, London, 1970.

G. Theraulaz, E. Bonabeau, and J-N. Denuebourg. Re-
sponse threshold reinforcements and division of labour
in insect societies. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 265(1393):327–
332, 1998.

Guy Theraulaz, Jacques Gautrais, Scott Camazine, and
Jean-Louis Deneubourg. The formation of spatial
patterns in social insects: from simple behaviours
to complex structures. Philosophical Transactions of
the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 361(1807):1263–
1282, 2003.

J. Turner. Termites as models of swarm cognition.
Swarm Intelligence, 5:19–43, 2011. 10.1007/s11721-
010-0049-1.

12

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2013, University of New South Wales, Sydney Australia

120

AppendixB
Implementation

The Architecture was implemented upon two swarms, real and simulated
robots. The simulation was relatively simple – with “perfect” vision, low-level
sensing and effector control. The real-world robots were much more trouble-
some to implement. The original design was over-optimistic in its simplicity,
necessitating several generations of re-design.

It should be stressed that the real-world machines are not intended to be
perfect robots. They were designed to be cheap, simple swarm agents. They
had to be implemented by one person with restricted time on a very limited
budget. Although “better” swarm machines could be built, these machines are
still swarm agents in the sense discussed in Chapters 1 and 2.

B.1 Real-World Robots

B.1.1 Evolution

To maintain robot simplicity and reduce cost and implementation time, the
original design used the camera as the robots’ only sensor. This was considered
the minimum hardware needed to identify object types and localise objects.

In practice, the vision system was not sufficiently reliable to be the only
sensor. The field of view was too narrow and the result too prone to false
identification to be used without any additional support.

To overcome this, a “gripper” sensor was added to identify captured objects
and touch sensors were attached to the rim of the robot to identify proximity-
objects.

The original robots possessed only a static “scoop” as the gripper. It was
felt that an articulated pincer would simply add time and expense to the devel-
opment process without materially adding to the project. A static scoop could
still perform the “grip” and “drop” actions simply by moving the robot’s wheels.

Again, this proved too simple, as avoidance caused the robots to inadver-
tently drop captured objects. This was overcome by adding a simple “hook”
powered by a small servo to the scoop. This one-degree-of-freedom “finger”
secured captured target objects.

121

Figure B.1. Top: The steady evolution of the robotic hardware. Left to
right: the original, camera-only machine, the addition of the
infrared capture sensor, the first touch sensor design and the
final wire touch whiskers and powered hook. Bottom: the final
robot.

122

Figure B.2. The Raspberry Pi model B (revision 2) single board computer
– the primary computer in all physical agents. From the Rasp-
berry Pi Foundation.

This evolution process was achieved through trial and error and emphasised
that, while the four actions of The Architecture allow for simple agents, the
robots must be able to perform each action robustly.

The sequence of robot development is illustrated in Figure B.1.

B.1.2 Computer

The primary computer was a Raspberry Pi model B (revision 2) single board
computer (see Figure B.2). While use was made of the GPIO pins for capture
detection and communication to the wheels, no modifications were made to the
board itself.

The Operating System was Raspian, (Debian Wheezy Linux optimised for
use on this platform). The only noteworthy modifications were to the rc.local

script to obtain boot-time operation of the architecture and an overclock from
700 to 900Mhz.

More information on Raspian is available at: raspberrypi.org
The computer was powered by a 6V, 2000mAh rechargeable NiMH battery

from Eneloop, running through a 5V 3A BEC Step-Down Voltage Regulator
by Pololu Robotics and Electronics (see pololu.com/product/2177) for added
protection.

B.1.3 Low-Level Sensors

Touch

The Raspberry Pi GPIO pins provide the interface for all sensors bar the camera
(which has its own dedicated CSI port). The connections for the sensors is given
in Table B.1.

The Touch sensors are simply a sprung contact switch (see Figure B.4) with
an extended contact arm (a wire loop).

123

raspberrypi.org
pololu.com/product/2177

Figure B.3. Left: The Raspberry pi camera used as the robot’s primary
sensor. From the Raspberry Pi Foundation. Right: The low-
level sensor electronics. Left to right: the scoop gate infrared
diode, the infrared photo-transistor and the touch sensor con-
tact switch (not to scale). See jaycar.com.au catalogue num-
bers ZD-1945, ZD-1950 and SM1036 respectively.

Figure B.4. The touch sensor switch, attached to right scoop arm.

124

jaycar.com.au

Sensor BCM Pin No.

touch: scoop, right 7
touch: scoop, centre 25
touch: scoop, left 8
touch: flank, right 24
touch: flank, left 22
touch: rear 17
infrared gate 23

Table B.1. The low-level sensor configurations. The touch sensors are all
contact micro switches. The pin numbers denote the Broad-
com pin numbers for the Raspberry Pi B revision 2. Note that
the wiringPi library used to interpret these pins uses a different
numbering scheme.

The switches can only be triggered if pressed, not pulled. More advanced
designs would have contact-less infrared or ultrasonic proximity sensors. These
were too deemed expensive to implement in this project (they would have been
required in large numbers and demanded more complex implementation), how-
ever would have been better in hindsight, as the contact arms were prone to
catching in other robots.

The six touch sensors were attached in the following order:

1. One to each scoop wing, facing forward to detect collisions from approxi-
mately 10 to 2 o-clock.

2. One in the scoop itself to avoid obstacles becoming trapped in the scoop
(the target objects are made from paper and as such are too light to
overcome the spring).

3. One on each flank, just behind the scoop to cover the sides.

4. One in the rear.

Capture

Originally, it was hoped that the camera would be able to recognise captured
objects without the need for another sensor, any object within view closer than
x centimetres would be seen as “captured”.

In the event, this proved impractical, as visual recognition was poor that
close to the camera and conflicting geometries (the need to recognise objects
both close and far away) were irreconcilable. As the ability to discriminate
between the target and captured object types was essential, the robots were
fitted with an infrared “gate” across the mouth of their scoops (compare Figure
B.1 top, left and second from left). A break in the gate (logic low at the photo-
transistor emitter) indicated the presence of a captured object.

The circuit necessary to achieve this is depicted in Figure B.5. The voltage
necessary to run the gate was sourced from the robots’ master computers’ GPIO
pins, while the signal (Vout) was connected to digital pin on the same computer.

125

Vcc = 5V

R1

infrared-diode

photo-transistor

R2

Ic

Vout

Figure B.5. The infrared circuit design. Left, the photo-transistor, right
the infrared LED. The diodes were mounted on the left of the
robots’ scoop, the photo-transistors on the right.

The circuit is configured so Vout has a potential of 0V (or below the com-
puter’s “logic low”) in “full light” (no object). When this occurs, the voltage is
given by the following equation:

Vout = 0 = Vcc − IcR2 (B.1)

Given that Vcc = 3.3V (The robot computer’s operating voltage – see Ap-
pendix B, and that measured values Ic in full “light” were around 1.5mA, the
value of R2 can be computed thus:

R2 =
Vcc
Ic

(B.2)

R2 =
3.3

1.5× 10−3
R2 = 2.2kΩ

Thus a voltage change at Vout from low to high indicated the presence of a
captured object. See Figures B.5 and B.1 (second from left) for implementation.

The infrared diode is run from the same 3.3V power rail as the current
draw required to run the diode is very small (an R1 value of 220Ω drew only
approximately 11mA and produced more than enough “light”).

As we shall see, the presence of captured objects was used to obtain quantita-
tive results on Architecture viability (see Section 4.2). As the infrared gate was
unable to distinguish between a captured target object and a blockage caused
by any other factor, collisions between robots occur and unquestionably add
false positives to the results.

126

Figure B.6. The view from the robot. This is a still from the visual feed
from a single robot, showing object detection in a complex scene
(this is the V channel, the image contrast has been adjusted for
ease of viewing). The robot is sitting on a desktop looking at a
black computer tower (background, right) with objects on the
wall behind it (background, left). Also present in the image are
a coffee mug (centre left), a target object (centre right) and a
pen (foreground). The robot has identified the handle of the
coffee mug, the entirety of the paper target object and two of
the object markers as potential objects. The markers are the
only positive matches.

This is a problem, but it is not considered significant. The duration of these
episodes is small overall, nor was absolute accuracy in the results considered
necessary for proof-of-concept verification.

B.1.4 Vision

Overview

The full vision process is as follows (the Open Computer Vision library –
opencv.org – was used throughout):

• The image was thresholded in the V channel (of the input YUV422 im-
age). As the identifying square always contrasted well with the object
main colour, this separated the square from the background. An “erode”
morphology was used to remove small noise blobs.

• The resultant binary image converted to contours and the shapes processed
using Hu moment analysis footnoteSee Hu (1962) or Bradski & Kaehler
(2008) for more on this method. and by computing the hull defect sum
for each object1.

Two methods of shape detection were not strictly necessary, but were a
relic from earlier, purely shape-based sensor interpreters. In the event,

1This was rendered scale invariant by dividing by the length of the contour, thus allowing
the same object to have the same hull-defect sum at various distances. The Hu moment
analysis is already scale-invariant (Hu 1962, Bradski & Kaehler 2008).

127

opencv.org

Figure B.7. The final target objects, Left: the first target object used in
all tasks, right: the second target object, used in the grouping2
task.

removal of one method did not appreciably increase the frame-rate, while
decreasing reliability.

• Object type was identified using the background colour of the object.
A histogram of a rectangular area under the marker square was taken,
the peak of this histogram (an integer index from 0 to 255) was used to
determine the colour by comparing it to pre-determined thresholds for
each colour.

• Range and bearing were then computed (see above).

• Objects were

Objects, Colours and Blur

In the real-world experiments, objects were paper cylinders with square markers
of known size and colour identifying them as object types (see Figure B.7.

The square marker distinguished the objects from the background, while the
background colour of object identified the type. The largest problem with vision
was the “motion-blur” caused by the panning of the camera as the robots turned.
If the robot turns rapidly, the camera image becomes horizontally blurred, ob-
jects loose clear shape definition and colours smooth out. To overcome this, the
robots’ were restricted to a low turning speed and the object marker set as a
square, which is a simple shape and resistant to horizontal blur.

Object type classification was performed using the object background colour
under the square marker. This is a patch of colour that did not noticeably change
colour as the camera panned. The uninterrupted horizontal band is too large
for the surrounding background colour to appreciably “bleed” into the band2.

2The author would like to thank Dr. Richard Landers for pointing this out.

128

• Optical AxisPrinciple Point

Image Plane

hi

x

ho

Z

X

•

Pinhole Plane

The Pinhole

f

hi + x

ho +X

f Z

Figure B.8. Top: Pinhole camera model, side view: illustrating of the re-
lationship between object height (ho), image height (hi), focal
length (f) and depth (Z). Bottom: the similar triangles that
may be formed from this model.

Originally, only the V channel was used (the U and V channels were found
to be far more resistant to changes based upon light – see Florczyk (2005)).
This was insufficient to reliably identify three distinct objects for the grouping2
task and was supplemented with the U channel. The red target-object-1 colour
and the blue agent-object colour (see Figures B.1 and B.7) were chosen for their
dissimilarity in the V channel. The yellow object-2 colour was chosen for its
dissimilarity to the first two in the U channel.

Range and Bearing

Once the object was identified and classified, the known real-world size of the
marker square, the known camera focal-length, known pixel-size and the pin-
hole camera model were exploited to find its (very rough) position relative to
the robot (see Figures B.8 and B.9).

This is the simplest and most ideal form of a camera; a lens-less camera
represented by a hole of zero area bored in a card. The card is held at distance f
from the imaging surface (the digital imager) and a beam of light travels from the
real-world object – which is at distance Z from the pinhole – through the pinhole
and forms an inverted image on the image plane (Bradski & Kaehler 2008, Hecht
& Zjac 1974).

It is important to note that Z is the distance from the pinhole to the object
along the optical axis of the camera – in other words, it is the Z coordinate of
the object in three dimensional space, with a coordinate system centred at the

129

• Optical AxisPrinciple Point

Image Plane Pinhole Plane

The Pinhole

f

image center

object center

θ
θ

Y

y

•

Figure B.9. Pinhole camera model, top view: by using similar triangles, and
knowing the value of f and y, the bearing of any real-world
object θ may be computed.

pinhole – not the direct distance from the object to the pinhole.

Straight lines drawn from the top and bottom of an object passing through
the pinhole to the image plane produce two similar triangles which can be made
into right angle triangles as demonstrated in the lower right corner of Figure
B.8. Similar triangles enables the following equality to be made:

hi + x

f
=

ho +X

Z

∴ Z =
f(ho +X)

hi + x
(B.3)

Again, using similar triangles, we can see that:

x

f
=

X

Z

∴ X =
Zx

f
(B.4)

By substituting equation B.4 into B.3 for X, we can show that Z can be found
from f , ho and hi regardless of the values of X or x:

Z = f
ho + Zx

f

hi + x

Z = f
ho + Zx

hi + x

Z(hi + x)− Zx = fho

Z(hi + x− x) = fho

Zhi = fho

130

Z =
fho
hi

(B.5)

Once the depth is known, it is necessary to compute the corresponding bearing.
This can be achieved by using the y coordinate of an object as demonstrated in
Figure B.9.

tan(θ) =
y

f

∴ θ = arctan(
y

f
) (B.6)

Once both depth and bearing are known, they can be combined to give range
R as follows:

R =
Z

cos(θ)
(B.7)

Thus on a flat plane an object of known dimensions can be localised relative to
the camera in terms of range, R and bearing, θ. This method was suggested by
the work of Schmitt, Hanek, Beetz, Buck & Radig (2002).

To obtain the camera focal-lengths the OpenCV camera calibration functions
were used. See Bradski & Kaehler (2008) for details and attached DVD for
implementation code. In practice this method was very crude.

Tracking

Objects were tracked from frame to frame to enable both confidence calculation
and limited “projection” of position once the object left the camera’s field of
view.

For tracking, two lists of objects were maintained, one from the past (framek−1)
and one from the current-frame (framek). Objects from the old frame were
matched to objects in the new frame. This order was simply the easiest to
code. If a successful match occurred, the confidence entry in the new list was
incremented and the old position entries filled with the position of the old object.

If no match was found, the unmatched object was projected based on its
last tracked position and its confidence decremented. Projection was based on
the difference between position at framek−1 and framek−2, both of which were
recorded. This difference was added to the position at framek−1 to produce a
rough guess at framek position. This assumed that movement from frame to
frame is both smooth and small.

If no last position existed, then it would be “projected” in place. Objects
with a zero or negative confidence were purged. All remaining matched or
projected objects were then entered in the global list.

If a new object remained un-matched at the end of this process, it was con-
sidered a new object and entered in the global list with an initialised confidence
and no history

In practice it was found that objects could not be tracked for too long, or
else the movement of the robot rendered their projected positions meaningless.
This was especially true when the robot turned as the projection was based ex-
clusively on the object’s previous evolution in the image. If the robot changed

131

speed after the object left the image then the projection assumptions were un-
dermined. Two to three seconds were found to be the working maximums for
this crude system.

Confidence Calculation

The confidence of objects was based upon the quality of recognition and the
duration of observation. The better the shape match (to a perfect square, see
above) and the longer the object had been tracked, the higher the confidence.

To pass the shape match test a potential object had to return Hu moment
and hull error values of less than humax and hullmax respectively. This meant
that, if valid Hu and hull error values were to be divided by their maximum
acceptance thresholds, the results would be floating point numbers between zero
(perfect match) and one (at threshold) and capped between 0 and 1. Using this
property, a match criterion m was defined as a dimensionless number between
zero and one and calculated by taking the product of one minus the two divisions,
as shown in Equation B.8.

This process meant that an m value of 0 corresponded to a very bad match,
while m = 1 signified a very good match. Thus an assessment of object match
was arrived at – see Equation B.8.

hun =
hu

humax

hulln =
hull

hullmax
m = (1− hun)× (1− hulln) (B.8)

Once m had been successfully calculated it was stored in the object list
along with the other object data. If that object was successfully tracked, it was
retrieved and used to calculate confidence.

The function combining object duration and m needed to return high con-
fidences for objects with a good match (m → 1) and long tracking duration
(t → tmax). Thus if a very good match appeared suddenly, it was rewarded
with high confidence, regardless of its duration, permitting the robot to respond
quickly to good objects.

For the sake of simplicity this was achieved by defining flat plane in time,
match, confidence space from the following points:

P = [0,mmax, cmax]

Q = [tmax, 0, cmax]

R = [0, 0, 0]

Where:

cmax is the maximum possible confidence value,
mmax is the maximum possible match value,
tmax is the time desired for an object confidence to climb from zero to

cmax (in seconds) and
t is the duration time of this object (in seconds)

132

Using these three points, two vectors may be constructed defining the plane,
thus:

~RP = [tmax, 0, cmax]

~RQ = [0,mmax, cmax]

Using the property that the cross product of these two vectors gives an orthog-
onal vector, we may compute the confidence plane’s normal:

~n =

∣∣∣∣∣∣
~ı ~ ~k

tmax 0 cmax
0 mmax cmax

∣∣∣∣∣∣
~n = −~ı(cmaxmmax)− ~(tmaxcmax) + ~k(tmaxmmax)

~n = [(−cmaxmmax), (−tmaxcmax), (tmaxmmax)]

Using the equation of a plane: ~n ·(x, y, z) = 0 it is possible to derive an equation
for confidence (c):

0 = ~n · (x, y, z)
0 = x(−cmaxmmax)− y(tmaxcmax) + z(tmaxmmax)

Which can be re-arranged to give

c =
(cmax ×mmax × t) + (tmax × cmax ×m)

tmax ×mmax
(B.9)

Where, c is the confidence value.

Which, as cmax and mmax are both equal to one, becomes:

c =
t+ (tmax ×m)

tmax
(B.10)

Using Equation B.10, the confidence for any tracked object may be found,
provided m and t are known. In all cases confidence was capped at cmax = 1
regardless of the output of Equation B.10.

Once tracking had failed and object projection begun, confidence was per-
mitted to decay linearly at a fixed rate per unit time, allowing for a few seconds
of extended existence.

Vision Evolution

The visual system was the most difficult and time-consuming system to develop.
It went through several iterations and revisions:

• Marker placement – Originally, the marker would have been a coloured
ball held above the robot. This scheme did not take the cameras’ limited
field of view into account and could only recognise objects situated a long
distance from the observing agent.

133

Figure B.10. The micro-servo motor powered hook being used to hold an
object in the gripper scoop.

The second iteration used a rectangular colour band of known width
around the “waist” of the robot. This approach was discontinued due
to problems with occlusion – the bands were easily obscured by other
robots, two robots in close proximity became one very large robot.

• Different colour systems – early attempts attempted to identify objects
based upon colour alone. This produced too many false positives – all
behaviours were relevant at all times due to the high number of imaginary
objects.

• Shape only recognition – objects were marked with black shapes on white.
This worked well on a stationary observer, but failed once the robot started
to move. The motion of the observer blurring the shape into a grey blob.

Additionally, shapes with sharp corners could not be cleanly recognised,
as the contour would not always travel around the corner. This severely
limited the range of shapes.

• Range from Magnification – an early version of range detection was to
compute range based upon the ratio of projected size of the object and
the known actual size. Measurements were taken of the standard object
marker at a number of known ranges and an interpolated look-up table
generated. In the event, results from this method were very different
between cameras, it was easier to calibrate the cameras, recover the exact
focal-lengths and use the method described in Figures B.8 and B.9.

B.1.5 Motors and Actions

Locomotion

Hook

The original robots were equipped with only a wide scoop as a gripper. The idea
was that the complexity and cost of a powered gripper could be avoided, the
robots’ anticipated environment was a flat two dimensional plane so they could

134

manipulate objects by simply pushing them wherever they need to go. As there
was no third dimension, there would be no need for powered manipulators.

Unfortunately, this was too optimistic. Although the scoop scheme worked
well in prototype form, as soon as the robots’ environment was bounded by
the arena walls3 the robots lost all control of their captured objects upon en-
countering the wall. This meant that all target objects eventually washed up
against the arena walls, from where they could not be retrieved, unless they
were continually re-set.

Clearly, this was inadequate. At best it was inconvenient and at worst it
actively damaged the swarm’s chances of completing its task. To solve this
problem a micro-servo was installed behind the scoop (see Figure B.10 and
Appendix B). A thin wire (a bent paper-clip, actually) was attached to the horn
to act as a “hook” with which a captured object could be snagged. Power was
provided by the master computer battery and control from the main computer’s
sole hardware-PWM capable pin. Control was activated via the grip and un-grip
actions, these were the only actions allowed to access the hook control. Only
two positions, hook up and hook down were supported.

This primitive set-up allowed for the robots to hold on to captured objects
during sharp turning, reversing and avoidance.

Actions

The low speed required to overcome the motion blur problem necessitated fairly
primitive control algorithms. Eventually (after alternatives implementations
failed), all control for the “move to” and “move from” actions were based on
target object bearing exclusively. The object bearing values were divided into
six zones: less than one degree, one to six degrees and greater than six degrees
(with mirroring negative values). Appropriate motor values were selected for
each zone based upon the maximum motor speed multiplied by a constant. The
maximum motor speeds and constants were determined via trial and error.

The grasp action was also implemented simply. The robots moved forward
until a captured-object appeared in the object list. The hook (if implemented –
see below) was then lowered and the action returned success. The action timed
out if the “move forward” component went on for longer than ten seconds. A
half second movement was guaranteed. These times were based upon experience
with the robots and how far (roughly) they could move in a given time and for
a given power setting. Better implementations would have closed-loop feedback
and move specific distances (see Section 5.1.3) wheel encoders were not available
for the real-world robots and not used in the simulator.

Dropping objects was accomplished in a similar fashion. The hook (if present)
was raised, the robot backed up and then executed an on-the-spot turn to re-
move the dropped object from sight. Backing and turning was also based upon
time.

To execute avoidance the real-world robots began by backing up slightly,
to clear their touch sensors from the obstacle (if the obstacle is not behind).
The control loop then found the highest confidence object within the avoidance
distance and performed one of four avoidance options (move forward, back, left
or right) based on the quadrant in which that object existed. This was done

3See Section 4.2.4 for a discussion on why this was necessary

135

continuously until no objects existed within the avoidance distance.

These are crude, ad-hoc methods, but were ultimately faster and easier
to implement than any other. The results were surprisingly good, although
the real-world robots’ response was fairly sluggish and turning circle somewhat
large.

B.1.6 Clocks and Timing

Real-world timekeeping was inaccurate. In the simulator it was possible to
fix the time exactly, in terms of simulation steps. In the real-world this was
much more approximate. Although each robot was equipped with an on-board
clock, this was simply the computer’s system clock and not calibrated to an
external source or to other robots in the swarm. As a result all robots had
different, unknown starting times. Simultaneous initialisation of the experiment
was achieved by simultaneously removing an obstacle (a paper cover) from the
robots’ IR gripper sensor with a string. Theoretically, it should have been
possible to then clock any desired experimental time from this common point –
see Section C.1.1 for more on this.

Unfortunately, in practice, it was found that the robots’ internal clocks were
extremely inaccurate over a long period. It is believed that this is a function
of the high computational load placed upon the CPU by the requirements of
real-time vision processing. The robots’ system clocks ran faster than the wall-
clock, with a shorter “second”. This could be by as much as 10%, and never
exactly the same in any two robots.

The result was a staggered experiment termination, with robots stopping
singly over an approximately two minute interval.

Clearly this was insufficient, but it could not be fully overcome. External
timekeeping was not practical: the robots had neither external clocks or wireless
connections and there were no resources with which to procure or time to install
such devices.

Instead, we used a stopwatch to time the actual duration of experiments,
from initialisation to when the first robot stopped or the target object was
removed. As we shall shortly see, in experiments where duration time was an
important factor, we will use both the internal clock and the stopwatch “wall-
clock” times.

For times that were recorded as the summation of very small increments
over a non-continuous period time (as were behaviour threshold times, object
hold times, etc.), this effect was believed to be minimised. If the clock error
was a constant percentage of each second, division by the experiment duration
as recorded by the robot should have cancelled the error.

Nevertheless, we must stress that because of this, pinpoint temporal accuracy
in real-world robots was impossible. We shall use time extensively in computing
results, but these are not intended to be universally precise, but simply a guide
to observations.

136

Figure B.11. Three simulated robots and the target-obj-1 (“ball”) object.
The cylindrical protuberance on the top of the robots is an
omni-directional camera, with the blue robot beacon at the
base. The tiny “gripper” is just visible on the right-hand
robot as a slight bulge on the middle section facing the target
object.

B.1.7 Chassis

B.2 Simulation

B.2.1 Overview

The simulated robots are treated as ideal approximations of the “perceive, ma-
nipulate, locomote” swarm agent model. The perception system is a perfect
camera, that returns the type and location of objects relative to the agent. Lo-
comotion is in two dimensions via a differential drive and manipulation governed
by a ideal pincer gripper.

It is important to note that the simulated Architecture was realised via
a different source code than that used in the real-world machines. The real-
world machines make extensive use of shared memory, the OS scheduler and
the fork() system call to achieve parallelism in the various Architecture sub-
processes (see Chapter 3). The simulated robots rely on a superabundance of
computing power and the luxury of non real-time implementation. The sim-
ulation step process made it easier to simply re-write The Architecture as a
sequential system with each major Architecture process as a method of a larger
swarm agent class. These methods were executed in a specific order (sensors,
behaviour selection, behaviour execution, survival selection and survival execu-
tion) once per simulation step.

In theory, it would have been possible to make The Architecture code fully
portable and, had this been done at the start, it might have been easier. How-
ever, by the time it was fully implemented, it had been created in two distinct
streams and reconciliation would have taken far too much time. A side effect of
this is slight differences in minor Architecture features, the effect of which we
shall discuss presently.

137

B.2.2 Perception

The simulated robots possessed a coloured “beacon”, which were illuminated in
blue for agent object identification. Target objects are identified in the simula-
tion with various coloured “LED’s” with object recognition being an idealised
version of blob detection. The “camera” returned a list of object blobs, ex-
ploiting the geometrical properties of the simulated omni-directional camera to
compute their exact location relative to the robot. To mirror the real-world
robots the field of view was restricted. Objects that fell outside the cone de-
scribed by an angle of +/−30 degrees and a range of one metre from the edge of
the robot were ignored. This represents a slight divergence from the real-world
robots (which, in practice have a narrower field of view).

A ring of proximity sensors was also present. This enabled the robots to
reliably detect objects up to about 17cm of the robot. Results from the for-
ward proximity sensors were ignored if an object was present in the gripper –
although it is suspected that this filtering was not always successful as robots
could be occasionally observed turning in circles as though permanently avoid-
ing collision. This switch off also implies that the simulated robots are blind to
proximity objects approaching from the front quarter when carrying a captured
object.

There was no noise in any of the simulated sensors.

B.2.3 Actions

In simulation, the robots did not possess a very sophisticated control loop.
Instead they simply had their motors fixed at an appropriate speed and were
permitted to “waddle” towards target objects; if the target was on the left, the
left-hand motor was stopped and the right-hand motor left running. If left to
their own devices they would (eventually) converge on an object. Although this
had a tendency to make the robots look like a line of fat ducks, for the sake of
simplicity such a sacrifice of dignity and precision was considered acceptable.

Simulated robots did posses a powered gripper (see Figure B.11), but in our
implementation this was simply treated as a magical appendage that allowed
captured objects to “stick” to the robot and un-stick on command. Through
trial and error, a distance was found where the gripper was effective. The grasp
action moved the robot to this distance from the target object and called the
appropriate method to close the gripper’s jaws. Dropping was the same in
reverse, followed by a sharp turn to remove the dropped object from the robot’s
field of view.

We shall discuss the simulated robots in greater detail in Section C.1.2. At
this stage, they can be considered an approximation of the real-world robots
and are the same conceptually unless otherwise mentioned.

138

AppendixC
Swarm Implementation

C.1 Real-World and Simulation

The Architecture was implemented on two distinct swarms: one comprised of the
real-world robots (above) and a virtual swarm generated by ARGoS simulator
developed by Pinciroli, Trianni, O’Grady, Pini, Brutschy, Brambilla, Mathews,
Ferrante, Di Caro, Ducatelle, Birattari, Gambardella & Dorigo (2012).

It should be stressed that the simulation was not intended as a direct repro-
duction of the real-world and that the simulated robots represent quite different
machines to those eventually realised in hardware. In fact, they are only similar
in that they are both swarm agents in the move, manipulate and perceive sense
discussed previously. As The Architecture was intended to be general, it was
imperative that it be operable on multiple platforms.

While the same tests were undertaken in both environments, they had dis-
tinct purposes. The simulation was used for:

• Development, verification, debugging and testing of early Architecture
concepts.

• Recording of reliable numerical data on micro agent and macro swarm
performance.

• Replicating the basic tasks on a very large-scale swarm, to illustrate The
Architecture functioning on a scale fiscally impossible in the real-world.

While the real-world robots were used to:

• Test The Architecture in a less-idealised environment.

• Illustrate the functionality of The Architecture on a similar, yet physically
different swarm.

• Validate the simulation by achieving comparable results under these con-
ditions.

The differences between the real-world and simulator implementations of The
Architecture provided a valuable insight into the practicalities of implementing

139

Figure C.1. The initial set-up of the ball passing task, as the infrared ini-
tialisation barriers are removed. The lines on the floor are not
related to this project. From ball passing experiment 1.

a universal swarm architecture and the sensitivity of swarm performance to the
unavoidable differences between swarm hardware and environments, as we shall
see.

However, despite the inherent differences between the two environments, the
tasks executed by both swarms were identical and wherever possible, the two
environments were made similar in gross features.

Before progressing to the actual results, we shall conduct a brief examination
of the two worlds.

C.1.1 The Real-World

The Robots

As we have discussed previously, the physical robots went through several dis-
tinct phases. All tests were conducted on machines that had infrared captured
object detection and proximity touch sensors. However, initial tests of the
ball-passing (experiments 1 through 12 inclusive) were conducted with “scoop”
robots featuring the more primitive touch sensor incarnation. Hooks and wire
“antennae” type sensors are present for experiments 13 through 20 inclusive.
Primitive grouping1 experiments were also conducted with the scoop robots,
although these were not recorded and are considered debugging trials, only
briefly commented on. Grouping2 experiments were always conducted with the
last hardware incarnation.

The Arena

The real-world robots were arranged in a square arena 2.4 metres to a side1

(see Figure C.1) with one robot in each corner, all facing in towards the target

1The real-world dimensions of the arena were chosen unscientifically, 2.4 metres gave a
“good” amount of space proportional to the robots’ physical size, fitted well in the available

140

object at the centre. In the real-world arena, these positions were approximate.
The arena was bounded by metal barriers fixed to the floor and could not

be shifted by the robots (liberal application of tape ensured this). The barriers
were physical obstacles that were invisible to the robot’s vision sensors and did
not trigger the infrared gripping sensor.

The arena floor was a flat, hard vinyl surface, presumably laid over concrete.
Imperfections in the form of fine dirt, small bumps and marked lines – relics of
older projects which can be seen in Figure C.1 – were present. As far as could
be determined, these had little effect on experimental results and were largely
ignored, although a build-up of rather noxious fluff in the robots castors and
around the motor axles was noticeable over time. This was periodically cleaned
with a sharp point and lead to a slight, but largely undetectable and probably
insignificant, increase in motor traction.

All robots were started simultaneously, using the gripper sensor as a signal;
a obstacle (a paper barrier) was placed across the sensor and the architecture
initialisation sequence was set to hang until the sensor cleared (the sensor needed
to be blocked before The Architecture booted). All of these paper obstacles were
removed simultaneously with a string, providing an approximately simultaneous
initialisation. This process is being executed in Figure C.1. This process was
not exactly precise, but deemed sufficient for real-world experimentation.

In all real-world experiments the arena was unchanged. The only modifica-
tion was the introduction of multiple target objects in the grouping1 task and
the addition of the central pillar object in the grouping2 task. In the former
case, eight target objects were arranged around the edges of the arena, in a
roughly even distribution. For the grouping2 task this arrangement was dupli-
cated with the addition of four target-obj-2 type objects in the centre to act as
the central pillar. Four such objects were found to be necessary to provide good
visual identification at all orientations and prevent occlusion.

Procedure

Real-world experiments were all started by the approximately simultaneous re-
moval of a paper barrier from the robots’ infrared sensors (see Figure C.1 with
a string. They were concluded by manually powering off the robots and (in the
ball passing task) the removal of the target object.

The real-world robots did not exhibit the robustness of their virtual counter-
parts. Mechanical failures, stalls and entanglements were common. The robots’
physical construction was simple and their touch-sensors unreliable (as contact
switches, they only functioned if pressed from the correct direction). In most
cases, the snarls that resulted from several robots colliding in close proximity
was too much for the primitive avoidance function to resolve.

In these cases, rather than permit the motors to strain at stall indefinitely,
the experimenter was compelled to untangle the robots manually. Wherever
possible this was done at a distance with a pole (although some collisions un-
seated the printed chassis and needed to be re-set by hand – as can be seen
in the attached recordings). This manual re-set was also employed on the not
infrequent occasions when the touch sensors failed to trigger upon encountering

laboratory space and was readily available off-the-shelf from the local hardware. The bar-
riers are actually an aluminium ’T’ section approximately 40 × 40 mm along the principle
dimensions.

141

a wall or other obstacle. Improvements in touch-sensor design reduced the need
for this intervention, but ultimately the fundamentally jury-rigged nature of the
proximity sensors could never be fully overcome.

The other necessary intervention was to keep the target objects clear of
the arena barrier wall. Even hook equipped gripping robots did not have the
ability to retrieve the ball if it was hard up against the wall – their forward
avoidance sensors would trigger if they approached the target object head-on.
Scoop robots, of course, could not back-up with a captured object, rendering
such recovery impossible. Setting proximity objects as an avoidance exception
during the acquire behaviour was not a solution, as this tended to cause the
robots to stall against the wall if the grip was not perfect. Although, one must
admit that this avenue was not fully explored.

Instead, the target object was pushed away from the wall manually. The
earliest experiments with the scoop robots required that it be re-set in the centre
of the arena every time it touched the wall. This was a very unsatisfactory state
of affairs that inspired the development of powered hooks. Later, hook equipped
robots were more autonomous and the ball was simply pushed off the wall with
a screwdriver (which provided a constant short distance), or, later still, shoved
a few centimetres with a pole.

These interventions are clearly less than optimal as they introduce a potential
for bias into the experiment. However, no realistic alternatives were available.
It is the author’s belief that, in the hook equipped passing task especially, they
do not occur with sufficient frequency to be a defining factor in the result.

However, they do appreciably add to the confusion in the grouping1 task, as
we shall see.

We should also note that the quantitative results for the real-world ball pass-
ing task represent an approximation at best. Because of the clock errors above
and the method used to gauge the presence of a captured object is vulnerable
to false positives, the recorded results will lean towards over-estimation.

This problem was not considered significant as the observation of the robots’
behaviour tallied approximately with the recorded data. However, it should be
noted that the real-world hold time data is intended to be only used as an
approximate guide.

C.1.2 Simulation

The Arena

The simulation arena was identical in shape, but scaled in area to be propor-
tional to the size of the robots. Real-world robots fitted into a bounding box
of approximately 23 by 16 centimetres (in their penultimate stick-touch sensor
configuration) while the simulated robots were more circular in configuration
with a diameter of 17cm. This gives a total area of approximately 368 and 227
square centimetres, respectively. To keep the simulated arena proportional to
the robots’ footprint the simulated walls were 0.933 metres to a square side.

The simulated target objects were set to 50 millimetres in diameter (height
seemed irrelevant, the simulated “LED” markers did not seem to suffer from sig-
nificant occlusion and the omni-directional camera projected significantly from
the robots like a ship’s funnel). The actual dimensions of the simulated objects
were considered largely irrelevant, as they appeared to be able to be bunched

142

tightly together in defiance of their physical dimensions. This is believed to be
a bug in the simulator. All simulated target-obj-1 objects were set to one gram
in mass (mimicking the essentially mass-less paper objects in the real-world)
and set to movable=’’true’’. Target-obj-2 objects in the grouping2 task are
thinner, higher and absolutely immovable.

For tasks requiring more than one target object, the initial distribution of
target objects was “uniform random” throughout the arena. The robots were
always instantiated in the arena corners orientated to the centre of the arena
(see Figure 4.3). In small-scale simulations ten target objects were used. This
is in contrast to the eight used in the real-world. This discrepancy is due to the
cluttered appearance of the real-world arena when more than eight objects were
used. Objects could have been scaled, shrunk (probably impractical in the real-
world due to the practicalities of object recognition) or enlarged in simulation,
but ultimately, this was considered unimportant as we do not compare the
task execution speed or efficiency in detail, we merely wish to see that The
Architecture functions. Thus a subjectively “good” number of target objects
was used.

In addition a much larger-scale simulation was attempted. In the large-scale
version, the simulation arena was expanded to twenty by twenty metres and
seeded with 800 target objects and 100 robots. Both were distributed in a
uniform random distribution, with the robots’ orientation also randomised (see
Figure 4.6, left).

Procedure

The simulated robots all started simultaneously when the simulation run began.
They run without interference until it stopped. Simulation length was controlled
exactly. Simulation length was varied as convenient, but all simulations ran at
ten simulation steps per second.

143

	Introduction
	Objectives
	Swarms
	Swarm Tasks
	The Architecture
	What it is…
	…and What it is Not
	Implementation

	Swarms: Insects and Robots
	Insects As Machines
	Selected Insect Swarms
	Stigmergy and Self-Organisation
	Threshold Models
	Swarm Robots, Tasks and Control
	Simple Swarms and Aggregation
	Manipulative Swarms
	Recruitment, Signalling and Advanced Swarms

	General Cooperative Architectures
	Robot Behaviours
	Architectures and Swarms

	The Swarm Architecture: Design
	Design Overview
	Parallelism and Computing Requirements
	The Designer and User

	The Object List
	Object Types
	Confidence
	Insect Sensor Comparisons

	Actions
	Blocking Actions
	Agent Survival

	Behaviours
	Behaviour Selection
	The Null Behaviour and Zeroth Object
	Composition – Building Behaviours
	Behaviour Execution
	Behaviour Evolution and Historical Notes
	Survival Selection and Execution

	Designing Behaviours
	Summary – The Complete Robotic Insect

	The Swarm Architecture: Testing
	The Tasks
	Ball Passing Task
	Task Behaviours
	Simulation Results
	Real-World Results
	Observations and Discussion

	Object Grouping1
	Task Behaviours
	Simulation Results
	Real-World Results
	Observations and Discussion

	Object Grouping2
	Task Behaviours
	Simulation Results
	Real-World Results
	Observations and Discussion

	General Observations

	Future Work and Applications
	Developments
	Thresholds and Stimulus
	Peer-to-Peer Communications
	Improved Perception
	New Agents
	Other Survival Actions
	User Control

	Applications

	Conclusions
	Implementation
	The Architecture and The Swarm Ethos
	The Architecture Scope
	Biological Inspirations
	Task Agnosticism
	Hardware Agnosticism
	Swarm Size Indifference

	Relevant Publications
	Implementation
	Real-World Robots
	Evolution
	Computer
	Low-Level Sensors
	Vision
	Motors and Actions
	Clocks and Timing
	Chassis

	Simulation
	Overview
	Perception
	Actions

	Swarm Implementation
	Real-World and Simulation
	The Real-World
	Simulation

