7,812 research outputs found

    Continuous Wavelet Transform and Hidden Markov Model Based Target Detection

    Get PDF
    Standard tracking filters perform target detection process by comparing the sensor output signal with a predefined threshold. However, selecting the detection threshold is of great importance and a wrongly selected threshold causes two major problems. The first problem occurs when the selected threshold is too low which results in increased false alarm rate. The second problem arises when the selected threshold is too high resulting in missed detection. Track-before-detect (TBD) techniques eliminate the need for a detection threshold and provide detecting and tracking targets with lower signal-to-noise ratios than standard methods. Although TBD techniques eliminate the need for detection threshold at sensor’s signal processing stage, they often use tuning thresholds at the output of the filtering stage. This paper presents a Continuous Wavelet Transform (CWT) and Hidden Markov Model (HMM) based target detection method for employing with TBD techniques which does not employ any thresholding

    A fast and accurate basis pursuit denoising algorithm with application to super-resolving tomographic SAR

    Get PDF
    L1L_1 regularization is used for finding sparse solutions to an underdetermined linear system. As sparse signals are widely expected in remote sensing, this type of regularization scheme and its extensions have been widely employed in many remote sensing problems, such as image fusion, target detection, image super-resolution, and others and have led to promising results. However, solving such sparse reconstruction problems is computationally expensive and has limitations in its practical use. In this paper, we proposed a novel efficient algorithm for solving the complex-valued L1L_1 regularized least squares problem. Taking the high-dimensional tomographic synthetic aperture radar (TomoSAR) as a practical example, we carried out extensive experiments, both with simulation data and real data, to demonstrate that the proposed approach can retain the accuracy of second order methods while dramatically speeding up the processing by one or two orders. Although we have chosen TomoSAR as the example, the proposed method can be generally applied to any spectral estimation problems.Comment: 11 pages, IEEE Transactions on Geoscience and Remote Sensin

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition

    Full text link
    Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.Air Force Office of Scientific Research (F40620-01-1-0423); National Geographic-Intelligence Agency (NMA 201-001-1-2016); National Science Foundation (SBE-0354378; BCS-0235298); Office of Naval Research (N00014-01-1-0624); National Geospatial-Intelligence Agency and the National Society of Siegfried Martens (NMA 501-03-1-2030, DGE-0221680); Department of Homeland Security graduate fellowshi

    Algorithms for sensor validation and multisensor fusion

    Get PDF
    Existing techniques for sensor validation and sensor fusion are often based on analytical sensor models. Such models can be arbitrarily complex and consequently Gaussian distributions are often assumed, generally with a detrimental effect on overall system performance. A holistic approach has therefore been adopted in order to develop two novel and complementary approaches to sensor validation and fusion based on empirical data. The first uses the Nadaraya-Watson kernel estimator to provide competitive sensor fusion. The new algorithm is shown to reliably detect and compensate for bias errors, spike errors, hardover faults, drift faults and erratic operation, affecting up to three of the five sensors in the array. The inherent smoothing action of the kernel estimator provides effective noise cancellation and the fused result is more accurate than the single 'best sensor'. A Genetic Algorithm has been used to optimise the Nadaraya-Watson fuser design. The second approach uses analytical redundancy to provide the on-line sensor status output μH∈[0,1], where μH=1 indicates the sensor output is valid and μH=0 when the sensor has failed. This fuzzy measure is derived from change detection parameters based on spectral analysis of the sensor output signal. The validation scheme can reliably detect a wide range of sensor fault conditions. An appropriate context dependent fusion operator can then be used to perform competitive, cooperative or complementary sensor fusion, with a status output from the fuser providing a useful qualitative indication of the status of the sensors used to derive the fused result. The operation of both schemes is illustrated using data obtained from an array of thick film metal oxide pH sensor electrodes. An ideal pH electrode will sense only the activity of hydrogen ions, however the selectivity of the metal oxide device is worse than the conventional glass electrode. The use of sensor fusion can therefore reduce measurement uncertainty by combining readings from multiple pH sensors having complementary responses. The array can be conveniently fabricated by screen printing sensors using different metal oxides onto a single substrate

    Context-dependent fusion with application to landmine detection.

    Get PDF
    Traditional machine learning and pattern recognition systems use a feature descriptor to describe the sensor data and a particular classifier (also called expert or learner ) to determine the true class of a given pattern. However, for complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be viable alternative to using a single classifier. In this thesis we introduce a new Context-Dependent Fusion (CDF) approach, We use this method to fuse multiple algorithms which use different types of features and different classification methods on multiple sensor data. The proposed approach is motivated by the observation that there is no single algorithm that can consistently outperform all other algorithms. In fact, the relative performance of different algorithms can vary significantly depending on several factions such as extracted features, and characteristics of the target class. The CDF method is a local approach that adapts the fusion method to different regions of the feature space. The goal is to take advantages of the strengths of few algorithms in different regions of the feature space without being affected by the weaknesses of the other algorithms and also avoiding the loss of potentially valuable information provided by few weak classifiers by considering their output as well. The proposed fusion has three main interacting components. The first component, called Context Extraction, partitions the composite feature space into groups of similar signatures, or contexts. Then, the second component assigns an aggregation weight to each detector\u27s decision in each context based on its relative performance within the context. The third component combines the multiple decisions, using the learned weights, to make a final decision. For Context Extraction component, a novel algorithm that performs clustering and feature discrimination is used to cluster the composite feature space and identify the relevant features for each cluster. For the fusion component, six different methods were proposed and investigated. The proposed approached were applied to the problem of landmine detection. Detection and removal of landmines is a serious problem affecting civilians and soldiers worldwide. Several detection algorithms on landmine have been proposed. Extensive testing of these methods has shown that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth, etc. Therefore, multi-algorithm, and multi-sensor fusion is a critical component in land mine detection. Results on large and diverse real data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our experiments have also indicated that the context-dependent fusion outperforms all individual detectors and several global fusion methods
    corecore