1,923 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    A Survey on Imitation Learning Techniques for End-to-End Autonomous Vehicles

    Get PDF
    Funding Agency: 10.13039/100016335-Jaguar Land Rover 10.13039/501100000266-U.K. Engineering and Physical Sciences Research Council (EPSRC) (Grant Number: EP/N01300X/1) jointly funded Towards Autonomy: Smart and Connected Control (TASCC) ProgramPeer reviewedPostprin

    Risk analysis of autonomous vehicle and its safety impact on mixed traffic stream

    Get PDF
    In 2016, more than 35,000 people died in traffic crashes, and human error was the reason for 94% of these deaths. Researchers and automobile companies are testing autonomous vehicles in mixed traffic streams to eliminate human error by removing the human driver behind the steering wheel. However, recent autonomous vehicle crashes while testing indicate the necessity for a more thorough risk analysis. The objectives of this study were (1) to perform a risk analysis of autonomous vehicles and (2) to evaluate the safety impact of these vehicles in a mixed traffic stream. The overall research was divided into two phases: (1) risk analysis and (2) simulation of autonomous vehicles. Risk analysis of autonomous vehicles was conducted using the fault tree method. Based on failure probabilities of system components, two fault tree models were developed and combined to predict overall system reliability. It was found that an autonomous vehicle system could fail 158 times per one-million miles of travel due to either malfunction in vehicular components or disruption from infrastructure components. The second phase of this research was the simulation of an autonomous vehicle, where change in crash frequency after autonomous vehicle deployment in a mixed traffic stream was assessed. It was found that average travel time could be reduced by about 50%, and 74% of conflicts, i.e., traffic crashes, could be avoided by replacing 90% of the human drivers with autonomous vehicles

    Automated Speed and Lane Change decision-making Model using Support Vector Machine

    Get PDF
    One of the major obstacles that the auto industry must overcome is the rise of autonomous vehicles. The study of lane-changing is an important part of this problem. Previous studies on autonomous vehicle lane changes have predominantly focused on lane change path planning and path monitoring, with limited attention given to the autonomous vehicle's lane change decision-making process. This paper introduces a novel Lane Change Decision-Making Model for autonomous vehicles using the Support Vector Machine (SVM) method. The suggested model employs real-time sensor data to assess whether or not a lane change is possible, taking into account the proximity of other vehicles (cars, buses, motorbikes), and adjusting speed as necessary to ensure a seamless transition. Researching the various facets of lane changes in autonomous vehicles allows for decision-making that is grounded in utility, safety, and tolerance. The implementation of a support vector machine (SVM) technique with Bayesian parameter optimization is used to deal with the non-linearity and complexity of the process of autonomous lane change decision-making. Finally, we compare the suggested SVM model against a rule-based lane change model using the test data. The SVM-based strategy is shown to improve lane change decision-making in a comprehensive simulation exercise, which in turn improves the safety and efficiency of autonomous driving systems. The experiment also use a real vehicle to gauge the efficacy of the underlying decision-making model

    Conformal Policy Learning for Sensorimotor Control Under Distribution Shifts

    Full text link
    This paper focuses on the problem of detecting and reacting to changes in the distribution of a sensorimotor controller's observables. The key idea is the design of switching policies that can take conformal quantiles as input, which we define as conformal policy learning, that allows robots to detect distribution shifts with formal statistical guarantees. We show how to design such policies by using conformal quantiles to switch between base policies with different characteristics, e.g. safety or speed, or directly augmenting a policy observation with a quantile and training it with reinforcement learning. Theoretically, we show that such policies achieve the formal convergence guarantees in finite time. In addition, we thoroughly evaluate their advantages and limitations on two compelling use cases: simulated autonomous driving and active perception with a physical quadruped. Empirical results demonstrate that our approach outperforms five baselines. It is also the simplest of the baseline strategies besides one ablation. Being easy to use, flexible, and with formal guarantees, our work demonstrates how conformal prediction can be an effective tool for sensorimotor learning under uncertainty.Comment: Conformal Policy Learnin

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF
    corecore