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Abstract—The state-of-the-art decision and planning ap-
proaches for autonomous vehicles have moved away from manu-
ally designed systems, instead focusing on the utilisation of large-
scale datasets of expert demonstration via Imitation Learning
(IL). In this paper, we present a comprehensive review of IL
approaches, primarily for the paradigm of end-to-end based
systems in autonomous vehicles. We classify the literature into
three distinct categories: 1) Behavioural Cloning (BC), 2) Direct
Policy Learning (DPL) and 3) Inverse Reinforcement Learning
(IRL). For each of these categories, the current state-of-the-
art literature is comprehensively reviewed and summarised,
with future directions of research identified to facilitate the
development of imitation learning based systems for end-to-end
autonomous vehicles. Due to the data-intensive nature of deep
learning techniques, currently available datasets and simulators
for end-to-end autonomous driving are also reviewed.

I. INTRODUCTION

THE autonomous vehicle industry is growing rapidly. The
Boston Consulting Group estimates that the industry

will be worth $77 billion by 2035 [1]. Predictions from the
Brookings Institution [2] and IHS [3] assert that autonomous
vehicles will make up 25% of road users by 2040 and almost
all users by 2050, respectively. With these predictions driving
research and competition between companies and researchers,
a race is on to develop the first fully autonomous vehicle.

The current state-of-the-art autonomous vehicles utilise a
modular paradigm of system design. Such a system involves
the design of an autonomous vehicle such that it contains
multiple unique and distinct modules, each responsible for
an individual task of autonomous driving (perception, path
planning, control etc.)

However, there is growing interest in an alternate paradigm,
end-to-end autonomous driving systems, also referred to as
the behaviour reflex approach. These systems involve the
design of an autonomous vehicle as a single distinct module,
responsible for directly mapping from a raw sensory input
(camera, LiDAR etc.) into a control signal (steering, braking
etc.).

Lying in between these two approaches is another growing
field, first suggested by Chen et al. [4], referred to as direct
perception. Such methods perform the perception and path
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planning tasks in an end-to-end fashion. The outputs of this
module are then utilised to make control decisions. Although
not strictly end-to-end, such systems still output trajectories
that can be implemented by simple control schemes and are
included in this work.

Modular systems offer an attractive level of verifiability,
with each module having distinct outputs that can be indi-
vidually evaluated. However, this comes at the cost of com-
putational efficiency. Each individual module in the pipeline
is not ’aware’ of the high-level task required, and so wasted
computation may occur, for example the identification of
objects by the feature detecting module that are unrelated to
the autonomous driving task. This problem can be mitigated
through careful design of such modules, however this requires
prior knowledge of the task at hand.

End-to-end systems are self-optimising; they learn to be
computationally efficient, and require no prior knowledge of
the task. This improvement comes at the cost of verifiability
due to the black-box nature of deep learning. However, with
the complexity of the task of autonomous driving, this com-
putational efficiency is a highly desirable trait.

The construction of a single module capable of performing
the complex task of autonomous driving typically utilises the
processing ability of Deep Learning techniques. The training
of such systems is primarily performed through Imitation
Learning.

Imitation Learning utilises datasets of expert demonstration
(typically human) to train a system to imitate the given expert
for the range of scenarios presented. Alternate deep learning
methods, such as deep reinforcement learning approaches,
have been applied to the problem. However, these methods
are limited due to the complexity and safety critical nature
of the driving task. Imitation learning allows the leveraging
of widely available, easily captured large-scale datasets of
human driving to be used to train deep learning approaches
to near human standard. Such large-scale datasets of human
driving are readily available and are reviewed in Section IV.
To this end, the majority of the literature focuses primarily on
Imitation Learning.

Deep learning techniques have shown great promise in
a wide variety of fields from image classification [5], [6]
to playing Atari games [7]. However, such techniques have
had limited success for complex tasks such as autonomous
driving. An autonomous vehicle should be able to reliably
and safely act in a wide range of environments, weather
and lighting conditions. For the Imitation Learning based
solutions considered in this paper, these challenges include
being able to accurately replicate human driving behaviour and
model external factors that can affect human driving actions
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beyond environmental observations. The generalisability of
these solutions also presents a significant challenge. Models
trained using Imitation Learning struggle to generalise to states
that differ significantly from those present in the training
dataset. A single and finite dataset cannot realistically contain
all possible driving scenarios and so it is crucial to enhance
the generalisability of these models.

In previous work, Hussein et al. [8] review Imitation
Learning in depth, discussing design options for each stage
in the Imitation Learning process. Tai et al. [9] provide a
comprehensive overview of deep learning techniques for con-
trol applications. Janai et al. [10] review the current state-of-
the-art computer vision algorithms for autonomous vehicles,
with some focuses given to end-to-end paradigms. To the
best of the authors’ knowledge, this is the first attempt to
provide a comprehensive overview of Imitation Learning based
techniques for end-to-end based autonomous vehicle systems.

We have broken the literature into 3 primary sub-fields;
Behavioural Cloning, Direct Policy Learning and Inverse
Reinforcement Learning. This classification has been done
based on the underlying algorithms of each approach. Be-
havioural Cloning utilises large-scale datasets to train end-
to-end systems offline to mimic human driving. Alongside
this, Direct Policy approaches utilise iterative online train-
ing to continuously improve end-to-end systems. Finally, In-
verse Reinforcement Learning attempts to leverage large-scale
datasets to learn an underlying reward function of the task of
autonomous driving that is then used to train an agent. These
three approaches are distinct sub-fields of IL, all utilising
expert demonstration in different ways, and as such have been
individually reviewed in Section II.

The main contributions of the work are as follows:
• The field of Imitation Learning is categorised into three

primary sub-fields; Behavioural Cloning, Direct Policy
Learning and Inverse Reinforcement Learning. The state-
of-the-art works in each of these sub-fields is presented
and reviewed.

• A comparative evaluation of the currently available
datasets is presented for end-to-end autonomous driving
systems alongside simulation tools and their potential
applications.

• Open challenges in the field of autonomous driving are
presented to inspire future research.

We briefly introduce the history of end-to-end driving sys-
tems in section II. In section III, the state-of-the-art works in
the sub-fields of Behavioural Cloning, Direct Policy Learning
and Inverse Reinforcement Learning are presented. Section IV
gives an introduction and overview of various datasets and
simulation tools used in the training of networks. Section V
discusses the current state of the literature and section VI
concludes the work.

II. IMITATION LEARNING

Imitation Learning for autonomous vehicles can be cat-
egorised into three main approaches: Behavioural Cloning
(BC), Direct Policy Learning (DPL) and Inverse Reinforce-
ment Learning (IRL). An overview of each of these approaches

alongside a review of the literature that utilises them will be
presented in this section.

A. History

The first implementation of Imitation Learning for an end-
to-end autonomous vehicle system was the development of
ALVINN by Pomerleau et al. [11] in 1989.

ALVINN was trained in an online fashion, with training data
captured in real time from a human driver and used to train
the network sequentially to output steering angles for lane
following. Alongside this, an algorithm to generate realistic
road images was used to create an augmented dataset for
further training.

Once fully trained, ALVINN was capable of driving the
original test vehicle at speeds of up to 55mph. The early
success of ALVINN paved the way for the development of
the more complex and successful end-to-end driving systems
that will be reviewed in the following paper.

This lane following behaviour was expanded on by [12] who
trained a small vehicle, DAVE, to perform obstacle avoidance.
The system utilised 2 front-facing cameras, enabling the
system to extract distance information and learn to steer the
vehicle in an end-to-end fashion.

Bojarski et al [13] expanded upon the DAVE system,
training a 3 camera model to perform steering control of
a vehicle in a range of real-world driving scenarios. It was
arguably this work that brought end-to-end systems into the
forefront of autonomous vehicle research. In addition, key
studies and milestone work on safety-critical imitation learning
[14–17] will be reviewed in the following sections.

B. Problem Formulation

Given a dataset D of expert state-action pairs (s, a) gener-
ated by an expert policy π∗, the general goal of IL is to train
a policy πθ(s) that maps any given state s to a corresponding
action a as closely to the given expert as possible according
to:

argminθEs∼P (s|θ)L(π
∗(s), πθ(s)) (1)

where P (s|θ) is the state distribution of the trained policy
πθ.

Behavioural Cloning involves the reduction of the IL task
to that of supervised learning. Defining P ∗(s|π∗) as the state
distribution of the expert policy, the objective of BC is to treat
each state-action pair in this distribution as an i.i.d example
and minimise imitation loss for the trained policy according
to:

argminθE(s,a∗)∼P∗L(a∗, πθ(s)) (2)

where the state distribution encountered, (s, a∗) ∼ P ∗, is
now provided solely by the expert policy, and is assumed to
be drawn i.i.d from P ∗.

In Direct Policy Learning, we utilise a sequence of dis-
tributions attained through querying a given expert (typically
human) to train an optimal policy. In general, a policy π is
trained and rolled out in the environment to attain a state
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distribution Pm. For any given state in Pm the expert can
then be queried for an optimal solution. This new distribution
of state action pairs, (π∗(s)|s), can then be used to further
train the policy π. A single iteration of this method reduces
to BC.

The aim of Inverse Reinforcement Learning is to infer the
reward function from expert demonstration [18]. This reward
function is then utilised in training a policy.

To give context to this method, we will introduce the idea
of Markov Decision Processes (MDP’s). An MDP is defined
as a tuple:

(S,A, T, γ,R)

where, S is a finite set of states, A is a set of possible actions,
T is a set of state transition probabilities, γ is a discount factor
and R is the reward function. The discount factor is used to
define whether the reward evaluation should be short or far
sighted. A policy π maps from states to actions.

Given a dataset D of expert state-action pairs (s, a) gener-
ated by an expert policy π∗, IRL attempts to learn a reward
function r∗ such that:

π∗ = argmaxEπ[r
∗(s, a)] (3)

C. Behavioural Cloning

By far, the most researched implementation of Imitation
Learning for autonomous vehicles is Behavioural Cloning
(BC), a supervised method of approaching the task. However,
Behavioural Cloning’s use of expert demonstration to guide the
training process separates it from classical supervised learning
techniques.

In a classical, purely supervised learning approach, the as-
sumption is made that the outputs of the learning agent do not
affect the environment. Therefore, learning errors are assumed
to be independent for each sample. However, this assumption
does not hold true for driving-related tasks, where predictions
can be temporally related. More specifically, network outputs
are not independent of each other. For such tasks, errors made
in the learning for an image input will be compounded which
leads to the Cascading Error Problem [19].

Further to this, classical approaches are typically step-
wise methods, with each prediction being independent of any
previous predictions. This assumption does not hold true for
real-world driving either. Steering control of a vehicle is a
continuous action. If a vehicle is in full right-hand turn in one
frame of a video, it cannot then turn left in an immediately
subsequent frame and vice-versa. Such a relationship should
be modelled by an end-to-end driving system.

Behavioural Cloning trains a model to map directly from
input to output data pairs in a training dataset. This method
therefore assumes that such a mapping exists, i.e. that an
expert’s actions can be fully explained by an observation. In
reality a human driver’s decisions are affected by a number of
latent variables. Such variables include intended destination,
expert driving style, the vehicle used in the dataset, etc. A
successful driving system should effectively model these latent
variables.

Figure 3: Left: Averaged feature maps for each level of the network. Right: Intermediate visual-
ization mask for each level of the network.

Figure 4: Examples of salient objects for various image inputs.

5

Fig. 1. Visualisation of Internal State of End-to-End System from [20]. Salient
parts of input images were recovered using visual backpropagation. Green
areas are highlighting these salient regions. As can be seen from the image, the
model clearly learns to place high importance on relevant regions of images
such as curbs and other vehicles.

We further categorise Behavioural Cloning into 3
paradigms; end-to-end control prediction, direct perception
and uncertainty quantification. End-to-end control prediction
algorithms train a model to directly output steering and/or
acceleration commands. Direct perception models are trained
to output information that can then be used by a simple control
module to perform vehicle control. This information may
include trajectories, possible future actions or environmental
cost maps. Uncertainty quantification approaches attempt to
train a model to output uncertainty information to improve
the safety of end-to-end systems.

1) End-to-End Control Prediction: In this section we will
present works that train a model to map directly from input
data to autonomous vehicle control signals, such as steering
angle, throttle etc., in an end-to-end fashion.

Bojarski et al. [13], a team from NVidia, propose the
utilisation of 3 onboard cameras as inputs to an Imitation
Learning end-to-end driving model. They construct an end-
to-end, CNN based model (DAVE-2) utilising these inputs to
generate steering control signals. The left and right cameras
provide off-centre shifted viewpoints which are used to correct
any drift the car encounters. The network is trained in a
supervised manner to minimise the mean squared error be-
tween the networks’ steering command and the command from
either the expert (human) driver or corresponding shifted (off-
centre) viewpoint. Evaluation is performed in both simulation
and on-road testing. The number of human interventions
required is used as an evaluation metric. Once the network has
demonstrated good performance in simulation, it is evaluated
in a roughly 12 mile on-road test. A metric of the percentage of
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time the vehicle remained autonomous is used for evaluating
autonomous driving performance.

One major criticism of end-to-end systems is their lack of
interpretability. A further paper, from Bojarski et al. [20],
attempts to understand the decision making process of the net-
work from [13]. The main focus of the paper is on identifying
the salient objects, or the regions of the input images that are
most salient to the network in determining steering angles.
Results show that the salient objects used by the network are
extremely similar to those used by humans, as shown in Figure
1.

Cultrera et al. [21] also seek to increase the explainability
of end-to-end models by training an IL agent equipped with an
attention model. They train a model to receive an input image
alongside a high-level command and output steering angles.
The first part of the model consists of a feature extracting CNN
which feeds into a Regions of Interest (RoI) pooling layer to
extract descriptors of varying size for the image. The model
is constructed to receive one of four high-level commands:
follow the lane, go straight, turn left or turn right. For each
of these commands a separate predictive section of network
is used, consisting of an attention layer and FCN to output
steering commands. The attention layers are trained to weight
regions of the input images given outputs from the RoI layer.

The model is trained in the CARLA simulator [22], and
evaluated using the CARLA benchmark. The authors’ model
is found to achieve state-of-the-art performance in the New
weather setting, whilst also providing explainability of solu-
tion through the output of the model’s attention layer as seen
in Figure 2.

Hecker et al. [23] argue that human drivers typically have
access to more data than provided to autonomous vehicles.
They propose providing end-to-end systems with input infor-
mation regarding their entire surroundings. A system consist-
ing of 8 cameras is used alongside a route planner to provide
high-level action information. A new dataset was created, the
Drive360 dataset, covering a wide range of driving scenarios
and weather/lighting conditions. Training is only undertaken
using four cameras. Each camera is fed to a network consisting
of multiple CNN and LSTM sub-networks. Subsequently, an
FCN then fuses all information from the cameras and the map
to provide future speed and steering predictions. The inclusion
of additional information leads to a significant increase in
the performance, as measured using the Mean Squared Error
between predicted signals and ground truths. The system is
compared to [24] and [13], retrained on the Drive360 dataset,
outperforming both.

Codevilla et al. [25] claim that the assumption made in
Imitation Learning that an expert’s actions can be fully ex-
plained by a single observation does not hold for complex
tasks, such as autonomous driving. They propose an extension
of Imitation Learning, Conditional Imitation Learning (CIL).
In this approach, a trained network is not only fed an input
observation but also a representation of the expert agent’s
intention. This allows the network to be given high-level
intention information at test time as a secondary input.

The work adopts the three-camera system from DAVE-
2 [13] in order to recover from perturbations. Examples of

expert recovery are included in the dataset to improve system
robustness to the cascading error problem. The dataset is also
augmented with a random set of transformations of contrast,
brightness, tone and Gaussian blur. The system is evaluated
both in simulation and in the real-world on a 1/5th scale truck.
A dataset of input images, steering commands and driver intent
is collected in the CARLA simulator [22] as well as in the
real-world for training purposes.

A set of four commands is used to guide the vehicle;
continue (follow the road), turn left, turn right and go straight
(at a junction). These commands are used during training
as inputs to the network. Following successful completion
of courses in simulation, the system is evaluated in the
real-world on pedestrian walkways and completed all routes.
Evaluation metrics include the number of missed turnings,
human interventions and time taken to complete a course.

Hawke et al. [28] use CIL to train an end-to-end system
capable of performing both steering and speed control in
complex urban environments. The model takes monocular
camera images alongside a high-level route command as inputs
and outputs vehicle control signals. Despite training the model
in an end-to-end fashion, they visualise the network as con-
sisting of 3 individual components: perception, sensor fusion
and control. The perception part of the model consists of a
network pre-trained on several large research vision datasets
and is trained to receive an image and reconstruct RGB,
depth and segmentation. Temporal information is encoded
using an optical flow model similar to [29]. The sensor fusion
component aggregates information for the 3 models studied,
processing the information into a single representation. Single
camera, multi-camera and optical flow models are studied. The
control component then produces control signals.

Multiple variations of their models are evaluated, including
using only a fraction of the training data, and comparing
the performance of pre-trained and non-pre-trained perception
components. The models were evaluated in 34.4km of real-
world autonomous driving. A range of metrics are used for
evaluation including intervention rate and manoeuvre success
rate. The utilisation of temporal information into the CIL
system alongside the addition of pre-trained perception com-
ponents was found to improve model performance, with the
addition of multiple cameras providing a further boost, but at
the expense of model complexity.

Xiao et al. [30] construct an end-to-end autonomous vehicle
control system utilising both input RGB images as well as
depth information from on-board LiDAR sensors, referred to
as RGB-D information. The inclusion of this depth information
at varying stages of a CIL based system pipeline (early, mid
and late) is investigated (Figure 4).

Early inclusion involves increasing the number of channels
at the first convolutional layer P. Mid fusion requires the entire
perception phase at P to be executed twice, once for RGB
input and once for depth. Late fusion involves twice replicating
the entire CIL architecture, once for RGB input and once for
depth, with the results shared. Data is collected from 2 maps in
the CARLA simulator; one for the collection and the use of a
training dataset and the other for testing and validation. RGB-
D based systems are found to outperform pure RGB based
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Figure 5: Each row shows attention patterns on the same scene with different high level commands: Follow Lane (green),
Turn Left (red), Turn Right (cyan), Go Straight (yellow).

Task All No BIGH No BIGV No MEDIUM No SMALL Independent RoIs

Straight 100 100 95 95 100 100
One turn 97 92 95 90 95 47

Navigation 91 86 84 83 86 45
Nav. Dynamic 91 88 81 83 88 39

Table 4: Ablation study selectively removing a box type.
Box types refer to the regions depicted in Figure 3: BIGH

(Green), BIGV (Red), MEDIUM (Yellow), SMALL (Blue).
We also evaluate our model with attention scores generated
independently for each RoI.

a limitation of our architecture, restricting its flexibility.
Whereas to some extent this is certainly true, designing an
attention layer with a variable grid, i.e. with boxes that
change in number and shape, is not trivial. Generating a
variable amount of boxes, e.g. using a region proposal [34],
would require to process each box independently, depriving
the attention layer of a global overview of the scene. The
main issue lays in the lack of spatial information about each
box: the model is indeed able to observe elements such as
vehicles, traffic lights or lanes, but does not know where
they belong in the image without this position being explic-
itly specified.

To demonstrate the inability of the model to work with-
out a fixed grid, we modified our attention layer to emit
attention scores for each RoI-pooled feature independently.

This means that instead of concatenating all features and
feeding them to a single dense layer, we adopt a smaller
dense layer, shared across all RoIs, to predict a single at-
tention logit. All logits are then concatenated and jointly
normalized with a softmax to obtain the attention vector α.

We show the results obtained by this model in Table 4.
The only task that this architecture is able to successfully
address is Straight. As soon as the model is required to take
a turn, it is unable to perform the maneuver and reach its
destination. On the other hand, using a fixed grid, allows
the model to learn a correlation between what is observed
and where it appears in the image and jointly generating
attention scores for each box. A flexible grid with variable
boxes is currently an open issue and we plan to address it in
future work.

6. Acknowledgements
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7. Conclusions
In this paper we have presented an autonomous driving sys-

tem based on imitation learning. Our approach is equipped with
a visual attention layer that weighs image regions and allows pre-
dictions to be explained. Moreover we have shown how adopting
attention, the model improves its driving capabilities, obtaining
state of the art results.

Fig. 2. Examples of attention maps for each high-level command from [21]. Commands are Follow lane (Green), Turn Left (red), Turn right (cyan) and Go
Straight (Yellow). The various regions of input images that are learnt by the model to be important for each command are highlighted in the images and can
be output as shown to provide a level of explainability for the networks decisions.

systems in several specific testing scenarios.

Wang et al. [26] propose to utilise the current position and
the desired vehicle path for generating a subgoal angle which
is fed to the network. The desired vehicle path is divided
into a set of uniformly distributed points, with the current
subgoal angle being the angle between the vehicles current
pose and the direction to the nearest of these points. The
authors propose a new network architecture, shown in Figure
3, which they refer to as an Angle Branched Network. Inputs to
the network are sequential images, the speed and the subgoal
angle. The first seven layers of the network are pre-trained on
the ImageNet dataset. Independent feature extraction networks
extract features from input images, vehicle speed and the
subgoal angle. These features are then concatenated together
to predict steering angles and throttle. The network is trained
in the CARLA simulator, with scene information extracted
to generate the subgoal angles. The use of the subgoal angle
is found to greatly increase performance while the utilisation
of depth information reduced the number of collisions. The
subgoal angle was found to be an effective high-level navi-
gational command. The angle-branched network is compared
to the network in [25], and experimental results indicated
improvement of performance.

Further to their previous work, Codevilla et al. [31] propose
a new benchmark, the NoCrash Benchmark. Constructed in
the CARLA simulator, NoCrash is designed to evaluate the
performance of autonomous vehicle systems against complex
events created by traffic conditions and other road agents.

The benchmark consists of 3 tasks: an empty town, regular
traffic and dense traffic. Each task consists of a range of goal
directed episodes, where an agent starts at a random position
and follows high-level commands to reach a goal position.
A range of weather conditions are also used. An episode is
considered to be successfully completed if the model reaches
the goal point without collisions bigger than a fixed magnitude
in a defined time limit. Alongside this, traffic rule violations
are recorded.

A range of models are evaluated on both the previous
CARLA benchmark and on NoCrash. Models were trained
using CIL to receive camera inputs and high-level commands
and output steering and throttle control signals. A new model,
CILRS, is also presented, utilising a deep pre-trained percep-
tion model. The proposed model was found to outperform
previous models and the state-of-the-art on both benchmarks.
Results for all models are found to be worse on NoCrash,
indicating the benchmarks ability to more completely explore
the limitations of driving models.

Haavaldsen et al. [32] investigate the incorporation of
recurrent layers into end-to-end models. They train a tradi-
tional CNN based end-to-end model alongside another model
consisting of a CNN with a recurrent layer. They use the
CARLA simulator to train and evaluate the models. A 3
camera system was used to gather training data, with the
model being trained to receive input images, traffic signals
and a high-level command and subsequently output steering
and speed control signals. A second model is constructed with
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Fig. 4. Architecture of the angle branched network. Firstly, networks fimg , fmea, and fcom extract features from sequential images, speed and subgoal angle
respectively. Secondly, these features are concatenated (by fcon) and fed into the fusion network fab

fu. Finally, according to the value of the subgoal angle, the
fused features are processed to predict the steering angle and the throttle by the corresponding network.

TABLE I
DETAILS OF DIFFERENT LAYERS OF THE ANGLE BRANCHED NETWORK. WE

USE THE FIRST SEVEN LAYERS OF VGG11 [25] PRETRAINED ON THE

IMAGENET. EVERY CONVOLUTION LAYER AND FULLY CONNECTED LAYER

HAVE A BATCH NORMALIZATION LAYER AND A RELU LAYER BEHIND IT. FOR

ALL OBSERVATIONS, THE INPUT SIZE IS OF 224 × 224 PIXELS. FOR fprex , WE

HAVE x ∈ (l, s, r)

IV. DATA COLLECTION AND PREPROCESSING

In this section, we give details about our data collection and
preprocessing.

A. Simulator

Carla [36] is an urban driving simulator, which provides
rich scene information and various sensor information includ-
ing depth, camera, Lidar measurements, etc. The road type is a
two-lane dual carriageway. There are two towns in Carla: one
is for training, the other is for testing. We use Carla’s autopi-
lot to collect the data for observations, measurements and ac-
tions since we find it driving more stable and accurate than most

humans. From above information, we are able to generate the
path and the navigation command.

B. Observation, Measurement, and Action

To ensure that the model can recover from mistakes, we also
set the left and right camera on the ego-vehicle. Cameras are set
on proper positions so that the body of the vehicle is not shown
in images. Depth and semantic images are also captured in our
experiment. Since it is enough to train a good policy by only
using images from the three cameras, we do not use other tricks
like the noise injection in [7].

In addition to images, we also collect vehicle information in-
cluding the position, the speed, the orientation (i.e., the heading
direction), the steering angle and the throttle status, etc. Notice
that in Carla, the steering angle is a floating-point number be-
tween −1 and 1, so the tanh layer is used after the action layer
of our network architecture. Besides, the throttle status only has
discrete values (i.e., 0.0 and 0.6), which represent brake and
acceleration respectively.

C. Path and Command

To generate paths, we represent the collected trajectory of
the vehicle by uniformly distributed points and ensure that the
distances between adjacent points are at least x = 2 meters. As
discussed in Section III-B2, we define the current subgoal of the
vehicle as the nearest point that is more than d = 3 meters away
from the vehicle’s location. Given the current location and the
subgoal, we can calculate the subgoal angle according to (13)
to (16).

D. Episode

To generate different paths, the data are collected in the form
of episode. The frequency of recorded data ranges from 3 to 6 fps.
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Fig. 3. The architecture of the angle branched network from [26]. The model takes as input RGB images, speed and the subgoal angle. The image processing
layers are pre trained from VGG11 [27]. A fusion layer is then used to concatenate the three 512-dimensional layers from the images, speed and subgoal
angles into a single layer. The subgoal angle is discretised into 3 distinct set of values representing a separate high-level command; [-180, -10] (turning left),
[-10, 10] (going straight) and [10, 180] (turning right). Similar to CIL architectures, the model contains separate action layers corresponding to each of these
3 commands. Each of these layers is responsible for outputting corresponding control signals for each high-level command.

an LSTM layer to allow temporal information to be utilised.
Both models achieved good performance in urban autonomous
driving. However, the incorporation of temporal information
was found to improve the performance.

Chi et al. [33] also propose a model utilising LSTM archi-
tecture. They incorporate temporal information, modelling the
steering angle as a continuous variable. The LSTM network is
trained to minimise the loss between predicted steering angles
and those of an expert. The network architecture consists
of two individual sub-networks, the first a feature-extracting
network to model the visual surroundings and internal status of
the vehicle. The second sub-network is the steering predicting
sub-network, which is responsible for control output.

The feature extracting sub-network performs spatio-
temporal convolution to fully model the sequential learning
problem of autonomous steering. The steering prediction net-
work fuses multiple kinds of temporal information in order
to minimise an overall objective function, outputting steering,
speed and torque predictions.

They utilise the Udacity simulator [34] for training pur-
poses. For performance analysis, the method is compared with
competing algorithms including AlexNet [5] and PilotNet [20],
outperforming them at the task of steering wheel prediction.

Kebria et al. [35] investigate the impacts of the number
of layers, filers, and filter size on the performance of end-
to-end models trained to predict steering angles from camera
inputs. They train, evaluate and compare 96 models as well as
proposing a novel ensemble approach. The ensemble model
assigns weights for each model based on their recent loss
values. The Udacity simulator is used for the collection of
a training dataset and model evaluation. Deeper models are
found to outperform shallower ones, with the jump from 9 to
12 layers being the most significant. It was also found that 16

filters actually outperformed those that had 32. Models with
a mixture of filter sizes were found to perform the best. The
proposed ensemble method was compared to bagging [36] and
was found to outperform it.

2) Direct Perception: In this section we will survey works
that perform the direct perception paradigm of autonomous
vehicle design.

Barnes et al. [37] propose utilising monocular cameras as
opposed to purely LiDAR data. The method aims to generate
potential driving paths using input data from the camera. A
deep semantic segmentation network is used, with training data
acquired from the trajectories taken by a test vehicle. Video
odometry is used to measure vehicle motion, whilst obstacle
sensing is performed by using LiDAR. The combination of
this visual and LiDAR data, in conjunction with the known
vehicle trajectory, is then used to segment the input images
into driveable, non-driveable and unknown regions at a pixel
level. The method is evaluated on both the KITTI [38] and
Oxford RobotCar [39] datasets, showing good results for both
the segmentation and path proposals in a variety of conditions.

Cai et al. [40] propose a CIL end-to-end model that receives
camera images, high-level commands and the autonomous
vehicles previous trajectories and learns to output collision-
free trajectories 3 seconds into the future. The model consists
of 3 sub-networks, one for each high-level command. These
sub-networks then feed into an LSTM/FCC network to output
trajectories. The Oxford RobotCar dataset is utilised for train-
ing and evaluation. The model is trained to perform a range of
tasks including lane keeping, overtaking and stopping behind
a parked car, outputting trajectories close to the ground truth
for each task.

Bansal et al. [14] present ChauffeurNet, an end-to-end
model trained to map from birds-eye representations of the
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Fig. 1. CIL branched architecture: vehicle maneuvers (actions) in the form of the triplet < steering angle, throttle, brake >, depend on a high-level route
navigation command (branch selector) running on {turn-left, turn-right, go-straight, continue}, as well as on the world observations in the form of perception
data (e.g. a RBG image) and vehicle state measurements (e.g. speed).

Fig. 2. Network Architectures - we explore RGBD from the perspective of early, mid and late fusion of the RGB and Depth (D) modalities. (1) Early
Fusion: the raw RGB and D channels are the input of the CIL architecture; (2) Mid Fusion: intermediate CIL feature layers from RGB and D streams are
fused; (3) Late Fusion: the output (maneuver controls) of the RGB and D CIL streams are fused to output the final values after further neural processing.

We follow the CIL architecture proposed in [39]. Therefore,
p is a RGB image of 200 × 88 pixels and 8 bits at each color
channel, m is a real value with the current speed of the vehicle,
and a consists of three real-valued signals which set the next
maneuver in terms of steering angle, throttle, and brake. Thus,
the idea is to perform vision-based self-driving, as well as
taking into account the vehicle speed to apply higher/lower
throttle and brake for the same perceived traffic situation.
In [39], the focus is on handling intersections, then the consid-
ered c values are {turn-left, turn-right, go-straight, continue},
where the last refers to just keep driving in the current lane
and the others inform about what to do when reaching next
intersection (which is an event detected by the own CNN).
Accordingly, there are four branches Ac. Therefore, if we
term by F the end-to-end driver, we have F(p, m, c) =
Ac(J (p, m)). As shown in [39], this manner of explicitly
taking into account high-level navigation commands is more
effective than other alternatives.

B. Fusion Schemes

Fig. 2 illustrates how we fuse RGB and depth information
following mid, early and late fusion approaches.

Early fusion: with respect to the original CIL we only
change the number of channels of p from three (RGB) to four
(RGBD). The CIL network only changes the first convolutional
layer of P(p) to accommodate for the extra input channel,
the rest of the network is equal to the original.

Mid fusion:we replicate twice the perception processing
P(p). One of the P(p) blocks processes only RGB images,
the other one only depth images. Then, we build the joint
feature vector < P(RGB), P(D), M(m) > which is fur-
ther processed to obtain J (RGB, D, m). From this point,
the branched part of CIL is the same as in the original
architecture.

Late fusion: we replicate twice the full CIL architecture.
Thus, RGB and depth channels are processed separately,
but the measurements are shared as input. Hence, we run
Ac(J (RGB, m)) and Ac(J (D, m)), and their outputs are con-
catenated and further processed by a module of fully connected
layers, the output of which conveys the final action values.
Note that this is a kind of mixture-of-experts approach, where
the two experts are jointly trained.

As is common practice in the literature, we assume a
pixel-level correspondence of all channels and normalize all of
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Fig. 4. Conditional Imitation Learning architecture from [30]. Inputs to the network are video frames (p), vehicle state measurements (m) and high-level
command information (c). The architecture consists of a series of sub networks for each possible high-level command. The input of a particular command
then selects its associated sub-network to produce a given control output. Outputs are in the form of a triplet (steering angle, throttle, brake).

environment to control outputs for an autonomous vehicle. The
dataset is constructed from real-world driving with input data
in the form of birds-eye representations including road masks,
traffic lights, speed limits, route and past agent poses. The
model is then trained to output future trajectories. The authors’
further augment the training data with simulated examples of
collisions and incorrect driving whilst augmenting the loss
functions to discourage such undesirable behaviour. A series of
defined scenarios are used to evaluate performance including
nudging around a parked car, recovering from a trajectory
perturbation and slowing down for a slow car. The model is
found to perform well in a range of evaluation scenarios and
is also demonstrated to be capable of driving an autonomous
vehicle in the real-world.

Caltagirone et al. [41] propose to utilise a direct perception
method taking in LiDAR inputs, past GPS-IMU and driving
directions from google maps and outputting driving paths
through the environment. An FCN architecture is used to allow
for the interpreting of a 3D LiDAR point cloud, with the
GPS-IMU data transformed into a spatial format. The FCN
is trained to predict driveable regions of the point cloud map
for a controller to navigate. The method is evaluated using
the KITTI dataset [38]. Results show that the method outputs
reliable driving paths for relatively short ranges, with the
incorporation of driving intention improving the results further.

Xu et al. [24] propose to utilise a large-scale, uncalibrated,
crowdsourced dataset for the training of autonomous vehicles
in an attempt to address the Cascading Error Problem. To
achieve this, they collect a large-scale (10,000 hours) dataset of
dashcam and GPS-IMU data from internet sources. The larger
scale decreases the number of potentially unseen scenarios that
a vehicle will encounter. Subsequently, they develop a direct
perception based approach for autonomous driving which is
based on a dashcam subset of their Berkeley DeepDrive Video
dataset (BDDV).

To account for the varying position of cameras within the
vehicle, the model is trained to predict ego-motion. The model
also utilises spatial and temporal information to make driving
decisions for modelling the steering angle in a continuous

fashion. A novel network architecture, consisting of the fusion
of an FCN visual encoder and LSTM temporal encoder, is
developed to perform this task. The goal of the method is
to learn the feasibility of future actions for use in a control
system.

Evaluation of the model is performed by taking the most
likely action predicted by the system and comparing it to
the ground truth action. Two separate output methods are
considered; discrete and continuous actions. Furthermore, the
use of privileged learning (having access to more information
at the training stage than the evaluation stage) is investigated
which uses semantic segmentation of input images. In both
the discrete and continuous paradigms, the system shows a
promising understanding of human driving behaviour. The in-
corporation of privileged learning also improves the networks
performance.

Chen et al. [4] aim to develop a CNN based neural net-
work to map directly from input images to output affordance
indicators that can be used by a control network to perform
autonomous driving. These affordance indicators include the
angle of the car relative to the road, the distance to lane
markings and distances to surrounding vehicles. The vehicle
controller is trained to use the output indicators to minimise
the gap between the car’s position and the centre of the desired
lane. The used dataset is collected by allowing a human
driver to act in the TORCS simulator [42] for roughly 12
hours, focusing primarily on highway driving. The system
is further tested on car-mounted smartphone videos and the
KITTI dataset [38].

Evaluation of the system in simulation is performed by
comparison with benchmark solutions. These include a be-
haviour reflex based CNN method, the Caltech lane detector
algorithm [43] and direct perception with the hand-crafted
GIST descriptor [44]. The method is found to outperform the
alternate methods for the task evaluated. For the real-world
evaluation, the model is compared with other methods on the
KITTI dataset [38]. The comparison is performed with the
state-of-the-art DPM car detector [45]. The proposed method
has comparable performance levels to the DPM method.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, MONTH YEAR 8

Figure 1: End-to-end Bayesian deep learning architecture. This figure illustrates our architecture and the key benefit of propagating uncer-
tainty throughout the AV framework. We consider a hypothetical situation where an AV (our blue car) approaches an intersection, where
another car (red) will turn left into our path. We compare a framework built on traditional (non-Bayesian) and Bayesian deep learning. Al-
though both systems use the same initial sensory information, propagating uncertainty through the prediction and decision layers allows the
Bayesian approach to avert disaster. Deep learning methods are required for state-of-the-art performance, hence more traditional Bayesian
methods are not possible.

assured they retain high-level situational control. Compliance
with the law, and the integration of regional regulations into
an AV pipeline, is also a crucial requirement which leads to
problems relating to integrating logical rules into deep learn-
ing systems. Research on such problems is extremely sparse,
and we comment on this below.

In this document we survey technical challenges and sug-
gest important paths for future research in S.I.C. from a ma-
chine learning research perspective. We highlight the need for
concrete evaluation metrics, and suggest new metrics to eval-
uate safety by looking at both model performance and model
uncertainty. We suggest example problems in each of the
S.I.C. themes, and highlight possible solutions.

2 Safety
In AV software, no individual component exists in isola-

tion. Improving safety by reducing individual component
errors is necessary for safe AV software—but not sufficient.
Even if each component satisfies acceptable fault tolerances
in isolation, the accumulation of errors can have disastrous
consequences. Instead, an understanding of how errors prop-
agate forwards through a pipeline of components is critical.
For example, in Figure 1, a perception component—which
detects another vehicle’s indicator lights—influences how a
prediction component anticipates the vehicle’s motion, ulti-
mately influencing the driving decision. Since misclassifica-
tion by components early in the pipeline affects components
downstream, at the very least, each component should pass
on the limitations and uncertainties of its outputs. Corre-
spondingly, each component should be able to accept as input
the uncertainty of the component preceding it in the pipeline.
Further, these component uncertainties must be assembled in
a principled way to yield a meaningful measure of overall sys-
tem uncertainty, based on which safe decisions can be made.

A principled approach to modelling uncertainty is

Bayesian probability theory (in fact, it can be shown that a
rational agent must be Bayesian in its beliefs [Berger, 2013]).
Bayesian methods use probabilities to represent uncertainty,
and can be used for each individual component to represent its
subjective confidence in its output. This confidence can then
be propagated forward through the pipeline. To do so, each
component must be able to input and output probability dis-
tributions rather than numbers. Together, component outputs
downstream become functions of the uncertainty in predic-
tions made upstream, enabling a decision layer to consider the
consequences of plausible misclassifications made upstream,
and act accordingly. Other approaches to conveying uncer-
tainty exist in the field, including, for example, ensembling
[Gal, 2016]. But the uncertainties of such techniques cannot
necessarily be combined together in a meaningful way (a ne-
cessity with a complex software pipeline). Further, the type
of uncertainty captured by these methods is not necessarily
appropriate in safety applications (discussed further in §5).
Traditional AV research has used Bayesian tools to capture
uncertainty in the past [Paden et al., 2016]. But the transi-
tion of many such systems to deep learning poses a difficulty.
How would deep learning systems capture uncertainty?

While many Bayesian models exist, deep learning models
obtain state-of-the-art perception of fine details and complex
relationships [Kendall and Gal, 2017]. Hence we propose the
use of Bayesian Deep Learning (BDL). BDL is an exciting
field lying at the forefront of research. It forms the intersec-
tion between deep learning and Bayesian probability theory,
offering principled uncertainty estimates within deep archi-
tectures. These deep architectures can model complex tasks
by leveraging the hierarchical representation power of deep
learning, while also being able to infer complex multi-modal
posterior distributions. Bayesian deep learning models typ-
ically form uncertainty estimates by either placing distribu-
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Fig. 5. Figure from [46] illustrating potential advantages of Bayesian Deep Learning architecture. The processing pipeline for traditional deep learning models
is shown in the first part. The shown vehicle approaches an intersection where the red car will turn into its path. The failures to detect the red light or other
cars indications and intents lead to a deterministic incorrect prediction, causing a collision. In a Bayesian model, despite the light and other vehicle signals
and intentions not being detected, a level of uncertainty is associated with the incorrect detection’s. This uncertainty is then propagated through the model
to provide an uncertainty over the predicted actions. If the level of uncertainty is above a defined threshold then the vehicle will not take the action and the
collision will be avoided.

3) Uncertainty Quantification: In this section, we will
focus on works that incorporate some instance of uncertainty
modelling into their end-to-end system.

Richter et al. [47] utilise a pair of neural networks in their
autonomous system to perform collision prediction and novelty
detection simultaneously. The navigation from starting point
to goal is solved using geometric maps of the environment
constructed using SLAM. A CNN is then trained to predict
collision likelihood for a trajectory. An auto-encoder is also
used in the system to perform novelty detection on input
data. This is to overcome the issues with generalisation to
unseen states for deep learning methods. If the auto-encoder
detects that input data is from a novel, unseen scenario it
allows the autonomous agent to revert back to a series of pre-
programmed, ’safe’ behaviours. The auto-encoder is trained
using a dataset of simulated camera images from hallway type
environments. The system is tested both in simulation and in
the real-world using an RC car. Results show that the model
is able to achieve reliable transitions between high performing
trained network and the safe behaviours.

McAllister et al. [46] propose the utilisation of Bayesian
Deep Learning (BDL) in the development of autonomous
driving systems. Bayesian Neural Networks (BNN) move
away from having single-valued tunable parameters (weights,
biases) to having distributions of values for each parameter.
This then naturally leads to the output of such a system being
a distribution. Therefore, it not only can extract the networks’
prediction but also a measure of uncertainty. The main focus
of the work is on the implementation of such an approach
for a prediction module in a modular system, namely such a
systems ability to predict erroneous behaviour of other road
users and dynamic objects as seen in Figure 5. However, the
work also mentions the value of applying such an architecture
to an end-to-end system to produce a similar ability for

identifying scenarios that are either underrepresented or absent
from training data sets (edge-cases).

Michelmore et al. [48] investigate the incorporation of
model uncertainty into an end-to-end system. The challenge
of steering angle prediction is treated as both a regression and
classification task, with separate network architectures built for
each approach. Both systems are trained and evaluated in the
Udacity simulator [34]. Uncertainty information is extracted
using 3 separate methods; variation ratios [49], predictive
entropy [50] and mutual information [50]. Uncertainty in-
formation is able to be extracted for each approach in real
time by limiting stochastic forward passes. The utilisation
of uncertainty modelling is not found to improve the pre-
dictive performance of the method. However, the utilisation
of uncertainty in crash prediction is also investigated. Mutual
information was found to be a promising indicator of future
crashes.

Amini et al. [51] utilise spatial dropout in a deep Bayesian
Network for end-to-end autonomous vehicle control. They
approximate Bayesian inference and acquire uncertainty es-
timates on output predictions. Dropout is performed before
every weight layer using 2 approaches; element-wise Bernoulli
Dropout [52] and spatial Bernoulli dropout [53]. Evaluation is
performed in the real-world on a Toyota Prius in a range of
weather conditions and environments. Training is performed
using over 7 hours of driving data, with the network trained
to map from RGB input data directly through to control
signals. Spatial dropout was found to be the most suitable
approach, which is utilised during training as this leads to
faster convergence.

Cai et al. [54] focus on improving the generalisation capa-
bilities of end-to-end models. The authors propose a multi-
perception model, PMP-net, that receives as input LiDAR,
radar and camera data, outputting a trajectory which is used
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by a PID controller to generate a control signal. The trajectory
is acquired through probabilistic motion planning, where a
Gaussian Mixture Model is used to output a distribution
of possible trajectories. A decision on the final trajectory
is then made by evaluating the statistical properties of this
distribution. This also allows a level of uncertainty on any
trajectory to be attained.

A large scale dataset is collected in the CARLA simulator,
focusing on the inclusion of complex environments and road
agents. The authors create and utilise the DeepTest bench-
mark for model evaluation. The benchmark, constructed in
the CARLA simulator, focuses on the inclusion of a range
of weather conditions and complex multi-agent scenarios. It
also has a zero tolerance for collision events, unlike other
CARLA based benchmarks. The author’s model was found
to achieve excellent driving and generalisation performance in
the DeepTest benchmark.

Chen et al. [15] utilise birds-eye view maps of the vehicle’s
environment to train an end-to-end model consisting of a
trajectory planner alongside a safety and tracking controller.
The HD map inputs to the network include routing, traffic
light, detected objects and historical ego-vehicle states. The
model is then trained to output planned trajectories through
its environment. Each trajectory is used by the network to
output desired speed and steering parameters, which are passed
to the safety enhancement module. This model component is
based on the safe set algorithm [16] and is used to ensure that
outputted control signals maintain vehicle safety. The CARLA
simulator is used to collect data and evaluate the model, and is
found to outperform similar approaches in a range of complex
environments.

Lee et al. [55] train a Bayesian Neural Network using
dropout to perform end-to-end autonomous driving whilst
allowing for real-time uncertainty estimates on model outputs.
When the uncertainty of an output is higher than a defined
threshold, the handling of the autonomous vehicle is handed
to a predictive controller or expert. The AutoRally simulator
[56] is used to evaluate the model, with the network being
successfully trained to steer the vehicle and hand over control
in the presence of novel scenarios.

D. Direct Policy Learning
Direct policy learning builds on Behavioural Cloning by

attempting to leverage a given expert at training time to
overcome BCs limitations. Initially the approach is identical
to BC, with the gathering of a dataset of expert i.i.d state-
action pairs which is then used to train a policy. The Direct
Policy Learning algorithm then queries a given expert to
evaluate the policy at run-time in order to attain further training
data, typically in the form of under represented scenarios in
which the initial policy fails. In this way, DPL addresses the
limitations of BC, however the requirement of an expert at
training time is an expensive one. In this section, we will
present a review of a range of DPL algorithms.

Ross et al. [57] propose the DAgger algorithm, an online
Imitation Learning method. A primary policy trained through
Imitation Learning simultaneously collects further training
examples whilst running a reference policy.

Initially, an expert dataset is used in conjunction with
Imitation Learning to train an autonomous agent. Subsequent
iterations then involve allowing the trained policy to acquire
further trajectories which are added to the dataset. For iteration
n, the next policy πn+1 is the policy that best imitates the expert
on the entire dataset. For certain iterations, a modified policy is
used which allows for queries to the expert (allows the expert
to control for a fraction of the time). This allows the expert to
recover mistakes, particularly for early iterations where the
frequency of mistakes may be very high. This continuous
addition of examples of incorrect trajectories increases the
number of observed trajectories in the data and demonstrates
recovery methods. Such an approach can address the cascading
error problem. The algorithm is tested in simulation on Super
Tux Cart, a 3D racing game. Results indicate a sharp increase
in driving performance as DAgger is run.

Building on the DAgger algorithm, Zhang et al. [58]
propose the SafeDAgger algorithm. The algorithm is con-
structed to minimise the number of expert queries required
when running the DAgger algorithm, as this can be costly.
It introduces an additional safety policy which takes both the
observation of a state and the primary policy’s output as inputs.
This safety policy is trained to output the likelihood of the
primary policy deviating from an expert trajectory. This allows
the system to only query the expert driver when necessary,
minimising the number of training examples collected. The
method is evaluated using the TORCS simulator. Compared
to the DAgger approach, the SafeDAgger algorithm is able to
improve the learning rate of the vehicle and minimise expert
queries.

Pan et al. [59] propose an Imitation Learning based network
for off-road driving. The aim of the work is to develop an
autonomous agent that only requires access to low-cost, on-
board sensors. They perform training with an expert that is
assumed to have access to much higher quality sensing equip-
ment than equipped on the test vehicle. The work makes use
of a model-predictive control (MPC) expert [60] as opposed to
a human driver. An MPC expert based on incremental Sparse
Spectrum Gaussian Process (SSGP) dynamics model [61] and
an iSAM2 state estimator [62] was used to generate expert
actions. For the training stage, Imitation Learning is used to
train an initial controller from MPC generated expert data.
During testing phase, the online Imitation Learning DAgger
algorithm is used to further improve performance.

The testing is performed on an elliptical, real-world track,
with the goal of minimising the accumulated cost function
over one minute of continuous driving. Results are evaluated
in a comparative method between a network trained with
batch Imitation Learning and a network trained using the
DAgger online Imitation Learning algorithm. In general, the
policies trained with online Imitation Learning outperform
those trained with batch methods.

Li et al. [63] propose a novel training algorithm for end-
to-end systems; Observational Imitation Learning (OIL). OIL
is an online learning algorithm that aims to train a model
to learn to imitate only the best behaviours of several sub-
optimal teachers. Multiple simple PID controllers are used as
the teachers. At each training iteration, a value function of
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each teacher is estimated, with the highest being taken as the
expert for training as long as its value function is above 0. If
the value is below 0, an additional step is required, where the
optimal expert is not used to train the model, but is instead
employed to correct the models’ actions.

The Sim4CV [64] simulation environment is used to gen-
erate datasets and evaluate OIL. The model is trained and
compared with state-of-the-art baselines as well as to the
teachers that were used to train it. OIL is found to outperform
all baselines in the tested scenarios, with the model also being
found to outperform all of the teachers.

Kelly et al. [65] propose an extension to the DAgger
algorithm, which they refer to as Human-Gated DAgger (HG-
DAgger). Models are trained to map from camera images
to speed and steering control signals. Rather than allowing
the expert and model to operate the vehicle simultaneously
to acquire online training data as in the DAgger algorithm,
identification of model failures is left to the expert. When the
expert identifies that the vehicle has entered such a state they
can flip a switch and take control, simultaneously recording
additional training data for the model to correct. Alongside
this, HG-DAgger also learns a risk metric by monitoring when
the human expert intervenes. This learnt threshold can then
be used to evaluate model performance at test time. Models
trained with HG-DAgger were found to outperform those
trained with DAgger, as well as learning a risk threshold that
was near-optimal to identify model failures for a range of
metrics.

E. Inverse Reinforcement Learning

Methods such as supervised learning and reinforcement
learning struggle to work for complex and real-world tasks.
Reinforcement learning’s reliance on a well-crafted reward
function limits its potential and crafting such functions for
complex tasks is extremely difficult. The trial and error nature
of reinforcement learning based techniques poses significant
safety challenges for complex and real-world tasks such as
autonomous driving. Due to this, the majority of reinforcement
learning methods for autonomous driving are applied only in
simulation, limiting their effectiveness.

Feature Based Inverse Reinforcement Learning involves the
assumption that an expert reward function can be represented
as a linear combination of features. These features are task-
dependent. For autonomous driving, they may include dis-
tances to cars or road markings etc. Expert demonstrations are
then leveraged with the aim of extracting the reward function
according to defined features. The main issue encountered with
this method is Reward Function Ambiguity [66]. This refers to
the fact that for any given dataset there may be several reward
functions to explain the shown behaviour, only a small number
of which can be suitable.

Abbeel et al. [67] employ Feature Based Inverse Reinforce-
ment Learning with the intention of learning different driving
styles in a highway simulation. They define 15 features; 5 fea-
tures corresponding to lanes/shoulders and 10 corresponding
to the presence of other cars. Human provided example data
are then used to learn 5 different reward functions for driving

styles including nice, nasty, right lane nice, right lane nasty
and middle lane.

Sadigh et al. [68] propose using Feature Based Inverse
Reinforcement Learning to train an autonomous vehicle con-
troller capable of interacting with other road users. They
argue that current methods fail to model that actions taken
by autonomous vehicle may affect the behaviour of other
road users. Inverse Reinforcement Learning was used to learn
a human driving reward function to interact with a human
controlled vehicle in simulation, providing promising results.

An extension to Feature Based Inverse Reinforcement
Learning is Maximum Entropy Inverse Reinforcement Learn-
ing, proposed by Ziebart et al. [69]. This method proposes to
overcome the issue of reward function ambiguity by employ-
ing the principle of maximum entropy. When selecting from
possible reward functions, one should choose the function with
the largest remaining uncertainty consistent and also satisfying
the specified constraints of the task. For Maximum Entropy
Inverse Reinforcement Learning, this is achieved alongside
feature matching. They utilise the method to model route
preferences of taxi drivers in urban locations.

Wulfmeier et al. [70] outline the development of a Max-
imum Entropy Deep Inverse Reinforcement Learning frame-
work. The model accepts state features as inputs and maps
them to a state reward function. They apply this method
in [71] to construct an end-to-end mapping from perception
to cost function for path planning urban environments. A
large-scale dataset is collected, consisting of LiDAR maps of
pedestrian walkways. The DeepIRL framework is then trained
to map these 2D point cloud maps to cost functions for the
environment which could then be used for path planning.

Generative Adversarial Imitation Learning (GAIL) [72] is
a model free form of IRL, where a policy is trained directly
without the use of domain knowledge. The learned policy can
be thought of as the generator imitating that of the expert from
the training data, whilst a discriminator is trained to identify
learnt and expert state-action pairs. Although very similar to
IRL, GAIL differs in that it is directly training the policy, not
the learning the reward function from expert demonstration,
through the minimax optimisation problem,

minπmaxr∈R[Eπ[r(s, a)]− Eπ∗ [r(s, a)]],

where Eπ[r(s, a)] is the average reward under the learnt
policy for a reward function r, and Eπ∗ [r(s, a)] is the average
reward over the given expert trajectories. GAIL attempts to
learn a policy which achieves comparable performance to the
expert with respect to any reward function belonging to the
class R.

Kuefler et al. [17] utilise GAIL in the task of modelling
human highway driving. A recurrent neural network, receiving
LiDAR like inputs and scalar values representing the vehicles
odometry, dimensions and state is trained to output vehicle
trajectories. Training and evaluation are performed with the
rllab reinforcement learning framework [73]. Their model
is compared to standard baselines, including a behavioural
cloning based approach. The proposed model outperforms the
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baselines in a range of metrics and is found to perform much
better over larger horizons (>3s).

Li et al. [74] propose an extension to Generative Adversarial
Imitation Learning that attempts to model latent variables
in driving datasets. Their method learns a latent variable
generative model of driving trajectories to reproduce expert
behaviour. The proposed extension in which the objective
function is augmented with a mutual information term between
latent variables and observed state-action pairs. The TORCS
simulator [42] is used to evaluate the system. The method
maps from input images to driving actions as well as modelling
and distinguishing between high-level actions taken by the
driver.

III. DATASETS AND SIMULATORS

The training of neural networks for the control of au-
tonomous vehicles requires the utilisation of large scale
datasets. These datasets should cover a wide range of scenarios
for both real-world and simulation based training. This section
introduces the most commonly used datasets for the training
of autonomous driving systems. A comparison of datasets is
available in Table II. A comparison of simulators is presented
in Table III.

A frequently used dataset is the KITTI dataset [38]. Con-
sisting of 6 hours of driving scenarios, data was recorded using
a Velodyne 3D laser scanner and a high precision GPS/IMU
navigation system. The data consist of stereo colour images
from a variety of scenarios including highway driving, urban
environments and rural areas. The entire dataset is calibrated
and timestamped. However, the dataset contains a limited
range of weather and lighting conditions.

The Oxford Robotcar dataset [39] was collected with an
autonomous vehicle traversing a route through Oxford, Eng-
land twice a week over the course of a year. Containing over
1000km of recorded driving and almost 20 million images, it
is an extensive dataset. Data were collected from 6 mounted
cameras, LiDAR, and a GPS/IMU navigation system. Despite
the lack of variety in the environment, data were collected for
a wide range of lighting/weather conditions including heavy
rain, night, direct sunlight and snow.

The Berkeley DeepDrive Video dataset [24] is a large-
scale uncalibrated dataset, consisting of driving videos and
GPS/IMU data. It is by far the largest dataset available with
over 10,000 hours of driving data. It contains a wide range
of environment and lighting/weather conditions, along with
video sources from multiple different vehicles. However, this
utilisation of multiple sources can lead to challenges regarding
latent variable modelling.

The Drive360 dataset [23] consists of roughly 60 hours
of driving data taken in Switzerland. By utilising 8 distinct
camera inputs, the dataset provides full surround-view video.
The dataset also contains information with regard to steering
angle, vehicle speed and route planning.

Beyond the use of provided datasets, simulation tools also
provide a useful means to synthesise a task-specific dataset.
These techniques are not only easier for producing datasets,
but a wide range of scenarios and conditions can be incorpo-
rated. The main issue is the difficulty in providing a powerful

enough simulation for an agent trained using simulated data
to be able to act in the real-world.

The CARLA simulator [22] is an open source simulation
tool for autonomous driving. Various 3D models are provided
to reproduce a variety of urban scenarios and the simulator
allows for the addition of various lighting and weather con-
ditions, the capability of producing maps of the environment
and the ability to replicate traffic scenarios. The virtual sensor
suite contains multiple camera types and LiDAR models.

An alternate simulation tool is the TORCS simulator [42].
TORCS is an open source car racing simulator. It contains
multiple tracks, a sophisticated physics model and the ability
to implement multiple vehicle scenarios. The simulator also
includes an extensive tool suite alongside a large range of
user created content.

The Udacity simulator [34] is another open source, free
driving simulator. Users can build their own tracks to evaluate
models in the simulator. Training data can be collected through
human control and used to train an autonomous agent. The
base simulator allows the training of models that utilise camera
data as inputs. Models can be evaluated for a range of
environments and weather/lighting conditions.

Sim4CV [64] is a photo-realistic simulation tool constructed
in the Unreal Engine [75]. The simulator has full physics
modelling for cars, unmanned aerial vehicles and human actors
in a range of urban environments. The simulator comes with
a benchmarking tool and a TensorFlow-based deep learning
interface. Data including RGB images, depth, image segmen-
tation and ground truth labelling. The simulation environment
is also highly customisable, with a number of pre-built assets
that the user can manually place in the scene.

GTA V is a video game, containing a wide range of driving
environments and weather/lighting conditions. Beyond this,
the game has the ability to simulate large scale AI controlled
traffic and pedestrians.

The rFpro simulator [76] is a powerful, high-level simula-
tion suite capable of providing an extensive range of large-
scale environments with a range of weather/lighting condi-
tions. A deep range of sensors are available, including camera,
LiDAR etc.

IV. DISCUSSION

A. Summary and Limitations
1) Behavioural Cloning: The majority of works under-

taken in the field of end-to-end learning utilise Behavioural
Cloning. Although simpler than alternate approaches, chal-
lenges such as the cascading error problem and generalisability
of solution need to be overcome for such a system to be
successfully applied in practice. In this work, we divide BC
based approaches into 3 subgroups; control prediction, direct
perception and uncertainty quantification.

Control prediction - These approaches train a model to
output steering and/or throttle control signals directly from
input data. This method is the simplest to develop, with large
scale datasets of input-control pairs easily attained with very
little pre-processing. However, a limitation of these approaches
comes with this individual outputting of control signals with
models performance decreasing over longer time horizons.
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TABLE I
SUMMARY OF PRESENTED RESEARCH

Type Ref Dataset Algorithm Learning Type Advantages Disadvantages
Behavioural
Cloning -
Control

[13] Real-world, camera,
steering commands

PilotNet Imitation Learning -Utilisation of side
facing cameras provides
robustness to cascading
error problems.
-98% autonomy
achieved highlights
potential of end-to-
end systems early in
development.

-Method only
applicable to simple
driving scenarios.
-Approach fails to deal
with generalisability
issues regarding edge
cases.

[21] Simulation, camera,
high-level commands,
steering angle

CNN Conditional Imitation
Learning, Attention
model

-Use of attention model
improves explainability
of model
-Attention model can
also be utilised to im-
prove network perfor-
mance.

-Attention model only
explains regions of im-
age responsible for de-
cisions, so does not
fully alleviate black box
problem
-Evaluated purely in
simulation

[23] Real-world, multiple
cameras, GPS/IMU

CNN, LSTM Sensor fusion,
Behavioural Cloning

-Model utilises multiple
views using cameras,
which could provide
a cheap alternative
to LiDAR based
approaches.
-Model is better
approximation of
human driving
conditions than single
image input models,
with access to multiple
views and navigation

-System requires access
to large number of cam-
eras

[25] Real-world, camera,
steering commands,
driver intent, recovery

CNN Conditional Imitation
Learning

-Use of CIL allows
for vehicle to be
commanded at run time
-System demonstrates
robustness of approach
through Real-world
testing

-System only evaluated
in Real-world on small
scale truck which is not
representative of full
scale vehicle
-Approach fails to deal
with generalisability
issues regarding edge
cases

[26] Simulation, multiple
cameras, GPS/IMU

Angle
Branched
Network

Sensor fusion,
Behavioural Cloning

-Use of subgoal as a
more informative ex-
pression of intent shows
good results
-Subgoal angle is
autonomous navigation
command

-Model requires accu-
rate definition of path to
create subgoal angle

[28] Real-world, camera,
high-level commands,
steering angle

CNN Conditional Imitation
Learning

-Use of pre-trained per-
ception network signif-
icantly boosts perfor-
mance
-Use of multiple cam-
eras improves perfor-
mance over a single
camera
-Use of temporal infor-
mation can help over-
come limitations of BC

-Multiple cameras in-
creases model complex-
ity
-Policy must be evalu-
ated online

[31] Simulation, camera,
high-level commands,
steering angles, throttle

CILRS Conditional Imitation
Learning

-Use of pre trained per-
ception model found to
improve performance
-More rigorous
NoCrash benchmark
to evaluate end-to-end
systems performance

-Evaluated purely in
simulation
-Benchmark does not
include the ability to
test models with com-
plex, multi-agent sce-
narios
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Type Ref Dataset Architecture Algorithms Advantages Disadvantages
[32] Simulation, camera,

high-level commands,
traffic signals, steering
angle, speed

CNN, LSTM Imitation Learning -Use of temporal in-
formation found to im-
prove networks perfor-
mance

-Evaluated purely in
simulation

[33] Simulation, camera,
steering angle

CNN, LSTM Imitation Learning -Treats task of steering
angle prediction as tem-
porally continuous, al-
lowing for more realis-
tic predictions

-Evaluated purely in
simulation

[35] Simulation, camera,
steering angles

CNN,
Ensemble

Imitation Learning -Comprehensive study
of the effects of
network parameters on
performance to guide
future research

-Ensemble methods are
very difficult to apply in
real time

Behavioural
Cloning -
Trajectory

[30] Simulation, camera, Li-
DAR, steering angles

CNN CIL, Sensor Fusion,
Behavioural Cloning

-Utilisation of depth in-
formation increases per-
formance of model sig-
nificantly in some cases

-Work makes
fundamental
assumption that
LiDAR and other
depth sensors will be
widely available on
autonomous vehicles,
which may be limited
due to the cost of these
systems.

[37] Real-world, LiDAR,
camera

SegNet Semantic Segmenta-
tion, Direct Perception

-Utilisation of both vi-
sual and LiDAR data
improves segmentation
performance and pro-
duces reliable and accu-
rate driving paths

-Requires access to
both visual and LiDAR
sensors which is an
expensive requirement

[40] Real-world, camera,
high-level commands,
trajectories

CNN, LSTM Conditional Imitation
Learning

-Model capable of run-
ning in real-time
-Incorporation of
temporal information
shown to improve
performance

-Model was not eval-
uated under a range
of weather and lighting
conditions

[14] Real-world, birds-eye,
traffic lights, speed lim-
its, trajectories

CNN, RNN Imitation Learning -Use of synthesized
data of interesting
situations is shown
to greatly improve
performance
-Model shown to be ca-
pable of driving a Real-
world autonomous ve-
hicle

-Model does not
achieve comparable
performance to motion
planning approaches

Behavioural
Cloning
- Direct
Perception

[24] Real-world, camera,
large-scale, steering
angle

FCN & LSTM Supervised learning,
Privileged learning,
Direct Perception

-Large scale dataset im-
proves generalisability
of system
-Use of temporal en-
coder provides robust-
ness to multi-modality
of actions

-Issue of generalisabil-
ity only partly solved
by large scale dataset
collection
-Issue of latent variable
modelling due to range
of data sources

[4] Simulation/Real-
world, visual,
orientation, distances to
obstacles/markings

CNN Supervised Learning,
Direct Perception

-Model is compared
to current SOTA
approaches,
outperforming them for
specified task

-Evaluation performed
on ability to map to
affordance indicators,
separate system should
be designed to utilise
this information

[41] Real-world, LiDAR,
GPS-IMU, directions

FCN Supervised Learning,
Direct Perception

-Incorporation of driv-
ing intent allows system
to predict reliable, ac-
curate driving paths for
use by separate control
module

-Model only predicts
reliable routes over
short distances



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, MONTH YEAR 14

Type Ref Dataset Architecture Algorithms Advantages Disadvantages
Behavioural
Cloning -
Uncertainty
Quantifica-
tion

[47] Real-world, simulation,
SLAM map

CNN SLAM/Supervised
Learning, Direct
Perception

-Use of secondary net-
work to predict nov-
elty of scenario is valu-
able approach to solv-
ing issues of generali-
sation and safety in au-
tonomous vehicles

-Network falls back on
pre-programmed ’safe
behaviours’, leading
to a trade off between
safety and performance

[48] Simulation, camera,
steering angles

BNN Uncertainty Modelling,
Direct Perception

-Use of BNN provides
robust, real-time evalu-
ation of safety levels in
vehicle
-BNN can simultane-
ously provide control
signals and uncertainty
modelling

-BNN approach is more
complex than standard
CNN based model, po-
tentially limiting perfor-
mance

[51] Real-world, camera
steering angles

BNN Dropout as Inference
Approximation,
Behavioural Cloning

-Use of dropout is sim-
ple, quickly converg-
ing approach to approx-
imating Bayesian Infer-
ence

-Paper does not provide
detailed enough infor-
mation regarding per-
formance of system.

[54] Simulation, LiDAR,
radar, camera,
trajectory

PMP-net Imitation Learning -Use of probabilistic
motion planning im-
proves safety of models
output
-Presentation of more
rigorous DeepTest
benchmarking tools to
allow better evaluation
of current state-of-the-
art approaches

-Only evaluated in sim-
ulation

[15] Simulation, birds-eye
maps, trajectories

CNN Imitation Learning -Use of safety con-
troller improves per-
formance of network
as well as improving
safety of model
-Use of safety con-
troller allows network
to perform successfully
in complex urban envi-
ronments.

-Model only evaluated
in simulation
-Model relies on de-
tailed perception infor-
mation that is not read-
ily available in Real-
world perception sys-
tems.

[55] Simulation, images,
steering angle, speed

BNN Imitation Learning -Model successfully
trained to utilise
uncertainty information
and hand over to expert
when encountering
novel scenarios

-Model only evaluated
in simulation
-Bayes by dropout re-
quires computationally
expensive sampling to
attain uncertainty esti-
mates

Direct Pol-
icy Learning

[57] Simulation, camera,
steering commands

CNN DAgger -Use of expert queries
sharply increases per-
formance and allows
the system to deal with
edge cases

-Requirement of system
during training to have
constant access to a
queryable expert limits
the models applicability

[58] Simulation, camera,
steering angle

CNN SafeDAgger -System successfully
decreases the number
of expert queries,
improving on large
drawback of [21]

-Method still requires
the presence of a
queryable expert during
training, limiting
applicability

[59] Real-world, camera,
steering angle

CNN Supervised learning,
DAgger

-Real-world evaluation
of system more robust
than simulation based
one
-Shows value of on-
line learning methods in
improving autonomous
vehicle systems

-Use of online learn-
ing DAgger algorithm
requires constant access
to queryable expert
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Type Ref Dataset Architecture Algorithms Advantages Disadvantages
[63] Simulation, camera,

steering, speed
CNN PID -Use of OIL overcomes

challenges with imper-
fect experts for IL
-OIL successfully al-
lows a policy to be
trained to outperform
all experts

-Requires access to
multiple expert policies

[65] Real-world, camera,
steering angles, speed

BNN Online DAgger -Use of HG-DAgger
more expert query effi-
cient than DAgger
-Learnt risk threshold
provides good measure
of model performance

-Risk measurement is
not employed to im-
prove safety of model
or to enable expert han-
dover

Inverse Re-
inforcement
Learning

[67] Simulation, birds-eye Feature Based
IRL

Markov Decision Pro-
cess

-Approach of feature
based IRL provides
robustness to reward
function ambiguity for
process as complex as
autonomous driving

-Simulation is simplis-
tic and fails to accu-
rately model the com-
plexity of Real-world
autonomous driving

[68] Simulation, birds-eye Feature Based
IRL

Markov Decision Pro-
cess

-Method accounts for
the fact that a users ac-
tions affect the state of
the environment, pro-
viding more realistic
model

-Approach is again sim-
plistic and not applica-
ble to the development
of fully autonomous ve-
hicle

[69] Real-world, GPS Maximum En-
tropy IRL

Markov Decision Pro-
cess

-Maximum entropy ap-
proach provides strong
robustness to problem
of reward function am-
biguity
-Method is utilised on
top of feature based
IRL

-Approach far from be-
ing able to provide a ro-
bust control method for
a fully autonomous ve-
hicle

[70] Real-world, LiDAR FCN Maximum Entropy
Deep IRL

-First approach to
successfully apply
deep learning to IRL
framework
-Provides accurate, path
planning model from
LiDAR pointclouds

-Task is computation-
ally intensive and not
yet applicable to con-
trolling autonomous ve-
hicle

[17] Simulation, LiDAR,
state information,
trajectories

RNN GAIL -Outperforms BC based
trajectory prediction
over long horizons,
overcoming cascading
error problem

-Outputted control sig-
nals have non human-
like oscillations

GAIL [74] Simulation, visual, tra-
jectories

GAIL Supervised Learning -Method provides
resilience to latent
variables and could be
applied to large-scale
crowd sourced datasets
-Method can
distinguish between
high-level actions taken
by the driver

-Method is basic, and
needs development

Bojarski et al. [20] and Cultrera et al. [21] seek to improve
the explainability of end-to-end models. Bojarski et al. use
visual backpropagation to visualise salient regions of input
images for the model’s decision making. Cultrera et al. instead
use an attention model for the task. Their investigations
highlight that the salient features learnt by the network are
extremely similar to those utilised by humans, a promising
finding that should increase user and manufacturer trust.

The development of Conditional Imitation Learning by
Codevilla et al. [25] presents a promising solution to the
challenge of multi-modality of output, i.e. that a single input
image may have multiple corresponding actions. Although the
use of high-level intent information alleviates this ambiguity,
the requirement of continuous expert provided high-level in-
tention is a costly one. Wang et al. [26] utilise automatically
generated intention information, the subgoal angle, to prevent
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TABLE II
COMPARISON OF AUTONOMOUS DRIVING DATASETS [24]. U - URBAN, R - RURAL, H - HIGHWAY

Dataset Environment Data Type Scale
(h)

Diversity Sensors Advantages Disadvantages

U R H Weather Day Night Video
Image

LiDAR GPS-
IMU

KITTI X X X Real-world 1.4 Single X - X X X -Contains all 3
environments
-Contains
LiDAR data

-Small dataset
-Low diversity

Oxford X - - Real-world 214 Multiple X - X - X -Contains range
of weather con-
ditions

-Contains few
environments
-No LiDAR
data

BDDV X X X Real-world 10k Multiple X - X - X -Large scale
-Contains
wide range of
environments
and weather

-No night data
-No LiDAR

Drive360 X - X Real-world 60 Multiple X - X - X -Contains
multiple
weather
conditions

-No night data
-No LiDAR

Comma.ai - - X Real-world 7.25 Single X X X - X -Contains night
driving

-Few
environments
-No LiDAR

expert intention from being required.
Chi et al. [33], Haavaldsen et al. [32] and Hawke et

al. [28] primarily focus on overcoming the issue of multi-
modality through the use of temporal information. Modelling
the steering angle as a temporally continuous variable not only
shows potential in alleviating this problem, but also improving
performance compared to competing algorithms. However,
the multi-modality of the solution is not entirely relieved.
High-level intention, driving condition, and many other factors
can also lead to solution ambiguity and combinations of this
information as inputs to the network needs further study.

Direct Perception - Direct perception is an alternate form
of end-to-end model design. Despite the task of outputting
indicators for use by a control module being a slightly more
complex one than control signal prediction, an advantage of
this approach is the ability to train networks to provide long
time horizon planning. This can significantly improve the
safety of such systems whilst providing any observers with
information about the systems long term intentions.

The majority of direct perception approaches utilise multi-
modal inputs, straying away from the primarily vehicle-
mounted camera strategies of control prediction systems. Xiao
et al. [30] and Barnes et al. [37] focus on the inclusion of depth
information alongside RGB camera information via LiDAR to
improve their models’ trajectory generation. Xiao et al. inves-
tigate including this additional information at varying stages of
the end-to-end pipeline to generate driving trajectories, whilst
Barnes et al. use this additional information to segment the
camera images for use in trajectory generation. Both works
provide good solutions to the challenge of generations of
trajectory generation models, however access to LiDAR for
autonomous vehicle systems can still be an issue due to
availability and cost.

Works such as Bansal et al. [14] and Chen et al. [15] show
the performance that can be achieved using trajectory planning

approaches when they receive a comprehensive birds-eye view
overview of their environment as an input. These models
successfully produce successful, safe long-horizon trajectories
through complex environments. However, in order to provide
such comprehensive input information outside of simulation
environments requires the development and implementation of
state-of-the-art perception systems.

Xu et al. [24] attempt to overcome the generalisability
issue through the acquisition of a training dataset significantly
larger than any other presently available. The collection of
such a dataset significantly increases the number and range
of scenarios present for training. However, such an approach
struggles to completely overcome the issue of generalisability,
as a finite dataset cannot contain all possible driving scenarios.
Beyond this, the utilisation of data from a wide range of
sources, from multiple human drivers, introduces the issue of
differing driving styles between each source. Known as latent
variables, these factors should be modelled which brings a
further challenge.

Caltagirone et al. [41] (driving path estimation), Barnes
et al. [37] (driving path estimation) and Richter et al. [47]
(collision/novelty prediction) all utilise the direct perception
approach to provide a driving controller with navigational in-
formation. For Caltagirone, Barnes, each method is applied to
only a single, specific part of the autonomous driving decision
making pipeline. A direct perception based fully autonomous
vehicle would require such processing to be conducted on the
entire perception pipeline, which may be unfeasible. Richter et
al. utilise such a system to perform crash prediction to greatly
improve the safety of an autonomous vehicle. Performing
novelty prediction provides a unique method of preventing
system failures due to issues regarding generalisability.

Uncertainty Quantification - Michelmore et al. [48],
Amini et al. [51] and Lee et al. [55] utilise uncertainty
information through the training of Bayesian Neural Networks
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TABLE III
COMPARISON OF AUTONOMOUS DRIVING SIMULATORS. U- URBAN, R - RACING, H - HIGHWAY

Dataset Environment Diversity Sensors Advantages Disadvantages
U R H Weather Lighting Multi-

Agent
Video
Image

LiDAR Depth
Camera

CARLA X - X X X X X X X -Can utilise custom
built scenarios
-Multi-agent
capabilities

-No racing track
environments
-Complex
simulation suite

TORCS - X - X X - X X X -Complex physics
engine
-Advanced racing
simulator
-Number of user
made tracks/content
available

-No multi-agent
simulation
-No urban/highway
driving

Udacity X X X - - - X - - -Large number of
user created tracks
-Easy to use

-Does not allow
LiDAR simulation
-No multi-agent
simulation

GTA V X X X X X X X - - -Complex
multi-agent
traffic/pedestrian
behaviour
-Wide range of
environments and
weather conditions

-Only camera inputs
available
-Need software
to interact with
videogame

rFpro X X X X X X X X X -Complex traffic
scenarios
-Human users can
be part of testing
scenarios

-Simulator is not
free

to improve the safety assurances of their model. Their models
perform to state-of-the-art standards whilst allowing for the
extraction of model uncertainty. Michelmore et al. utilise the
uncertainties to predict future crashes, however uncertainty
information has many potential applications in such a system,
such as modelling road user behaviour, identification of edge
cases etc. The work presents a novel, safety driven approach to
autonomous vehicle development which is much needed in the
field. Whilst the system itself solely generates steering angles,
the further development of such a system is of importance.
However, the training of BNN’s is a challenging task. The
approaches approximate BNN using dropout and as such re-
quire multiple passes over the network for each input to attain
the distribution of values, which can be a computationally
expensive task and limit the models’ abilities to act in real-
time.

2) Direct Policy Learning: Direct Policy Learning ap-
proaches attempt to expand upon BC in order to overcome
some of its limitations. The DAgger [57] algorithm provides
a very strong framework for overcoming the issues of cas-
cading errors and enhancing generalisability. Online Imitation
Learning algorithms inherently provide a level of robustness
to these challenges due to their aggregation of data. The main
limitation of this approach is the requirement of constant
access to an expert during the training process, which is
demanding and limits the applicability of the approach. The
SafeDAgger [58] and HG-DAgger [65] algorithms mitigate
this issue through the efficiency of expert queries, however
access to human experts at training time is still required.

Li et al. [74] attempt to alleviate some of the challenges of

requiring access to an expert through the development of the
Observational Imitation Learning algorithm. This algorithm
utilises a large number of experts, provided through the use of
a number of simple PID controllers. This is a much cheaper
expert to provide than a human. The use of OIL finds the
best expert at each iteration and over a number of iterations
allows multiple experts to train the network. This has the
effect of allowing the network to reach superior performance
to any individual expert, a very promising result. The main
drawback of the work is that it only uses simple PID controller,
and finding a suitable expert that could be used on mass for
complex, real-world driving may be a challenge.

3) Inverse Reinforcement Learning: Inverse Reinforce-
ment Learning attempts to infer the reward function of driving,
to allow the training of a system that can fully generalise
to any unseen scenario. However, it is a challenging task,
primarily due to the computational complexity of learning a
reward function for highly complex tasks. Beyond this, there
exist further challenges namely reward function ambiguity. A
dataset can be explained by multiple reward functions, only
one of which may be the desired one.

Abbeel et al. [67] and Ziebart et al. [69] apply the method
successfully to the task of highway driving human reward
function, learning differing driving styles. However, these
methods are only applied in simple top-down simulations and
further work to apply them to more complex simulations or
real-world data is required if such approaches are to catch up
to the level of behavioural cloning based approaches.

The most advanced and promising application of Inverse
Reinforcement Learning is undertaken by Wulfmeier et al.
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They develop the DeepIRL framework, utilising deep learning
in conjunction with inverse reinforcement learning to learn
cost maps of the environment. These cost maps can then be
used to construct paths through the environment, similar to
the behavioural cloning based approach by Caltagirone et al.
Whilst showing potential for this task, the development of
an Inverse Reinforcement Learning based autonomous vehicle
will require significantly more development.

Generative Adversarial Imitation Learning [72] also shows
a large amount of promise in terms of addressing all 3 of the
primary issues faced by IL. Li et al. [74] develop a Generative
Adversarial Imitation Learning based system capable of not
only successfully learning a driving policy but also learning
to distinguish between high-level actions and model latent
variables. Kuefler et al. [17] use GAIL to imitate human
level highway driving in simulation, achieving very promising
results compared to BC baselines. These abilities highlight
the potential of GAIL for the field of autonomous vehicles.
However as a field GAIL is still in its infancy and as such it
may be a matter of time before it is ready to be applied to
real-world autonomous vehicle systems.

B. Open Challenges
1) Behavioural Cloning:
• Current datasets are not large or diverse enough for

the training of a fully autonomous vehicle. For safety
critical tasks such as autonomous driving, edge cases
and underrepresented scenarios pose significant threats
to performance. More complete and large scale datasets
for BC approaches are needed to address these issues.

• Current end-to-end systems fail to account for the safety
critical nature of the task. Improving safety of au-
tonomous systems is crucial, namely via the introduc-
tion of uncertainty modelling or other safety critical
approaches. Deep learning often struggles to generalise
to novel or unseen scenarios that a model may encounter.
This potential drop in performance can be disastrous
for safety critical tasks. Models capable of outputting
associated uncertainty information or performing novelty
detection can address these issues and present a valuable
area for future research.

• Current end-to-end approaches fail to effectively model
the temporal dependence of driving decisions. This over-
simplification limits their effectiveness in the real-world.
Attempting to train a model to mimic human driving
decision making whilst only allowing it access to a
fraction of the information that humans use will almost
certainly limit performance.

• The field is lacking a standardised evaluation approach.
The development of a standard evaluation metric or test
bed for the field is of paramount importance, to en-
able the comparison and assessment of current methods.
Such evaluation should be rigorous, exposing models
to a range of novel and dangerous scenarios to fully
evaluate not only their driving performance but also
their safety level. Current benchmarks utilise simulation
environments however the construction of a real-world
benchmarking approach would be extremely valuable.

2) Direct Policy Learning:
• The requirement of having access to human experts is a

costly one, and the study of more query-efficient algo-
rithms is an ongoing challenge. The inclusion of experts
at training time can greatly mitigate the limitations of
BC approaches, but currently struggle to maximise this
potential due to the inefficiency of querying the expert.
The use of non-human experts and the development of
models that are very query efficient can minimise this
issue, however further work into such approaches is
needed.

• Algorithms that allow the model to reach performance
greater than its experts show promise, but only currently
are viable for very simple expert policies. Expansion of
such approaches to more complex expert policies could
greatly improve model performance.

• The majority of Direct Policy Learning approaches have
only been implemented in simulation, expansion to real-
world environments is an open challenge.

3) Inverse Reinforcement Learning:
• The majority of current IRL based approaches are

limited to simple simulations. Expansion of IRL
based approaches to more complex, realistic simulation
environments/real-world datasets should be made to allow
the field to catch up with Behavioural Cloning based
solutions.

• Current leading deep learning based IRL approaches
are focused on direct perception based approach, further
expansion to attempt to utilise such methods to develop
control systems should be made.

• The computational complexity of IRL approaches is a
significant limitation of the method. More computation-
ally efficient methods of acquiring reward functions are
needed if the approach is to become suitable for real-
world autonomous driving.

• Generative Adversarial Imitation Learning models are
difficult to train and computationally intensive. They have
been shown to be unstable during training, and for smaller
datasets they can take a long time to converge.

• The theoretical background to GAIL is still largely un-
known. For any significant progress to be made into
developing the method, more work is needed to ascertain
its theoretical background.

• The utilisation of online learning in GAIL based ap-
proaches could significantly relieve the issue of sample
inefficiency by guiding the learning process.

• Studies such as [77] have also shown that GAIL can
fail to generalise to differing environmental dynamics,
and more work is needed to investigate this potentially
significant limitation of the approach.

V. CONCLUSION

This paper provides an overview of state-of-the-art Imita-
tion Learning based methods, their applications in the field
of autonomous vehicles and discusses open challenges that
still need to be addressed. The field is classified into three
main approaches; Behavioural Cloning, Direct Policy Learning
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and Inverse Reinforcement Learning for each of which the
current state-of-the-art is presented and reviewed. Based on
this review, open challenges in the field are identified such as
data enhancement, robust learning mechanism, safety-critical
autonomy, and the development of a standardised evaluation
metric. Due to the fact that Imitation Learning, as with a large
amount of deep-learning paradigms, is a data-driven approach,
the review also summarises existing datasets and simulators,
exploring their potential applications. It is anticipated that this
survey can serve as a primary starting point to researchers
who are about to enter this exciting area and to give a
comprehensive overview to the existing research.
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