207,710 research outputs found

    Measurements and evaluations for an IEEE 802.11a based carrier-grade multi-radio wireless mesh network deployment

    Get PDF
    Proceeding of: The Fifth International Conference on Wireless and Mobile Communications, (ICWMC 2009), 23-29 August 2009, Cannes/La Bocca (France)Although there currently exists a number of Wireless Local Area Network based mesh network deployments most have been deployed to provide best effort broadband Internet access. Consequently, they cannot meet the requirements of network operators in order to utilise these networks to offer carrier grade services. The goal of providing carrier grade services over a wireless mesh infrastructure requires high performance in terms of throughput and reliability. One way of achieving this increase in performance is to utilise multi-radio Mesh Nodes, however, due to the Physical Layer layer limitations of 802.11a this can have significant problems. This paper analyses these issues and investigates what performance can be expected when frequency multiplexing is considered. The results presented in this paper are based on real measurements taken from multi-radio Mesh Nodes and are evaluated using statistical algorithms. The main contribution of this paper is an analysis of the impact of the Adjacent Channel Interference effect in 802.11a based multi-radio Mesh Nodes.European Community's Seventh Framework ProgramThis work was partially funded by the European Commission within the 7th Framework Program in the context of the ICT project Carrier-Grade Mesh Networks (CARMEN) (Grant Agreement No. 214994).Publicad

    Experimental study of the interplay of channel and network coding in low power sensor applications

    Get PDF
    In this paper, we evaluate the performance of random linear network coding (RLNC) in low data rate indoor sensor applications operating in the ISM frequency band. We also investigate the results of its synergy with forward error correction (FEC) codes at the PHY-layer in a joint channel-network coding (JCNC) scheme. RLNC is an emerging coding technique which can be used as a packet-level erasure code, usually implemented at the network layer, which increases data reliability against channel fading and severe interference, while FEC codes are mainly used for correction of random bit errors within a received packet. The hostile wireless environment that low power sensors usually operate in, with significant interference from nearby networks, motivates us to consider a joint coding scheme and examine the applicability of RLNC as an erasure code in such a coding structure. Our analysis and experiments are performed using a custom low power sensor node, which integrates on-chip a low-power 2.4 GHz transmitter and an accelerator implementing a multi-rate convolutional code and RLNC, in a typical office environment. According to measurement results, RLNC of code rate 4/8 can provide an effective SNR improvement of about 3.4 dB, outperforming a PHY-layer FEC code of the same code rate, at a PER of 10[superscript -2]. In addition, RLNC performs very well when used in conjunction with a PHY-layer FEC code as a JCNC scheme, offering an overall coding gain of 5.6 dB.Focus Center Research Program. Focus Center for Circuit & System Solutions. Semiconductor Research Corporation. Interconnect Focus Cente

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment
    • …
    corecore