248 research outputs found

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    FDDetector: A Tool for Deduplicating Features in Software Product Lines

    Get PDF
    Duplication is one of the model defects that affect software product lines during their evolution. Many approaches have been proposed to deal with duplication in code level while duplication in features hasn’t received big interest in literature. At the aim of reducing maintenance cost and improving product quality in an early stage of a product line, we have proposed in previous work a tool support based on a conceptual framework. The main objective of this tool called FDDetector is to detect and correct duplication in product line models. In this paper, we recall the motivation behind creating a solution for feature deduplication and we present progress done in the design and implementation of FDDetector

    Academia/Industry DynAmics (AIDA): A knowledge Graph within the scholarly domain and its applications

    Get PDF
    Scholarly knowledge graphs are a form of knowledge representation that aims to capture and organize the information and knowledge contained in scholarly publications, such as research papers, books, patents, and datasets. Scholarly knowledge graphs can provide a comprehensive and structured view of the scholarly domain, covering various aspects such as authors, affiliations, research topics, methods, results, citations, and impact. Scholarly knowledge graphs can enable various applications and services that can facilitate and enhance scholarly communication, such as information retrieval, data analysis, recommendation systems, semantic search, and knowledge discovery. However, constructing and maintaining scholarly knowledge graphs is a challenging task that requires dealing with large-scale, heterogeneous, and dynamic data sources. Moreover, extracting and integrating the relevant information and knowledge from unstructured or semi-structured text is not trivial, as it involves natural language processing, machine learning, ontology engineering, and semantic web technologies. Furthermore, ensuring the quality and validity of the scholarly knowledge graphs is essential for their usability and reliability

    Computational and human-based methods for knowledge discovery over knowledge graphs

    Get PDF
    The modern world has evolved, accompanied by the huge exploitation of data and information. Daily, increasing volumes of data from various sources and formats are stored, resulting in a challenging strategy to manage and integrate them to discover new knowledge. The appropriate use of data in various sectors of society, such as education, healthcare, e-commerce, and industry, provides advantages for decision support in these areas. However, knowledge discovery becomes challenging since data may come from heterogeneous sources with important information hidden. Thus, new approaches that adapt to the new challenges of knowledge discovery in such heterogeneous data environments are required. The semantic web and knowledge graphs (KGs) are becoming increasingly relevant on the road to knowledge discovery. This thesis tackles the problem of knowledge discovery over KGs built from heterogeneous data sources. We provide a neuro-symbolic artificial intelligence system that integrates symbolic and sub-symbolic frameworks to exploit the semantics encoded in a KG and its structure. The symbolic system relies on existing approaches of deductive databases to make explicit, implicit knowledge encoded in a KG. The proposed deductive database DSDS can derive new statements to ego networks given an abstract target prediction. Thus, DSDS minimizes data sparsity in KGs. In addition, a sub-symbolic system relies on knowledge graph embedding (KGE) models. KGE models are commonly applied in the KG completion task to represent entities in a KG in a low-dimensional vector space. However, KGE models are known to suffer from data sparsity, and a symbolic system assists in overcoming this fact. The proposed approach discovers knowledge given a target prediction in a KG and extracts unknown implicit information related to the target prediction. As a proof of concept, we have implemented the neuro-symbolic system on top of a KG for lung cancer to predict polypharmacy treatment effectiveness. The symbolic system implements a deductive system to deduce pharmacokinetic drug-drug interactions encoded in a set of rules through the Datalog program. Additionally, the sub-symbolic system predicts treatment effectiveness using a KGE model, which preserves the KG structure. An ablation study on the components of our approach is conducted, considering state-of-the-art KGE methods. The observed results provide evidence for the benefits of the neuro-symbolic integration of our approach, where the neuro-symbolic system for an abstract target prediction exhibits improved results. The enhancement of the results occurs because the symbolic system increases the prediction capacity of the sub-symbolic system. Moreover, the proposed neuro-symbolic artificial intelligence system in Industry 4.0 (I4.0) is evaluated, demonstrating its effectiveness in determining relatedness among standards and analyzing their properties to detect unknown relations in the I4.0KG. The results achieved allow us to conclude that the proposed neuro-symbolic approach for an abstract target prediction improves the prediction capability of KGE models by minimizing data sparsity in KGs

    Interaction intermodale dans les réseaux neuronaux profonds pour la classification et la localisation d'évènements audiovisuels

    Get PDF
    La compréhension automatique du monde environnant a de nombreuses applications telles que la surveillance et sécurité, l'interaction Homme-Machine, la robotique, les soins de santé, etc. Plus précisément, la compréhension peut s'exprimer par le biais de différentes taches telles que la classification et localisation dans l'espace d'évènements. Les êtres vivants exploitent un maximum de l'information disponible pour comprendre ce qui les entoure. En s'inspirant du comportement des êtres vivants, les réseaux de neurones artificiels devraient également utiliser conjointement plusieurs modalités, par exemple, la vision et l'audition. Premièrement, les modèles de classification et localisation, basés sur l'information audio-visuelle, doivent être évalués de façon objective. Nous avons donc enregistré une nouvelle base de données pour compléter les bases actuellement disponibles. Comme aucun modèle audio-visuel de classification et localisation n'existe, seule la partie sonore de la base est évaluée avec un modèle de la littérature. Deuxièmement, nous nous concentrons sur le cœur de la thèse: comment utiliser conjointement de l'information visuelle et sonore pour résoudre une tâche spécifique, la reconnaissance d'évènements. Le cerveau n'est pas constitué d'une "simple" fusion mais comprend de multiples interactions entre les deux modalités. Il y a un couplage important entre le traitement de l'information visuelle et sonore. Les réseaux de neurones offrent la possibilité de créer des interactions entre les modalités en plus de la fusion. Dans cette thèse, nous explorons plusieurs stratégies pour fusionner les modalités visuelles et sonores et pour créer des interactions entre les modalités. Ces techniques ont les meilleures performances en comparaison aux architectures de l'état de l'art au moment de la publication. Ces techniques montrent l'utilité de la fusion audio-visuelle mais surtout l'importance des interactions entre les modalités. Pour conclure la thèse, nous proposons un réseau de référence pour la classification et localisation d'évènements audio-visuels. Ce réseau a été testé avec la nouvelle base de données. Les modèles précédents de classification sont modifiés pour prendre en compte la localisation dans l'espace en plus de la classification.Abstract: The automatic understanding of the surrounding world has a wide range of applications, including surveillance, human-computer interaction, robotics, health care, etc. The understanding can be expressed in several ways such as event classification and its localization in space. Living beings exploit a maximum of the available information to understand the surrounding world. Artificial neural networks should build on this behavior and jointly use several modalities such as vision and hearing. First, audio-visual networks for classification and localization must be evaluated objectively. We recorded a new audio-visual dataset to fill a gap in the current available datasets. We were not able to find audio-visual models for classification and localization. Only the dataset audio part is evaluated with a state-of-the-art model. Secondly, we focus on the main challenge of the thesis: How to jointly use visual and audio information to solve a specific task, event recognition. The brain does not comprise a simple fusion but has multiple interactions between the two modalities to create a strong coupling between them. The neural networks offer the possibility to create interactions between the two modalities in addition to the fusion. We explore several strategies to fuse the audio and visual modalities and to create interactions between modalities. These techniques have the best performance compared to the state-of-the-art architectures at the time of publishing. They show the usefulness of audio-visual fusion but above all the contribution of the interaction between modalities. To conclude, we propose a benchmark for audio-visual classification and localization on the new dataset. Previous models for the audio-visual classification are modified to address the localization in addition to the classification

    An inertial motion capture framework for constructing body sensor networks

    Get PDF
    Motion capture is the process of measuring and subsequently reconstructing the movement of an animated object or being in virtual space. Virtual reconstructions of human motion play an important role in numerous application areas such as animation, medical science, ergonomics, etc. While optical motion capture systems are the industry standard, inertial body sensor networks are becoming viable alternatives due to portability, practicality and cost. This thesis presents an innovative inertial motion capture framework for constructing body sensor networks through software environments, smartphones and web technologies. The first component of the framework is a unique inertial motion capture software environment aimed at providing an improved experimentation environment, accompanied by programming scaffolding and a driver development kit, for users interested in studying or engineering body sensor networks. The software environment provides a bespoke 3D engine for kinematic motion visualisations and a set of tools for hardware integration. The software environment is used to develop the hardware behind a prototype motion capture suit focused on low-power consumption and hardware-centricity. Additional inertial measurement units, which are available commercially, are also integrated to demonstrate the functionality the software environment while providing the framework with additional sources for motion data. The smartphone is the most ubiquitous computing technology and its worldwide uptake has prompted many advances in wearable inertial sensing technologies. Smartphones contain gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly found in inertial measurement units. This thesis presents a mobile application that investigates whether the smartphone is capable of inertial motion capture by constructing a novel omnidirectional body sensor network. This thesis proposes a novel use for web technologies through the development of the Motion Cloud, a repository and gateway for inertial data. Web technologies have the potential to replace motion capture file formats with online repositories and to set a new standard for how motion data is stored. From a single inertial measurement unit to a more complex body sensor network, the proposed architecture is extendable and facilitates the integration of any inertial hardware configuration. The Motion Cloud’s data can be accessed through an application-programming interface or through a web portal that provides users with the functionality for visualising and exporting the motion data
    • …
    corecore