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Abstract

The modern world has evolved, accompanied by the huge exploitation of data and
information. Daily, increasing volumes of data from various sources and formats
are stored, resulting in a challenging strategy to manage and integrate them to
discover new knowledge. The appropriate use of data in various sectors of society,
such as education, healthcare, e-commerce, and industry, provides advantages for
decision support in these areas. However, knowledge discovery becomes challeng-
ing since data may come from heterogeneous sources with important information
hidden. Thus, new approaches that adapt to the new challenges of knowledge
discovery in such heterogeneous data environments are required. The semantic
web and knowledge graphs (KGs) are becoming increasingly relevant on the road
to knowledge discovery. This thesis tackles the problem of knowledge discovery
over KGs built from heterogeneous data sources. We provide a neuro-symbolic ar-
tificial intelligence system that integrates symbolic and sub-symbolic frameworks
to exploit the semantics encoded in a KG and its structure. The symbolic sys-
tem relies on existing approaches of deductive databases to make explicit, implicit
knowledge encoded in a KG. The proposed deductive database DS can derive new
statements to ego networks given an abstract target prediction. Thus, DS mini-
mizes data sparsity in KGs. In addition, a sub-symbolic system relies on knowledge
graph embedding (KGE) models. KGE models are commonly applied in the KG
completion task to represent entities in a KG in a low-dimensional vector space.
However, KGE models are known to suffer from data sparsity, and a symbolic
system assists in overcoming this fact. The proposed approach discovers knowl-
edge given a target prediction in a KG and extracts unknown implicit information
related to the target prediction. As a proof of concept, we have implemented the
neuro-symbolic system on top of a KG for lung cancer to predict polypharmacy
treatment effectiveness. The symbolic system implements a deductive system to
deduce pharmacokinetic drug-drug interactions encoded in a set of rules through
the Datalog program. Additionally, the sub-symbolic system predicts treatment
effectiveness using a KGE model, which preserves the KG structure. An ablation
study on the components of our approach is conducted, considering state-of-the-
art KGE methods. The observed results provide evidence for the benefits of the
neuro-symbolic integration of our approach, where the neuro-symbolic system for
an abstract target prediction exhibits improved results. The enhancement of the
results occurs because the symbolic system increases the prediction capacity of
the sub-symbolic system. Moreover, the proposed neuro-symbolic artificial intelli-
gence system in Industry 4.0 (I4.0) is evaluated, demonstrating its effectiveness in
determining relatedness among standards and analyzing their properties to detect
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unknown relations in the I4.0KG. The results achieved allow us to conclude that
the proposed neuro-symbolic approach for an abstract target prediction improves
the prediction capability of KGE models by minimizing data sparsity in KGs.
Keywords Neuro-Symbolic System, Sub-Symbolic System, Symbolic System, Knowl-
edge Graph Embedding, Datalog
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Zusammenfassung

Die moderne Welt hat sich weiterentwickelt, begleitet von einer enormen Verwer-
tung von Daten und Informationen. Täglich werden immer größere Datenmengen
aus verschiedenen Quellen und Formaten gespeichert, was zu einer anspruchsvollen
Strategie für die Verwaltung und Integration dieser Daten führt, um neues Wis-
sen zu entdecken.Die angemessene Nutzung von Daten in verschiedenen Bereichen
der Gesellschaft, wie z. B. im Bildungs- und Gesundheitswesen, im elektronischen
Handel und in der Industrie, bietet Vorteile für die Entscheidungsfindung in diesen
Bereichen. Die Wissensentdeckung stellt jedoch eine Herausforderung dar, da die
Daten aus heterogenen Quellen stammen können, in denen wichtige Informationen
verborgen sind. Daher sind neue Ansätze erforderlich, die sich an die neuen Her-
ausforderungen der Wissensentdeckung in solchen heterogenen Datenumgebungen
anpassen. Das semantische Web und Wissensgraphen (KGs) gewinnen auf dem
Weg zur Wissensentdeckung zunehmend an Bedeutung. Diese Arbeit befasst sich
mit dem Problem der Wissensentdeckung über Wissensgraphen, die aus hetero-
genen Datenquellen aufgebaut sind. Wir stellen ein neurosymbolisches System
der künstlichen Intelligenz zur Verfügung, das symbolische und subsymbolische
Frameworks integriert, um die in einem Wissensgraphen kodierte Semantik und
seine Struktur zu nutzen. Das symbolische System stützt sich auf bestehende An-
sätze deduktiver Datenbanksysteme, um implizite Wissen, die in einem KG kodiert
sind, explizit zu machen. Das vorgeschlagene deduktive System DS kann aus einer
abstrakten Zielvorhersage neue Aussagen für das Ego-Netzwerk ableiten. Dadurch
minimiert DS die Datenarmut im Wissensgraphen. Darüber hinaus stützt sich
das subsymbolische System auf Wissensgrapheneinbettungsmodelle (KGE). KGE-
Modelle werden üblicherweise in der KG-Vervollständigung eingesetzt, um En-
titäten in einem KG in einem niedrigdimensionalen Vektorraum darzustellen. Es
ist jedoch bekannt, dass KGE-Modelle unter Datenarmut leiden, und das sym-
bolische System hilft dabei, diese Tatsache zu überwinden. Der vorgeschlagene
Ansatz entdeckt Wissen anhand einer Zielvorhersage in einem Wissensgraphen
und extrahiert unbekannte implizite Informationen in Bezug auf die Zielvorhersage.
Als Proof of Concept haben wir das neuro-symbolische System auf einem KG für
Lungenkrebs implementiert, um die Wirksamkeit einer Polypharmazie-Behandlung
vorherzusagen. Das symbolische System implementiert ein deduktives System zur
Ableitung von pharmakokinetischen Wechselwirkungen zwischen Medikamenten,
die in einem Regelsatz durch ein Datalog-Programm kodiert sind. Im Gegensatz
dazu sagt das subsymbolische System die Wirksamkeit der Behandlung anhand
eines KGE-Modells voraus. Zusätzlich sagt das subsymbolische System die Wirk-
samkeit der Behandlung mit Hilfe eines KGE-Modells voraus, das die KG-Struktur
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beibehält. Für die Komponenten unseres Ansatzes wurde eine Ablationsstudie
durchgeführt, bei der modernste KG-Einbettungsmethoden berücksichtigt wur-
den. Die beobachteten Ergebnisse belegen die Vorteile der neuro-symbolischen In-
tegration unseres Ansatzes, wobei das neuro-symbolische System für eine abstrakte
Zielvorhersage verbesserte Ergebnisse aufweist. Die Verbesserung der Ergebnisse
erfolgt, weil das symbolische System die Vorhersagekapazität des subsymbolischen
Systems erhöht. Darüber hinaus wurde das vorgeschlagene neuro-symbolische Sys-
tem der künstlichen Intelligenz in der Industrie 4.0 (I4.0) evaluiert und seine Effek-
tivität bei der Bestimmung der Verwandtschaft zwischen Normen und der Analyse
ihrer Eigenschaften zur Erkennung unbekannter Beziehungen im I4.0KG demon-
striert. Die erzielten Ergebnisse lassen den Schluss zu, dass der vorgeschlagene
neurosymbolische Ansatz für eine abstrakte Zielvorhersage die Vorhersagefähigkeit
von KGE-Modellen verbessert, indem er die Datenarmut in KGs minimiert.
Schlüsselwörter Neurosymbolisches System, subsymbolisches System, symbolis-
ches System, Wissensgrapheneinbettung, Datalog.
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Chapter 1

Introduction

Data and knowledge have become critical assets throughout the ongoing digi-
tization process. Digital activities generate vast amounts of data in all knowledge
domains, e.g., education, health, e-commerce, and industry. Data are a top priority
for companies whose business processes require data processing. Companies will
only be able to acquire and maintain competitive advantages through appropri-
ate knowledge. The data generated in these digitization processes are paramount
for improving numerous areas of human development. However, potentially im-
portant information is hidden in all this data, which is seldom made explicit or
exploited. Knowledge discovery becomes cumbersome because data may come
from heterogeneous data sources represented at different levels of structure; they
could also either be incomplete or have missing associations. Furthermore, as sys-
tems for data generation and ingestion progress, knowledge discovery problems are
increasing in complexity, i.e., the solution to the problem depends on an extensive
amount of data. Therefore, new techniques are required to adapt to the emerging
challenges of discovering knowledge in heterogeneous data settings.

Much research has recently investigated critical aspects of discovering knowl-
edge on real-world data. The Semantic Web created by Tim Berners-Lee [12] and
converted into a standard by the World Wide Web Consortium (W3C)1 is becom-
ing increasingly relevant on the road to knowledge discovery. The Semantic Web
aims to enrich the web of data with machine-understandable semantics. Further-
more, semantic technologies aim to represent knowledge from raw data sources
and to form semantic networks [13, 53]. A knowledge representation paradigm,
knowledge graph (KG), has emerged, contributing to solving knowledge discovery
problems. Knowledge graphs are a data structure for organizing real-world knowl-
edge and integrating information from multiple heterogeneous data sources. KG is
a directed labeled graph representing connections among data entities with nodes

1https://www.w3.org/

1

https://www.w3.org/
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and edges. Nodes denote real-world entities, and edges represent the relationships
between two nodes. Thus, KGs have been adopted as data structures representing
data and metadata (contextual details such as data source, authorship, quality
measures, and properties associated with the entities); they are becoming cen-
tral in improving the predictions of artificial intelligence (AI) models by providing
them with the knowledge represented in KGs as input.

In Industry 4.0, AI models are applied on top of KGs to extend the knowledge of
the standardization frameworks and discover new relationships between standards
issues [9, 41, 56, 84]. On the other hand, in the medical domain, AI techniques over
KGs, such as Karim et.al. [64], Marinka et.al. [152], and Raziyeh et.al. [83], are
successfully utilized in relevant problems, e.g., prediction of Drug-Drug Interac-
tions, forecast of treatment responses by analyzing images [24, 61, 71], prediction
of the existence of disease [126, 150], for drug repurposing [111, 129, 147], or an-
alytic support of diagnosis from exposure symptoms [120]. The AI models on top
of KGs are widely used for their high performance in supporting expert decision-
making. However, they are limited by the data’s lack of symbolic representations
of reasoning and semantic description. The symbolic representations are valuable
because they allow for the representation of complex concepts and relationships
that may not be easily captured purely statistically. Symbolic representations can
capture abstract concepts, logical rules, and symbolic relationships, enabling more
advanced reasoning and inference capabilities.

This thesis aims at providing a knowledge discovery approach over knowledge
graphs. We provide a neuro-symbolic approach that integrates symbolic and sub-
symbolic representation, reasoning, and learning. The symbolic system resorts to a
deductive database to make explicit, implicit information encoded in a knowledge
graph. Furthermore, the sub-symbolic system is enhanced by the symbolic system
with potentially useful implicit information. The sub-symbolic system implements
the knowledge graph embedding (KGE) models, focusing on learning distributed
vector representations for entities and relations in knowledge graphs. The imple-
mentation of our approach facilitates the uncovering of actionable insights. The
approach developed in this thesis is applied in the biomedical and industry 4.0
domains to assess predictive power. The observed results put into perspective
the benefits of empowering KGE with facts from the deductive database. The
following section motivates the main problem and challenges of this thesis.

1.1 Motivation

We illustrate the work reported in this dissertation in the context of the health-
care domain. The Electronic Health Records (EHRs) of lung cancer patients con-
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Figure 1.1: Motivating example. Steps to knowledge discovery over knowledge
graphs. Real-world data and concepts have incomplete data and are in hetero-
geneous data sources (Layer 1). To uncover the missing associations, knowledge
is integrated semantically where the implicit and explicit knowledge are together
(Layer 2). Finally, at the third layer, actionable insights can be uncovered on top
of a model with knowledge integrated (Layer 3).

tain patients’ conditions for effective diagnoses and treatment prescriptions. EHRs
may be in various formats, e.g., relational tables storing demographics data, flat
files storing liquid biopsies, or clinical notes. Clinicians must validate EHRs and
external data sources to effectively diagnose disease, prescribe effective treatments,
and foresee adverse effects, e.g., drug interactions or side effects. Multiple open
data sources provide crucial knowledge for a complete description of patients’
diseases and an understanding of genetic factors related to diseases. These dis-
persed data from different open sources must be integrated to describe the disease
comprehensively. However, open data sources also use a variety of formats, from
structured to unstructured. The clinicians will have to search through multiple
data sources and identify potential adverse effects and patient characteristics to
detect events that may impact the effectiveness of treatment. Data complexity
issues such as volume and diversity present a significant challenge to the successful
integration of knowledge needed to discover new insights, such as predicting the
effectiveness of treatment. Achieving actionable knowledge from real-world data
and concepts requires a novel approach that allows us to explore and mine data
to uncover actionable insights.
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Figure 1.1 depicts the need for knowledge integrated to uncover actionable in-
sights from real-world data and concepts. The first layer comprises heterogeneous
data sources that represent data in original formats. For example, the informa-
tion about patients and drugs might be distributed across different sources on
the Web, such as DrugBank2, Wikidata3, and UniProt4, and EHRs as flat files.
The data sources may contain missing associations and implicit facts. The second
layer, integrated knowledge, shows the heterogeneous data sources represented in
a homogeneous model through explicit semantic labeling of concepts and their
relationships. However, the implicit knowledge represented by red dashed lines
is unknown and should be integrated into the data model in a machine-readable
format. The third layer shows a formal representation of explicit and implicit
knowledge. The knowledge discovery techniques need to exploit the semantics en-
coded in the data representation to produce actionable insights. Those actionable
insights can be used for decision-making. Challenges must be addressed at each
layer to provide a unified view of the heterogeneous data sources and uncover ac-
tionable insights. The following section discusses the main problem and challenges
that guided this dissertation.

1.2 Problem Statement and Challenges
Technology has facilitated the storage and publication of increasingly large vol-

umes of data at different levels of structure. However, they require to be processed
to extract relevant knowledge. More data encodes facts and inherent insights that
must be made explicit to understand and analyze them properly. At the conceptual
level, we face a knowledge integration and discovery problem, i.e., merge and make
explicit the knowledge about the entities spread in different open data sources and
uncover relevant information. The research problem that guided our work can be
stated as follows: We investigate how to improve discovering actionable knowl-
edge through better knowledge integration. This thesis aims to integrate data and
concepts semantically and provides a neuro-symbolic AI approach, enabling the
uncovering of helpful knowledge. Several challenges must be overcome to achieve
such integration and knowledge discovery. Figure 1.2 illustrates the three main
challenges tackled by this thesis.

2https://go.DrugBank.com/
3https://www.wikidata.org/wiki/Wikidata:MainPage
4https://www.uniprot.org/
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Figure 1.2: Challenges. Three main challenges are identified in this thesis to-
ward knowledge discovery from real-world data and concepts. The first challenge
CH1: modeling data from heterogeneous data sources. The second challenge
CH2: managing knowledge in a machine-readable format. The third challenge
CH3: enabling actionable insights to be uncovered and explored.

Challenge 1: Extracting, modeling, and representing data from hetero-
geneous data sources

Real-world data and concepts are the main sources of knowledge in healthcare,
business, scientific and technical domains. However, the data are from heteroge-
neous data sources and may be incomplete and have missing associations to a
given context; moreover, the data is generally not machine-readable. Data can be
represented at different levels of structure, e.g., structured, semi-structured, and
unstructured, and open data sources provide information at these three levels of
structure. Data alone does not generate knowledge, while their connections in
a specific context provide useful insights for knowledge discovery. Representing
this knowledge in a machine-readable format that allows for the identification and
semantic representation of entities is crucial for the work in this thesis. The mod-
eling and knowledge representation mechanism selection defines the downstream
constraints concerning machine reasoning, interoperability, and communication
interfaces. The data and concepts represented in RDF are machine-readable and
enable semantics to be added to the data and converted into meaningful actions to
provide applications with new capabilities and facilitate knowledge exchange and
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richer experiences. Therefore, we need a unified knowledge representation that ad-
dresses the structuredness conflicts of heterogeneous data, such as different levels
of structure, granularity or aggregation, and file formats.

Challenge 2: Representing and managing knowledge in a machine-
readable format

Once the data and concepts have been transformed into a homogeneous model,
the main challenge is to enrich the data with meaning and context. Adopting the
RDF and OWL data models [102, 139], knowledge is represented by A-Box and
T-Box composing the knowledge graph representing explicit knowledge. The A-
Box (assertion box) represents the factual knowledge or data in a domain, and
the T-Box (terminological box) contains terminological axioms that define the
concepts and relationships within the domain. It specifies the general knowledge
or the structural constraints that define the classes, properties, and relationships
between them. The knowledge graphs constructed from real-world data suffer
from data sparsity issues, i.e., explicit relations account for only a tiny part of all
possible relations. However, by assuming the Open World Assumption (OWA),
i.e., what is not known to be true is just unknown, KGs allow ameliorating the
data sparsity issue. Making implicit knowledge explicit and machine-readable
enables the knowledge graph to become meaningful in discovery tasks. Given
human cognitive capabilities and experience-based knowledge, they can recognize
the implicit knowledge in data. Assuming that the variable P1 is a person and P1

has a sibling P2, explicitly, the fact that P2 is a person is unknown, but implicitly it
is. One of the tasks at hand in knowledge management is to transfer this implicit
knowledge to knowledge graphs explicitly. However, the large number of data,
properties, and concepts that the knowledge graph represents making implicit
knowledge explicit have a high computational cost.

Challenge 3: Enabling actionable insights to be uncovered and explored

Knowledge discovery models require the capability to understand the struc-
ture of the data model, preserve its semantic meaning and infer new facts. The
knowledge discovery task aims to find patterns that can be considered knowledge
about data. This task becomes even more complex in the presence of heteroge-
neous data sources lacking an integrated model. Furthermore, once the knowledge
is uncovered, it needs to be transformed into aggregate data that can be effectively
utilized for further analysis and decision-making. This conversion process involves
consolidating the discovered knowledge into a coherent representation that allows
for easy interpretation and extraction of insights. To enhance the knowledge dis-
covery process is crucial to leverage the implicit knowledge explicitly embedded
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within the knowledge graph. This implicit knowledge may include latent relation-
ships, hidden patterns, or contextual information, which plays an essential role in
uncovering actionable insights.

1.3 Research Questions

We derive the following research questions based on the main problem and
associated challenges.

RQ1: How can metadata encoding data meaning be exploited to discover
relationships in knowledge graphs?

To address this question, we provide a Neuro-Symbolic Artificial Intelligence
approach that contributes features of symbolic and sub-symbolic systems. Our pro-
posal aims to benefit from the advantages of symbolic and sub-symbolic paradigms.
Our hybrid approach discovers knowledge given a target prediction in a knowledge
graph and extracts unknown implicit information related to the target prediction.
The symbolic system is implemented by a deductive database defined for a target
prediction over a KG. Furthermore, the symbolic system enhances the predictive
capacity of the sub-symbolic system implemented by a KGE model.

RQ2: How can heterogeneous data sources be integrated to obtain a unified
knowledge representation?

We use a knowledge graph approach to answer this research question, con-
sidering the metadata describing the semantics encoded in the data. Semantic
technologies can provide a comprehensive basis for building a knowledge model
for linked data. We employ the concept of the knowledge graph to represent the
data and discuss its benefits. Furthermore, knowledge graphs created from raw
data are incomplete and need to be enriched with external knowledge to uncover
missing associations. We define mapping assertions specified in the RDF Mapping
Language (RML) [100] to generate the RDF graph.

RQ3: How can implicit knowledge be used to enhance knowledge discovery
tasks?

To address this question, we have defined a symbolic system that relies on exist-
ing approaches of deductive database systems. The symbolic system corresponds
to deductive databases that can derive new statements, e.g., conclude new facts,
from inference rules and facts stored in the extensional database. Furthermore,
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the deductive database proposed is addressed to a target prediction which renders
the computational complexity polynomial time. The evaluation of inference rules,
implemented as an intensional database, concludes implicit knowledge on top of
an extensional database. Then, the symbolic system implemented over the KG
applies deductive reasoning to enhance KG completeness. Thus, data sparsity is
reduced. Next, knowledge discovery models benefit from the facts deduced by the
symbolic system. As a result, more accurate associations are uncovered.

RQ4: What is the impact of deductive reasoning on accurately uncovering
knowledge?

To address this question, we empirically evaluate the effectiveness of our neuro-
symbolic AI approach. We are interested in how deductive reasoning contributes to
accurate knowledge discovery. We conduct an ablation study on the components of
our system, considering state-of-the-art KG embedding methods. We also evaluate
the use of deductive reasoning and non-reasoning. The observed results prove the
benefits of deductive reasoning over deductive databases that accurately represent
implicit and explicit knowledge.

RQ5: How can the proposed approach be applied to real-world cases?

To address this research question, we applied our symbolic system over
three KGs, DE4LungCancer KG [3], Knowledge4COVID-19 KG [115], and iASiS
KG [131]. We are interested in presenting the significant benefit of the discovery
task on a knowledge graph. We illustrate the applicability of our approach to real
scenarios in the biomedical domain, specifically in four projects, iASiS5, BigMedi-
lytics6, P4-LUCAT7, and H2020 CLARIFY8. The observed results indicate that
our method can be relevant in all these applications.

1.4 Thesis Overview
In this section, we present an overview of the main contributions of this thesis

and references to scientific publications supporting this work. Figure 1.3 summa-
rizes the main contributions of this thesis.

5https://project-iasis.eu/
6https://www.bigmedilytics.eu/
7https://p4-lucat.eu/
8https://www.clarify2020.eu/
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Figure 1.3: Thesis Contributions. Four main contributions of this thesis to-
wards uncovering actionable insights including C1: An approach based on the
integration of neuro-symbolic artificial intelligence systems; C2: the implemen-
tation of our approach to predict polypharmacy treatment effectiveness; C3: a
technique to compute the drug interaction score in polypharmacy treatment; and
C4: determining relatedness across I4.0 standards.

1.4.1 Contributions

Contribution 1: An approach based on integrating Neuro-Symbolic Artificial In-
telligence systems. The symbolic systems are the most prominent tools for mod-
eling behavior, while sub-symbolic systems are for modeling cognition based on
a vector representation. We propose a neuro-symbolic AI system that integrates
symbolic-subsymbolic systems on top of knowledge graphs. This hybrid approach
enhances the predictive capacity of the AI models on the knowledge graph. The
symbolic system transfers the implicit knowledge to the knowledge graph explic-
itly. The symbolic system is specified in a deductive database implemented in
Datalog that derives deductions. Thus, the data sparsity issue is minimized by
considering the symbolic system. Embedding models implement the sub-symbolic
system. Moreover, KGE models are known to suffer from data sparsity, and the
symbolic system assists in overcoming this fact. Our approach enhances the prop-
erties of the adjacent vertices to the entities in a target prediction through the
symbolic system. Therefore, KGE models better represent the entities in the KG.
The neuro-symbolic AI system proposed is domain-agnostic and could be applied
to any predictive task on KG. This proposal addresses the research question RQ1.
Contribution 2: A deductive database over knowledge graphs. We propose a
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deductive database over a knowledge graph based on the existing approaches of
deductive database systems. The deductive database is implemented in Datalog.
A deductive database is a system that can derive deductions, e.g., conclude new
facts, from inference rules and facts stored in the extensional database. Datalog
considers two sets of clauses: a set of ground facts called the Extensional Database
(EDB) and a Datalog program P called the Intensional Database (IDB). In the
proposed deductive system, the Datalog rules stated in the IDB represent the
experts’ knowledge explicitly transferred to the knowledge graph. Since Datalog is
a declarative language, the rules are defined declaratively, facilitating their defini-
tion. Thus, the deductive system allows writing Datalog rules over an RDF graph.
Furthermore, the proposed deductive system represents the experts’ knowledge
and explainability with logical rules. This contribution aims to answer the re-
search question RQ3.
Contribution 3: Neuro-Symbolic systems over healthcare domain. As a proof of
concept, we have implemented our neuro-symbolic system on top of a KG for lung
cancer to predict polypharmacy treatment effectiveness. Polypharmacy is the con-
current use of multiple drugs in treatments, and it is a standard procedure to treat
severe diseases, e.g., lung cancer. We integrate treatments, their prescribed drugs,
drug-drug interactions, and drug-protein interactions into a knowledge graph. The
knowledge graph of polypharmacy treatment responses is populated with descrip-
tions of more than 420 oncological treatments. The missing associations and in-
completeness of the data are overcome by the integration with open data sources.
Finally, the knowledge graph has been linked to existing open web sources such as
DrugBank2, Wikidata3, Uniprot4, DBpedia9, and Pubmed10. The symbolic system
implements a deductive system to infer pharmacokinetic drug-drug interactions.
The intensional database comprises Horn rules that model the different types of
pharmacokinetic drug-drug interactions and the effects of combining them. As a
result, pharmacokinetics drug-drug interactions (DDIs) can be deduced in medical
treatments. A pharmacokinetic DDI is deduced when a set of drugs are part of
a treatment, and the rule applied is valid. Our deductive system captures the
knowledge represented in the RDF graph and deduces the unknown DDIs encoded
in a set of rules through the Datalog program. Empirical evaluations demon-
strate the effectiveness of the symbolic system deducing pharmacokinetics DDIs in
treatments. The implemented symbolic system is integrated into the sub-symbolic
system performed by KGE models. The empirical results put the deduction power
of deductive databases into perspective; they improve the predictive capacity of
existing KGE models, answering the research questions RQ1, RQ2, and RQ4.
Contribution 4. Traversal method to compute the interaction score of a drug in

9https://www.dbpedia.org/
10https://pubmed.ncbi.nlm.nih.gov/
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treatment. We propose a method based on the computation of wedges [142] in a
knowledge graph to measure the interaction score of drugs in treatment. A wedge
w is a path with two edges in a directed labeled graph; w is composed of three ver-
tices {a, b, c} and two ordered pairs of edges {(a, b), (b, c)} of the directed labeled
graph. The vertex b is the middle vertex of w. We apply the wedge concept to the
DDIs knowledge graph, where the edges of a wedge represent DDIs. The proposed
method computes the distribution of the middle-vertex of wedges. The middle
vertex is particularly important in the wedge because it is both the object drug
of one interaction and the precipitating drug of another. Our method consists of
a deductive database implemented in Datalog. Furthermore, the method provides
a ranking of drugs measuring the interaction score in treatment. We empirically
evaluate the effectiveness of our metric on treatments of three diseases, COVID-
19, Alzheimer’s, and Parkinson’s disease. The experiments use a knowledge graph
of 216 polypharmacy COVID-19 treatments that comprise COVID-19 drugs and
drugs for the most common comorbidities that impact the survival of COVID-19
patients [31]. The observed results show the benefits of our traversal method con-
cerning four interaction checker web tools, suggesting that drugs with the higher
frequency of middle vertex have a higher interaction score in treatment. Further-
more, experts in the domain evaluated with successful outcomes the results of our
method with oncological treatments. With this proposal, research question RQ3
is addressed.
Contribution 5. Neuro-Symbolic Artificial Intelligence systems in Industry 4.0
context. Industry 4.0 (I4.0) standards and standardization frameworks provide
a unified way to describe smart factories. Standards specify the components,
systems, and processes inside a smart factory and their interaction. Different in-
dustrial communities have defined standardization frameworks aligning standards
according to their features and expressiveness. As a result, interoperability con-
flicts are generated whenever smart factories are described with miss-classified
standards. We address the problem of determining relatedness across I4.0 stan-
dards described in terms of their main features and standardization frameworks.
Our goal is to uncover alignments among related standards, i.e., standards that
define the same type of smart factory components. The proposed neuro-symbolic
AI system evaluated in Industry 4.0 demonstrates its effectiveness in determining
relatedness among standards and analyzing their properties to detect unknown
relations. Furthermore, the symbolic system deduces new relations between stan-
dards based on their properties’ characteristics and experts’ knowledge. Thus, the
symbolic system explicitly transfers the implicit knowledge concerning standards to
the knowledge graph. The sub-symbolic system resorts to KGE to determine relat-
edness among standards based on similarity metrics. Next, community detection
algorithms can automatically create communities of highly similar standards based
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on the similarity values. Thus, alignments across standards are predicted, and the
standardization frameworks containing the new alignments are able to minimize
the interoperability issues across the smart factories. The empirical evaluation is
performed on a knowledge graph of 249 I4.0 standards. Our results suggest that
relations among standards can be detected accurately. This contribution allows us
to answer the research question RQ1.

1.4.2 List of Publications

This thesis is based on the following publications.

Papers in Proceedings of Peer-Reviewed Conferences

• Ariam Rivas, Maria-Esther Vidal: Capturing Knowledge about Drug-Drug
Interactions to Enhance Treatment Effectiveness. K-CAP ’21: Proceedings
of the 11th on Knowledge Capture Conference (2021). Ariam Rivas is the
first author of this article. Ariam Rivas defined the problem and motivating
example, the development of the approach, the revision of the state-of-the-art
approaches, the development of the software, and the execution and analysis
of the experiments and results. Nominated to the best student paper.

• Ariam Rivas, Irlan Grangel-Gonzalez, Diego Collarana, Jens Lehmann,
and Maria-Esther Vidal: Unveiling Relations in the Industry 4.0 Standards
Landscape Based on Knowledge Graph Embeddings. In Proceeding of the
31st International Conference of Database and Expert Systems Applications
(DEXA 2020). Ariam Rivas is the first author of this article. Ariam Rivas
defined the problem and motivating example, the development and imple-
mentation of the approach, the revision of the state-of-the-art approaches,
and the execution and analysis of the experiments and results.

Peer-Reviewed International Journals

• Ariam Rivas, Diego Collarana, Maria Torrente, Maria-Esther Vidal. A
Neuro-Symbolic System over Knowledge Graphs for Link Prediction. In: Se-
mantic Web Journal (2022). Ariam Rivas is the first author of this article.
He defined the problem definition and motivating example, the development,
and implementation of the approach, the development of the polypharmacy
treatment knowledge graph, the revision of the state-of-the-art approaches,
and the execution and analysis of the experiments and results.

• Fotis Aisopos, Samaneh Jozashoori, Emetis Niazmand, Disha Purohit,
Ariam Rivas, Ahmad Sakor, Enrique Iglesias, Dimitrios Vogiatzis,
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Ernestina Menasalvas, Alejandro Rodriguez Gonzalez, Guillermo Vigueras,
Daniel Gomez Bravo, Maria Torrente, Roberto Hernández López, Mariano
Provencio Pulla, Athanasios Dalianis, Ana Triantafillou, Georgios Paliouras
and Maria-Esther Vidal. Knowledge Graphs for Enhancing Transparency in
Health Data Ecosystems. In: Semantic Web Journal (2022). Ariam Rivas is
one of the first authors of this paper. He contributed to the knowledge-driven
ecosystem in the context of lung cancer and the DE4LungCancer knowl-
edge graph creation pipeline. Moreover, I contributed to the exploration of
DE4LungCancer KG, assessing the impact of DDIs on the effectiveness of
lung cancer treatment’s response, computational analysis, statistical tests,
writing–reviews, and editing.

• Ahmad Sakor, Samaneh Jozashoori, Emetis Niazmand, Ariam Rivas, Kon-
stantinos Bougiatiotis, Fotis Aisopos, Enrique Iglesias, Philipp D. Rohde,
Trupti Padiya, Anastasia Krithara, Georgios Paliouras, Maria-Esther Vi-
dal: Knowledge4COVID-19: A Semantic-based Approach for Constructing a
COVID-19 related Knowledge Graph from Various Sources and Analysing
Treatments’ Toxicities. Journal of Web Semantics (2022). Ariam Rivas
contributed to the definition of the Scientific Open Data Ecosystem, the
Knowledge4COVID-19 knowledge graph creation pipeline, and exploration
for detecting relevant adverse effects on Knowledge4COVID-19, to apply
the deductive system to deduce DDIs from 216 polypharmacy COVID-19
treatments, and the computational analysis, evaluation, validation, writ-
ing–review, and editing.

• Ariam Rivas, Irlan Grangel-Gonzalez, Diego Collarana, Jens Lehmann, and
Maria-Esther Vidal: Discover Relations in the Industry 4.0 Standards Via
Unsupervised Learning on Knowledge Graph Embeddings. Journal of Data
Intelligence (2020). Ariam Rivas is the first author of this article. He defined
the problem and motivating example, the development and implementation
of the approach, the revision of the state-of-the-art approaches, and the
execution and analysis of the experiments and results.

• Maria-Esther Vidal, Kemele M. Endris, Samaneh Jazashoori, Ahmad Sakor,
Ariam Rivas: Transforming Heterogeneous Data into Knowledge for Per-
sonalized Treatments - A Use Case. Datenbank-Spektrum volume 19, pages
95–106 (2019). Ariam Rivas contributed to the knowledge-driven framework
for supporting personalized medicine, evaluation, knowledge discovery, and
statistical test. Ariam defined and implemented the similarity measure to
quantify the similarity between patients and to perform the semEP [94] com-
munity detection algorithm to discover patterns between patients that share
similar properties in the iASiS KG [131].
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1.5 Thesis Structure
This thesis is structured in seven chapters which are outlined as follows:

• Chapter 1 covers the main research problem and challenges, research ques-
tions, the contributions that address research questions, and a list of pub-
lished scientific articles.

• Chapter 2 introduces the basic concepts in the field of the Semantic Web,
knowledge graph, and symbolic and sub-symbolic systems that are required
to understand the work of this thesis.

• Chapter 3 examines the current state-of-the-art research work to provide a
clearer picture of the research conducted in this thesis. First, we discuss a
complete view of generic neuro-symbolic AI approaches. Secondly, we present
techniques and models to represent data and discover knowledge. Finally,
we show existing methods for uncovering actionable insights in Industry 4.0
and the healthcare domain.

• Chapter 4 presents a neuro-symbolic artificial intelligence approach over
KGs. We show a domain-agnostic approach able to capture the implicit
knowledge in a KG by a symbolic system and enhance the predictive ca-
pacity of sub-symbolic systems. We implement the neuro-symbolic system
proposed on top of a KG for lung cancer to predict polypharmacy treat-
ment effectiveness as a proof of concept. We create the KG of polypharmacy
lung cancer treatments and perform an extensive evaluation of the symbolic-
subsymbolic system in state-of-the-art KGE models.

• Chapter 5 presents the problem of finding relations among I4.0 standards
described in terms of their main features and standardization frameworks.
The neuro-symbolic AI system proposed is evaluated in I4.0, demonstrating
its effectiveness in determining relatedness among standards and analyzing
their properties to detect unknown relations.

• Chapter 6 presents the deductive database DS to compute the interaction
score of drugs in treatment based on the wedge concept. We apply the DS in
the biomedical domain, specifically in four projects, iASiS5, BigMedilytics6,
P4-LUCAT7, and H2020 CLARIFY8 for assessing the impact of DDIs on
the effectiveness of lung cancer and COVID-19 treatments. Furthermore, we
present a similarity measure that evaluates patient similarity, and a knowl-
edge discovery technique is used to uncover patterns in iASiS KG.

• Chapter7 finalizes the thesis with a summary of the main results and contri-
butions to the problem of uncovering actionable insights from heterogeneous
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data sources. In addition, we discuss the limitations of the work and propose
possible directions for future work.
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Chapter 2

Background

In this chapter, we present the basic concepts and theoretical foundations of
the research conducted in this thesis. Section 2.1 describes the basic concepts
and formalisms of the Semantic Web; they include standards and models such as
Resource Description Framework (RDF), SPARQL query language, and knowledge
graphs. Next, Section 2.2 examines deductive database systems.Finally, section 2.3
introduces neuro-symbolic artificial intelligence and describes the symbolic and
sub-symbolic systems.

2.1 The Semantic Web

The Semantic Web is an extension of the existing Web of Documents, where
documents are transformed into objects by annotating them and rendering their
meanings explicit. Tim Berners-Lee first proposed the idea of the Semantic Web
in 2001 to add context information within the data itself that describes concepts
in the real world [12]. The Semantic Web exists as a vision to extend princi-
ples of the existing Web to the Web of Data, such that computers can be more
useful work [118]. The Semantic Web provides a framework for representing and
accessing data. Semantic Technologies represent a set of standards, protocols,
and technologies to create data stores, vocabularies, and rules written for han-
dling data. The core technology stack of the Semantic Web consists of a set of
standards: Resources Description Framework (RDF)[102] is a data model for data
exchange, Resource Description Framework Schema (RDFS) which provides a syn-
tax for defining schemes, and the Web Ontology Language (OWL) for expressing
logical axioms. These standards adopt the principles of knowledge representation
languages in the context of the Web. Linked Data is created following a set of prin-
ciples proposed by Tim Berners-Lee for exposing, sharing, and connecting pieces
of data, information, and knowledge on the Semantic Web. Linked Data makes

17



Chapter 2. Background

tkg:hasBiomarker

rdf:type

tkg:hasAge

tkge:101_Patient

tkge:Patient

rdf:type

tkge:ALK

tkge:Biomarker

tkg:hasGender

tkg:hasSmoking

"Male"@en "56"

rdf:typetkge:CurrentSmoker tkge:SmokingHabit

Figure 2.1: Example of RDF graph.The resource 101_Patient is a patient
which is connected through the predicate hasBiomarker to the resource ALK which
is defined as a biomarker and through the predicate, hasSmoking to the entity
CurrentSmoker defined as a smoking habit. In addition, age and gender are known
for the resource 101_Patient.

available semi-structured data sources on the Web for both machines and humans.
Linked Open Data (LOD) is linked data released under an open licence [11]. The
inception of LOD encouraged data providers to publish large linked datasets from
diverse domains, which has led to the creation of a semantically linked global data
space, called the Linked Open Data Cloud (LOD Cloud) [15]. LOD Cloud has
grown substantially: in 2007, there were 12 datasets with 19 links, and in August
2021, there were 1,512 datasets with 16,174 with around 413,734,019,304 triples1.

2.1.1 The Resource Description Framework

RDF is a recommended standard by the World Wide Web Consortium
(W3C) [47] that specifies the architecture, syntax, and semantics describing re-
sources on the Web. RDF is conceived as a machine-readable format whose syn-
tax, grammar, and semantics are interoperable across different architectures. The
main building block of RDF is a triple. RDF triple is a positive statement and is
composed of subject, predicate, and object, where:

• A subject denotes a resource described by predicate and object; only URIs
or blank nodes can be subjects in RDF.

• A predicate represents a property that relates the subject to the object; only
URIs can be predicated in RDF.

1https://lod-cloud.net/
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• An object specifies a value of the predicate; URIs, blank nodes, or literals
can represent a value of the predicate.

Formally, RDF triple is defined as follows [6, 97]:

Definition 2.1.1 (RDF triple [6] ). Let I, B, L be disjoint infinite sets of URIs,
blank nodes, and literals, respectively. A tuple (s p o) ∈ (I ∪B)× I× (I ∪B ∪ L)
is an RDF triple, where s is the subject, p is the property, and o is the object.

Example 2.1.1. A set of RDF triples is called an RDF dataset. Figure 2.1
illustrates an example of an RDF graph, where the edge (tkge:101_Patient
tkg:hasBiomarker tkge:ALK) represents an RDF triple. The entity
tkge:101_Patient corresponds to the subject, tkg:hasBiomarker and tkge:ALK
represent a property and an object, respectively.

Definition 2.1.2 (RDF Graph [97]). An RDF graph G = (V,E, L) is a labeled
directed graph where nodes represent resources, and labels stand for properties:

• An RDF triple (s p o) ∈ E, corresponds to an edge in E from node s to node
o; p is the label of the edge denoting the property that relates both nodes;

• s, o ∈ V , s corresponds to a subject and o corresponds to an object; and

• p ∈ L is an edge label corresponding to a property.

Example 2.1.2. Figure 2.1 illustrates a portion of an RDF graph that describes a
lung cancer patient. Nodes correspond to resources, and edges represent properties
of RDF vocabularies. The graph contains URIs, e.g., tkge:Patient as a class,
tkge:101_Patient as an instance of this class, and literals e.g., the gender of a
patient expressed in English.

2.1.2 The SPARQL Language

The SPARQL Protocol and RDF Query Language (SPARQL)is recommended
by W3C [34] for querying RDF data through graph patterns. SPARQL queries
consist of three parts [6]; pattern matching, solution modifiers, and output type.
Pattern matching includes several graph matching features, such as optional, join,
nesting, filtering values, and choice of the data source to be matched to the pattern.
Solution modifiers allow modifying the values computed by the pattern matching
part. The solution modifiers define the projection, distinct, group, order, and limit
operators. Finally, the output type can be "yes/no", pattern-matching variables
values, new RDF data construction, and resource descriptions. A SPARQL query
contains a head and a body, where the body is an RDF graph pattern expression
with the possibility to include triple patterns, conjunctions, optional parts, and
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constraints over the values of the variables. The head of the query indicates how
to construct the answer to the query. The evaluation of a SPARQL query against
an RDF graph is performed in two steps. First, the query body is matched to
the RDF graph to obtain a set of bindings for the variables in the query body.
Next, using the header information of the query, these bindings are processed by
applying classical relational operators to produce the query answer. SPARQL
defines operators, OPTIONAL, UNION, FILTER, and AND, to construct graph
pattern expressions. The syntax of the SPARQL graph pattern is defined as:

Definition 2.1.3 (SPARQL Graph Pattern Expression [6]). Let F be an infinite
set of variables disjoint from I ∪ B ∪ L. A SPARQL graph pattern expression is
defined recursively as follows:

1. A triple pattern t ∈ (I ∪ B ∪ F ) × (I ∪ F ) × (I ∪ B ∪ L ∪ F ) is a graph
expression,

2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),
and (P1 UNION P2) are graph patterns,

3. If P is a graph pattern and R is a SPARQL built-in filter condition, then the
expression (P FILTER R) is a graph pattern.

Example 2.1.3. illustrates a SPARQL graph pattern composed of a set of RDF
triples patterns, OPTIONAL, FILTER, and AND (.) operators.

{
?patient a tkge:Patient .
?patient tkg:hasGender ?gender .
?patient tkg:hasAge ?age .
OPTIONAL{?patient tkg:hasBiomarker ?biomarker .}
FILTER(?age > "50")

}

Furthermore, SPARQL defines four query forms: SELECT, CONSTRUCT,
ASK, and DESCRIBE. The SELECT query is the most commonly used form, re-
turning a set of bound variables, i.e., RDF terms of the graph that satisfy the given
graph pattern. CONSTRUCT query returns an RDF graph specified according to
the given graph pattern. ASK query returns a Boolean value TRUE if the given
graph pattern has solutions in the target RDF dataset or FALSE otherwise. The
result of a DESCRIBE query is an RDF graph with relevant information about
the URIs in a graph pattern. Search engines are in charge of determining this rel-
evant information. In this thesis, we focus on SPARQL SELECT queries formally
defined as follows:
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Definition 2.1.4 (SPARQL SELECT query [117]). Let Q be a SPARQL expres-
sion and Z ⊂ F be a finite set of variables. A SPARQL select query is an expres-
sion of the form SELECTZ(Q).

Example 2.1.4. represents a SPARQL SELECT query composed of a graph pat-
tern expression, AND, OPTIONAL, and FILTER operators, and solution modifier
DISTINCT. The SPARQL query retrieves clinical data about the patients. The
query projects the unique values that are mapped to the variables ? gender ? age
and ? biomarker in the graph pattern expression.

PREFIX tkg: <http://research.tib.eu/lung-cancer/vocab/>
PREFIX tkge: <http://research.tib.eu/lung-cancer/entity/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?gender ?age ?biomarker
WHERE {

?patient a tkge:Patient .
?patient tkg:hasGender ?gender .
?patient tkg:hasAge ?age .
OPTIONAL {?patient tkg:hasBiomarker ?biomarker .}
FILTER (?age > "50")

}

2.1.3 Knowledge Graphs

An RDF knowledge graph (KG) is a data structure representing factual knowl-
edge with entities and their relationships using a data graph [49]. Knowledge
graphs enable the description of the meaning of data, the integration of data from
heterogeneous sources, and the discovery of unknown patterns. KGs are used in
countless domains because of their ability to model data in a machine-readable
form. Thus, the knowledge semantically represented in knowledge graphs can be
exploited to solve a broad range of problems. The meaning of the data is stored
together with the data in the graph in the form of ontologies. This makes knowl-
edge graphs self-descriptive, a unique location for finding and understanding data.
The semantics of data are explicit and include formalisms for supporting inferenc-
ing. Google used the knowledge graph concept in 2012 and launched the Google
knowledge graph [121]. There are several publicly available knowledge graphs such
as Wikidata3 [133], DBpedia9, UniProt4, etc. DBpedia [73] is a knowledge graph
that uses Wikipedia to extract information to be represented in RDF format.

Although there is no agreement upon a formal definition of knowledge graphs,
in this thesis, we use the definition presented by Paulheim [27]. A knowledge graph
is described as follows:
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• mainly describes real-world entities and their interrelations, organized in a
graph;

• defines possible classes and relations of entities in a schema;

• allows for potentially interrelating arbitrary entities with each other;

• covers various topical domains.

Following the description presented by Paulheim, a data model is required to
build a knowledge graph. Given that RDF is a data model to describe resources
on the Web of Data, we define a KG as an RDF Graph.

2.2 Deductive Systems

Deductive database systems rely on a query language designed around a log-
ical data model. Relationships are considered as the value of a logical predicate.
Deductive database systems are an advanced form of relational systems [101]. De-
ductive database systems are best suited for applications where a huge amount of
data must be accessed and complex queries must be performed. Deductive sys-
tems share with relational systems the important property of being declarative,
i.e., to allow the user to query or update by his/her requests instead of how to op-
erate. A deductive database is a system that can derive deductions, e.g., conclude
new facts, from inference rules and facts stored in the database [101]. Deductive
systems maintain deductive qualities in the rules that are stated in the system.

2.2.1 Notation of Deductive Database System

Deductive database systems structure information into two categories, data
or ground facts and rules. Facts are represented by a predicate with constant
arguments and are assertions about a relevant part of the domain, such as Joe
has biomarker ALK positive. Rules are sentences that deduce facts from other
facts, such as If X has biomarker positive, then X has Cancer.

The facts and rules are represented as Horn clauses [22]. Horn clauses are
represented in the following notation: L0 ⇐ L1, ..., Ln, where each Li is a literal
of the form pi(ti1, ..., tik). Pi is a predicate symbol, and ti are terms. A term
is either a constant or a variable. The left-hand side of a rule is the head, and
the right-hand side is its body. Clauses with an empty body represent facts,
while clauses with at least one literal in the body represent rules. The fact Joe
has biomarker ALK positive can be represented as biomarker(alk, joe). The
rule If X has biomarker positive, then X has Cancer can be represented as
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Figure 2.2: Example of deduction. Figure 2.2a shows a treatment, T1, repre-
sented in an labelled directed graph. The drugs DB00193, DB00642, and DB00958
are part of T1. The drug-drug interactions are represented by the property inter-
actsWith. Figure 2.2b depicts the ideal labeled directed graph, where a symbolic
system generates a new DDI between DB00193 and DB00958.

cancer(X)⇐ biomarker(Y,X). The symbols biomarker and cancer are predicate
symbols. The symbols alk and joe are constants, and the symbols X and Y are
variables. The language used in this thesis to specify facts, rules, and queries in
deductive databases is Datalog.

2.2.2 Datalog a rule-based language

Datalog is a declarative programming language used to work with deductive
databases. Datalog is specifically designed to interact with large databases, and
a significant contribution comes from the integration of logic programming and
databases. A Datalog program is a set of rules represented as Horn clauses [22].
A Datalog program P must satisfy the following safety conditions; each fact of
P is ground, and each variable that occurs in the head of a rule of P must also
occur in the body of the same rule. A rule is safe if all its variables are bound,
where any variable appearing as an argument in a body predicate is bound. Those
conditions ensure that all facts deduced from P are finite. Datalog considers
two sets of clauses: a set of ground facts called the Extensional Database (EDB)
and a Datalog program P called the Intensional Database (IDB). The predicates
in the EDB and IDB are divided into two disjoint sets, EDB-predicates, which
occur in the EDB, and the IDB-predicates, which occur in P but not in the EDB.
Furthermore, the head predicated of each clause in P is an IDB-predicate, and the
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EDB-predicate can occur in the body of the rule. The IDB-predicates of P can be
identified with relations, called IDB-relations, which are not stored explicitly.

An example of EDB is the set of facts E =
{interactsWith(DB00193, DB00642), interactsWith(DB00642, DB00958)} ex-
pressed as an labelled directed graph in Figure 2.2a. The predicate interactsWith
represents interactions between two drugs. Let Pt be a Datalog program
containing the following clauses:

interactsWith(A,X)⇒
inferredInteraction(A,X). (r1)

interactsWith(A,B), inferredInteraction(B,X)⇒
inferredInteraction(A,X). (r2)

Rule r2 states that exist an inferredInteraction between drug A and X, if
there is another drug B which interacts with A with the predicate interactsWith,
and there is an inferredInteraction from B to X. The evaluation results of r2
is {inferredInteraction(DB00193, DB00958)}, which is observed in Figure 2.2b.
Program Pt (1) can be considered as a query against the EDB producing as an
answer the predicate inferredInteraction. Thus, the differentiation between the
two sets of clauses, EDB, and Pt, has a clear meaning. The EDB is considered
a time-varying collection of data. On the other hand, the program Pt (1) is a
time-invariant mapping that relates a result to each possible database state.

2.2.3 Semantics of Datalog

A Herbrand Base (HB) [22] is the set of all ground facts that can be expressed
in all the predicates and constants in Pt. The extensional part of the Herbrand base
is denoted by EHB, i.e., all literals of HB whose predicate is an EDB-predicate.
Similarly, the set of all literals of HB whose predicate is an IDB-predicate denotes
IHB. Let S be a finite set of Datalog clauses, we denote by cons(S) the set of all
the facts that are logical consequences of S. The semantics of a Datalog program
can be described as mapping Mp from EHB to IHB. Mp mapping each possible
extension database E ∈ EHB associates the set of Mp(E) of intensional results
facts defined by Mp(E) = cons(Pt ∪ E) ∩ IHB. Let I and J be two literals.
I subsumes J , denoted by I ▷ J , if exist a substitution θ of variables such that
Iθ = J , i.e., applying θ to I gives J . If I ▷J , we can say that J is an instance of I,
e.g., p(a, b, b) and p(c, c, c) are both instances of p(X, Y, Y ) while p(b, b, a) is not.

Model theory is a branch of mathematical logic that defines the semantics of
formal systems. In the context of Datalog, an interpretation consists of assign-
ing a specific meaning to constant and predicate symbols. The concept of logical
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consequence can be defined as follows: a fact F follows logically from a set S of
clauses, if and only if (iff) each interpretation satisfying every clause of S also
satisfies F . If F follows from S, we write S |= F . Datalog considers a particular
interpretation, Herbrand Interpretation, which assigns to each constant symbol a
lexicographic entity. Therefore, two non-identical Herbrand interpretations only
differ in the respective interpretations of the predicate symbols. Herbrand inter-
pretation can be identified with a subset I of the Herbrand base HB. This subset
contains all the ground facts which are true under the interpretation. Thus, a
ground fact p(c1, ..., cn) is true under the interpretation I, iff p(c1, ..., pn) ∈ I. A
Datalog rule of the form L0 ⇐ L1, ..., Ln is true under I iff for each substitution θ
which replaces variables by constants, whenever L1θ ∈ I ∧ ...∧ lnθ ∈ I then it also
holds that L0θ ∈ I. A Herbrand interpretation that satisfies a clause C is called
a Herbrand model for C. Considering the following Herbrand interpretations:

I1 = {interactsWith(DB00338, DB00361), interactsWith(DB00361, DB00642),

interactsWith(DB00642, DB00641), inferredInteraction(DB00338, DB00361),

inferredInteraction(DB00361, DB00642), inferredInteraction(DB00642, DB00641)}.

we can observe that I1 is not a Herbrand model of the program Pt (1), while
Herbrand model I2 is a Herbrand model of Pt (1), where:

I2 = I1 ∪ {inferredInteraction(DB00338, DB00642),

inferredInteraction(DB00361, DB00641),

inferredInteraction(DB00338, DB00641)}.

2.2.4 Inference of Datalog Rules

Datalog rules enable new facts to be produced from given facts. Datalog allows
inferring all ground facts that are a consequence of a finite set of Datalog clauses.
Let a Datalog rule R of the form L0 ⇐ L1, ..., Ln and a list of ground facts F1, ..., Fn.
We can infer in one step the fact L0θ from the rule R and from the facts F1, ..., Fn,
if a substitution θ exists such that for each 1 ≤ i ≤ n Liθ = Fi. The inferred fact
may be a new fact or a known fact. This general inference rule is the Elementary
Production Principle (EPP). EPP produces new facts from given rules and facts.
Considering the Datalog rule r1 of program Pt (1) and the EDB E1, where:

E1 = {interactsWith(DB00338, DB00361),

interactsWith(DB00361, DB00642), interactsWith(DB00642, DB00641)}.

We can infer in one step inferredInteraction(DB00642,DB00641) from the fact
interactsWith(DB00642, DB00641). The substitution used was θ = {X ←
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Figure 2.3: Proof tree. The sequence of applications of EPP to infer the ground
fact inferredInteraction(DB00338,DB00641) in the Datalog program Pt (1).

DB00642, A ← DB00641}. Considering the rule r2 and the facts inter-
actsWith(DB00361, DB00642) and interactsWith(DB00642, DB00641), we can
infer in one step inferredInteraction(DB00361,DB00641) by applying EPP and
using the substitution θ = {A← DB00361, X ← DB00641, B ← DB00642}.

A ground fact F can be inferred from a set of Datalog clauses S, denoted by
S ⊢ F ≡ F ∈ S, or F can be obtained by applying the inference rule EPP a finite
number of times. The relationship ⊢ is defined as follows:

• S ⊢ F if F ∈ S.

• S ⊢ F if a rule R ∈ S and ground facts F1, ..., Fn exist such that ∀1 ≤ i ≤ n
S ⊢ Fi and F can be inferred in one step by the application of EPP to R
and F1, ..., Fn.

The sequence of EPP applications to inferring a ground fact F from S is called
a proof of F from S. A proof can be represented as a proof tree with different
levels and with the derived fact F at the root node. Let St denote the set of all the
clauses in the program Pt and the EDB E1, i.e., St = Pt ∪ E1. Figure 2.3 shows
the proof tree of St ⊢ inferredInteraction(DB00338,DB00641).

Stefano Ceri et.al. [22] present a method of computing cons(S), the set of all
the facts that are logical consequences of a finite set of Datalog clauses:

Algorithm 1 Infer Algorithm

Input: a finite set S of Datalog clauses.
Output: cons(S).
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1: W ⇐ S;
2: while EPP applies to some rule and facts of W producing a new ground fact

F /∈ W do
3: W ⇐ W ∪ {F};
4: end while
5: return (W ∩HB)

Algorithm 1 terminates and outputs a finite set of facts cons(S). The order
of algorithm 1 in generating new facts corresponds to the bottom-up order of
the proof tree. The principle on which algorithm 1 relies is called bottom-up
evaluation. This principle in artificial intelligence is known as forward chaining
because Datalog rules are processed forward, from premises to conclusions.

2.3 Neuro-Symbolic Artificial Intelligence

Neuro-Symbolic Artificial Intelligence is a field of Artificial Intelligence (AI)
that combines symbolic and sub-symbolic AI models [14, 39, 116]. The sym-
bolic models refer to AI approaches based on handling explicit symbols that re-
fer to representations of reasoning and explainability, while sub-symbolic creates
distributed vector-based representations of data rather than logical or symbolic
representations [14, 54]. Neuro-symbolic AI focuses on integrating symbolic and
sub-symbolic systems. The goals are to provide a unifying view of logic and connec-
tionism, contribute to the modeling and understanding of cognition, and produce
better models for integrating machine learning and reasoning. However, symbolic
and sub-symbolic systems differ fundamentally in how they represent data and
information.

According to research [14, 39, 51, 59], information at different levels of abstrac-
tion differs in structure and composition, where higher levels of abstraction are
symbolic and lower levels of abstraction are sub-symbolic. Symbolic systems typi-
cally use structured representation languages from formal logic, and sub-symbolic
systems usually use representations based on vector space. Neuro-symbolic inte-
gration comprises translating symbolic knowledge into the sub-symbolic system,
learning additional knowledge by the sub-symbolic system, and extracting sym-
bolic knowledge from the sub-symbolic system. Knowledge extraction provides
an incremental explanation and learning of the neuro-symbolic system. Several
approaches employ translation algorithms from a symbolic representation to a
subsymbolic representation and vice versa [14, 82].Our work integrates a domain-
agnostic symbolic system with a Knowledge Graph Embeddings (KGE) model to
reduce the KG sparsity towards improving the model’s predictive capability. Thus,
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we broaden the scope and applicability in several domains of neural-symbolic in-
tegration.

2.3.1 Symbolic Systems

The symbolic systems rely on explicit knowledge representation through for-
mal or logical languages [54]. The symbolic systems address high-level deductive
reasoning, logic inference, and rule-based search algorithms to solve a specified
model. Furthermore, they depend on embedding human knowledge and rules of
procedure in the system. Symbolic systems feature in the formal modeling of com-
plex tasks and human behavior. Such systems are based on complex symbolic data
structures, e.g., graphs, trees, shapes and grammar, and symbolic logic. Expert
systems represent an attempt to work on symbolic reasoning [112]. Expert systems
typically consist of two components, a knowledge base that stores facts and rules
and an inference engine that performs the actual reasoning. Therefore, expert
systems have significant expressive power and are straightforward to interpret and
validate [122]. However, inference engine models have an algorithmic complexity
non-deterministic polynomial-time hardness, which restricts them in dealing with
complex problems [82]. Symbolic systems meet difficulty in modeling uncertainty
and ambiguity. Moreover, problem resolution in big data spaces is a challenging
task [51].

2.3.2 Subsymbolic Systems

Subsymbolic models are Artificial Intelligence systems and usually use rep-
resentations based on vector space for representing data and information. Sub-
symbolic methods are generally robust to noise in the data and have been demon-
strated to outperform human performance on tasks involving video, audio, and
text. Subsymbolic approaches, particularly deep learning, emulate the process of
neural connections in the human brain to build models [106, 145]. It suggests that
deep learning models can model the implicit correlations within the data. How-
ever, these models cannot provide explicit inference evidence to explain the results.
In addition, neural link prediction models are based on subsymbolic representa-
tions called embeddings. These models have been widely applied to the knowledge
graphs completion task. Entity and relationship embeddings are learned by max-
imizing a scoring function over valid factual triples.

Knowledge Graph Embeddings

A method for building KG embeddings is a machine learning model that learns
latent vector representations of entities v ∈ V and relations e ∈ E in a KG,
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Table 2.1: Scoring function and complexity of embedding models. Adapted
from [110]

Model Scoring function Complexity

HolE r(h ⋆ t) O(|E|d+ |R|d)
RESCAL hTWrt =

∑d
i=1

∑d
j=1w

(r)
ij hitj O(|E|d+ |R|d2)

DistMult hTWrt =
∑d

i=1 hidiag(Wr)iti O(|E|d+ |R|d)
RotatE −||h ◦ r − t|| O(|E|d+ |R|d)
QuatE (h⊗ r)t O(|E|d+ |R|d)
TransE ∥h+ r − t∥ O(|E|d+ |R|d)
TransH ∥h⊥ + r − t⊥∥ O(|E|d+ 2|R|d)
TransR ∥hr + r − tr∥ O(|E|d+ |R|d2)
TransD ∥h⊥ + r − t⊥∥ O(2|E|d+ 2|R|d)

UM ∥h− t∥ O(|E|d)
SE ∥Mr,1h−Mr,2t∥ O(|E|d+ 2|R|d2)

ERMLP wTg(W [h; r; t]) O(|E|d+ |R|d+ k(3d+ 2) + 1)
ConvKB g([h; r; t]⊛ ω)W O(|E|d+ |R|d+ 4τ

preserving their semantic meaning [110]. In cases where KGs are incomplete, new
facts have to be identified to add to the KGs. This task is known as Knowledge
Graph Completion and can be done by inferring new facts from those already
in the KG. This approach, called Link Prediction, exploits the KG to learn low-
dimensional representations named Knowledge Graph Embeddings (KGE) and is
used to infer new facts. The embeddings are numerical vectors that represent any
element. KGE models define a scoring function ϕ to estimate the plausibility of
any triple, ⟨h, r, t⟩, where h, t ∈ V and r ∈ E [109]. The model learns embeddings
that optimize the score of known facts and considers unseen facts highly plausible,
where higher ϕ values yield higher plausibility. Link predictions are performed by
identifying which entities provide the best scores if added to the incomplete triples
as heads or tails. If prediction = tail, the link prediction task finds t as the best
scoring tail for the incomplete triple ⟨h, r, ? ⟩:

argmax
t∈V

ϕ(h, r, t)

If prediction = head, it can be defined analogously. The data sparsity issue
may negatively impact the state-of-the-art of KGE methods, i.e., true triples that
can be used as positive samples to guide KGE training represent only a minor
portion. We analyze thirteen embedding models from different families [110] to
compute latent representations, e.g., vectors, of entities and relations in the KG
and then employ them to infer new facts. In particular, we examine three main
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families of models:

• Tensor Decomposition models such as HolE, RESCAL, and DistMult.

• Geometric models such as RotatE, QuatE, and the Trans∗ family models
TransE, TransH, TransD, and TransR.

• Deep Learning models such as UM, SE, ERMLP, and ConvKB.

Tensor Decomposition models

Tensor Decomposition models are mathematical models used to analyze and repre-
sent higher-order data structures known as tensors [69]. Tensors are generalizations
of matrices capable of representing multi-dimensional data with more than two di-
mensions. This tensor can be decomposed into a combination of low-dimensional
vectors, i.e., the embeddings of entities and relations. Embeddings are learned a
posteriori from known facts and are able to generalize and associate high scores
with unseen facts. Moreover, these models typically employ few or no shared
parameters, which makes them especially lightweight and simple to train.

Hole: Holographic embeddings (HolE ) [90] combines the expressive power of
the tensor product with the efficiency and simplicity of TransE. HolE computes
circular correlation, denotes by ⋆ in Table 2.1, between the embeddings of head
(h) and tail (t) entities and multiply it by the relation (r) embedding.

RESCAL: RESCAL [91] is an algorithm of relational learning based on a
tensor factorization where models entities as vectors and relations as matrices. In
RESCAL, the relation matrices Wr contain weights wi,j between the i-th factor of
h and j-th factor of t.

DistMult: DistMult [141] represents the relation embedding as a bi-
dimensional matrix given a head and tail embeddings. DistMult is a simplification
of RESCAL. The scoring function is the bilinear product where the relation em-
beddings are restricted to diagonal matrices. Therefore, the scoring function is
commutative and considers all relations symmetric.

Geometric models

Geometric models interpret relations as geometric operations in latent space [134].
The head embedding undergoes a spatial transformation ξ as a function of the
values of the relation embedding. The fact score is the distance between the
resultant vector and the tail vector and is computed using a distance function δ,
e.g., Manhattan Distance or Euclidean norm. ϕ(h, r, t) = δ(ξ(h, r), t).

RotatE: RotatE [127] represents each relation as a rotation from the head
entity to the tail entity in the complex latent space. RotatE maps the head and
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tail entities to the complex embeddings, i.e., h, t ∈ Ck. The rotation r is applied
to h by operating a Hadamard product (denoted by ◦ in Table 2.1).

QuatE: QuatE [148] operates on the quaternion space and learns hypercom-
plex valued embeddings (quaternion embeddings) to represent entities and rela-
tions. The relation is used to rotate the head entity h, where ⊗ represents the
Hamilton product, see Table 2.1. Hypercomplex representations extend complex
representations by representing each number with one real and three imaginary
components.

TransE: TransE [19] proposes a geometric interpretation of the latent space
and interprets relation vectors as translations in vector space, h + r ≈ t. TransE
can not naturally model 1-n, n-1 and n-m relationships. Suppose a relation r with
cardinality 1-n, (h, r, t1), (h, r, t2) then the model fits the embeddings in order to
ensure h+ r ≈ t1 and h+ r ≈ t2, i.e. t1 ≈ t2.

TransH: TransH [138] is an extension of TransE that aims to overcome the
limitations of TransE. Furthermore, in TransH, each relation is represented by a
normal vector of a hyperplane, where the variables h⊥ and t⊥ denote a projection
to the hyperplane wr of the labeled relation r, where r is the vector of a relation-
specific translation in the hyperplane wr.

TransR: TransR [78] represents entities and relations in distinct vector spaces
and learns embeddings by translation between projected entities. hr = h ∗Mr,
where Mr corresponds to a projection matrix Mr ∈ Rdxk that projects entities
from the entity space to the relation space; further r ∈ Rk.

TransD: TransD [60] employs separate projection vectors for each entity and
relation. In score function of TransD the variables h⊥ and t⊥ are defined as,
h⊥ = Mrhh and t⊥ = Mrtt, where Mrh, Mrt ∈ Rm×n are two mapping matrices
defined as follows: Mrh = rphp + Im×n and Mrt = rptp + Im×n. The subscript p
means the projection vectors, and Im×n denotes the identity matrix of size m×n.

UM: The Unstructured Model (UM ) [17] is a simplified version of TransE
where it does not consider differences in relations and only models entities as em-
beddings. This model can be beneficial in KGs containing only a single relationship
type.

SE: Structured Embedding (SE ) [18] model defines two matrices Mr,1 and
Mr,2 to project head and tail entities for each relation. SE can discern between
the subject and object roles of an entity since it employs different projections for
the embeddings of the head and tail entities.

Deep Learning models

Deep learning models use deep neural networks to build the KGE model. Neural
networks learn parameters such as weights and biases and combine them with the
input data to recognize meaningful patterns. Deep networks organize the param-
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eters in distinct layers, usually interspersed with nonlinear activation functions.
Several types of layers have been developed, such as dense layers that only com-
bine the input data X with the weights W and add a bias b: W ×X + b.

ERMLP: ERMLP [32] is a model based on a multi-layer perceptron and uses
a single hidden layer. In the score function, the variable W ∈ Rk×3d represents
the weight matrix of the hidden layer, the variable w ∈ Rk represents the weights
of the output layer, and g is the activation function. In Table 2.1, the variable k
corresponds to the number of neurons in the hidden layer.

ConvKB: ConvKB [89] employing a convolutional neural network. Each em-
bedding triple (h, r, t) is represented as a matrix A = [h; r; t] ∈ Rd×3, where each
column represents the embedding for h, r, and t. In the convolution layer, a set
of convolutional filters ωi ∈ R1×3, i = 1, ..., τ , where τ corresponds to the number
of convolutional filters in a layer, are applied on the input in order to examine
the global relationships between same dimensional entries of the embedding triple
and to generalize the transitional characteristics. Each ωi is repeatedly operated
over every row of A to finally generate a feature map v = [vi,1, ..., vi,d] ∈ Rd as
vi = g(ωA+ b), where b ∈ R is a bias term and g is an activation function. In the
score function, the variable w ∈ Rτd×1 is a shared weight vector.

2.4 Summary
The research problem of discovering actionable insights from heterogeneous

data sources and the particular challenges stated in Chapter 1 requires compre-
hensive solutions from different angles. This chapter’s existing concepts and tech-
nologies provide a basis for addressing the raised challenges. The neuro-symbolic
AI systems introduced in Section 2.3 present the basic principles for solving the
knowledge discovery task. Specifically, we rely on deductive databases for the sym-
bolic system and KGE models for the sub-symbolic system to answer the research
questions RQ1 and RQ4. The Semantic Web described in Section 2.1 provides
a framework for representing and accessing data. Section 2.1 defines the basis for
addressing the task of integrating data from heterogeneous data sources into a
homogeneous model, contributing to answering the research questions RQ2. In
Section 2.2, the deductive systems are introduced. We present the notation and
properties of deductive systems that allow deriving deductions. We present a sym-
bolic system that relies on Datalog to enhance the semantics encoded in the data
for addressing research question RQ3.
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Related Work

This chapter presents a detailed analysis of the state-of-the-art approaches
related to the main research problems and research questions defined in Chap-
ter 1. First, we show the topics identified for the review of existing approaches in
Figure 3.1. We present for each topic an overview of approaches and limitations
within the scope of the challenges defined by this thesis. Section 3.1 introduces
state-of-the-art approaches proposed by research communities for neuro-symbolic
AI systems. We point out the shortcomings of the state-of-the-art techniques
on the problem of integrating neuro-symbolic systems. Next, in Section 3.2 we
review the existing approaches in the area of sub-symbolic systems focusing on
different problems in the healthcare context. Then, Section 3.3 shows approaches
of symbolic systems in which human and machine experts are able to interpret
information without ambiguity. Finally, Section 3.4 presents the most recent ap-
proaches to resolving semantic interoperability issues in the knowledge discovery
field. We carried out a review and critical discussion of the current approaches for
discovering communities of I4.0 standards.

Related Work

Neuro-Symbolic 
Systems

Sub-Symbolic 
Systems

Knowledge 
DiscoverySymbolic Systems

Figure 3.1: Related Work Topics. Figure 3.1 illustrates the work related to
this thesis in four areas: neuro-symbolic systems, sub-symbolic systems, symbolic
systems, and knowledge discovery.
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3.1 Generic Neuro-Symbolic Artificial Intelligence
Approaches

Generic Neuro-Symbolic AI systems contribute features of symbolic and sub-
symbolic systems regardless of domains. A neuro-symbolic AI system provides
a neural-symbolic implementation of logic, a logical characterization of a neural
system, or a hybrid learning system [39, 40, 128]. Real applications are possible
in areas with social relevance and high economic impacts, such as bioinformatics,
robotics, fraud prevention, and the Semantic Web [14]. Methods utilized in neural-
symbolic integration in some of the aforementioned applications include translation
algorithms between logic and networks. Also, the community has focused on study-
ing the systems empirically through case studies and real-world applications. One
of the potential applications of neuro-symbolic AI is the diagnosis and prediction
of ophthalmic diseases [51].

Neuro-Symbolic AI is used to assist the representation of deep learning in pro-
cessing visual question answering (NS-VQA) [75, 80, 81, 143], contributing more
transparency to the reasoning process. NS-VQA is composed of three parts to
separate reasoning from visual perception and textual comprehension. The core
part relies on the sub-symbolic system to reason both visual and textual represen-
tations obtained by deep learning and question answering in clinical eye scenarios.
Thereby, neuro-symbolic has promising application prospects in medical images,
specifically in classifying ocular diseases. Furthermore, Zhao et al. [150] analyze
the state-of-the-art automatic disease diagnosis from clinical data, concluding that
the problem of feature sparsity and missing values are affecting disease diagnosis.
They propose a knowledge-guided graph attention network for disease prediction
and effectively generate embeddings to accurately predict both general and rare
diseases. Following the same line, as Zhao et al. [150], Sun et al. [126] propose an
innovative graph neural network (GNN)-based model for disease prediction, using
external knowledge bases to augment the insufficient data from the clinical data.
They evaluate the approach to predicting chronic obstructive pulmonary disease,
illustrating the effectiveness of the proposed model.

In the field of vision-based tasks, such as semantic image labeling, high-
performance systems have been produced. Karpathy et al. [65] propose an
approach for the recognition and labeling tasks for the content of different re-
gions of the images; it combines Convolutional Neural Networks over the image
regions together with bidirectional Recurrent Neural Networks over sentences.
Once this mapping of images and sentences in the embedding space has been
established, a structured objective is introduced that aligns the two modalities
through multimodal embedding. The emerging system performs better than clas-
sical approaches, where tasks involving semantic descriptions are associated with
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databases that contain background knowledge, and computer image processing
approaches were based on rule-based techniques.

Despite the progress of Neuro-Symbolic Artificial Intelligence, the scope and
applicability of symbol processing are limited. Furthermore, these systems do not
examine polynomial overload when integrating both paradigms. Our work lever-
ages the symbolic system, independent of the application domain, and improves
the predictive capability of KGE models. Moreover, our approach addresses the
deductive database to an abstract target prediction, rendering the computational
complexity polynomial time. Thus, we show the positive impact of completing
KG via a deductive system on the overall performance of a predictive model im-
plemented using KGEs.

3.2 Sub-symbolic Systems in Healthcare Contexts

Knowledge graphs are becoming increasingly important in the biomedical field.
Discovering new and reliable facts from existing knowledge using KGE is a cutting-
edge method. KG allows a variety of additional information to be added to aid
reasoning and obtain better predictions. Zhu et al. [151] develop a process for con-
structing and reasoning multimodal Specific Disease Knowledge Graphs (SDKG).
SDKG is based on five cancers and six non-cancer diseases. The principal pur-
pose is to discover reliable knowledge and provide a pre-trained universal model
in that specific disease field. The model is built in three parts: structure em-
bedding (S) with TransE, TransD, and ConvKB, category embedding (C), and
description embedding (D) with BioBERT to convert description annotations into
vectors. The best results are obtained when description embedding is combined
with structure embedding, specifically with the ConvKB embedding model. Karim
et al. [64] propose a new machine-learning approach for predicting DDIs based on
multiple data sources. They integrated drug-related information such as diseases,
pathways, proteins, enzymes, and chemical structures from different sources into
a KG. Then different embedding techniques are used to create a dense vector
representation for each entity in the KG. These representations are introduced in
traditional machine learning classifiers and a neural network architecture based on
a convolutional LSTM (Conv-LSTM) modified to predict DDIs. The results show
that the combination of KGE and Conv-LSTM performs state-of-the-art results.

Meng et.al. [135] propose a framework, Predicting Rich DDI (PRD), to predict
multilabel of DDIs. The framework PRD relies on knowledge graph embedding
techniques and predicts DDI as a linked prediction task. PRD uses a drug knowl-
edge graph generated from different sources and biomedical texts with descriptions
of the DDIs in the predictive task. They provide a joint translation-based embed-
ding model to learn DDIs by integrating drug knowledge graphs and biomedical
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texts into the same semantic space. PRD framework aims to represent the triples
from drug KG and the rich DDI triples from the biomedical text in a unified joint
embedding model. Thus, the DDI prediction problem is addressed as a link pre-
diction task. In the experimental study, the authors compare three DDIs methods,
including multitasking dyadic drug-drug interaction prediction (MDDP) [62], con-
sidered one of the best baselines for multiple DDI type predictions [135], and two
KG embeddings techniques. PRD achieves improvement over all baselines.

The above-mentioned research aims to discover reliable knowledge based on
knowledge graphs using KGE models. However, they are limited by the data
sparsity issue of the KGE models and the lack of symbolic reasoning. We overcome
this limitation by integrating a Neuro-Symbolic AI system enabling reasoning and
robust learning to improve the predictive capability of KGE models.

3.2.1 Polypharmacy Side Effect Prediction and Drug-Drug
Interactions Prediction

A framework to predict DDIs is presented in [36]; they exploit information from
multiple linked data sources to create various drug similarity measures. Then, they
build a large-scale and distributed linear regression learning model to predict DDIs.
They evaluate their model to predict the existence of drug interactions, considering
the DDIs as symmetric. A neural network-based method for drug-drug interaction
prediction is proposed in [108]. They use various drug data sources in order to
compute multiple drug similarities. They computed drug similarity based on drug
substructure, target, side effect, off-label side effect, pathway, transporter, and
indication data. The proposed method first performs similarity selection and then
integrates the selected similarities with a nonlinear similarity fusion method to
obtain high-level features. Thus, they represent each drug by a feature vector and
are used as input to the neural network to predict DDIs.

Other approaches focus on predicting DDIs and their effects [72, 83, 113, 152].
Beyond knowing that a pair of drugs interact, it is essential to know the effect of
DDI in polypharmacy treatments. In [72], propose a novel deep learning model to
predict DDIs and their effects. They use additional features based on structural
similarity profiles (SSP), Gene Ontology term similarity profiles (GSP), and target
gene similarity profiles (TSP) to increase the classification accuracy. The proposed
model uses an autoencoder to reduce the dimension of the resulting vector from
the combination of SSP, TSP, and GSP. The benchmark used has 1597 drugs and
188’258 DDIs with 106 different types. The model works as a multi-label classifi-
cation model where the deep feed-forward network has an output layer of size 106,
representing the number of DDI types. The results show that the model obtains
equal or better results in 101 out of 106 DDI types than baseline methods. Also,
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they demonstrate how adding the features GSP and TSP increases the accuracy of
DDIs prediction. Marinka Zitnik et al. [152] present Decagon, an approach for pre-
dicting the side effects of drug pairs. The approach develops a new convolutional
graph neural network for link prediction. They construct a multi-modal graph of
protein-protein interactions, drug-protein target interactions, and the DDI side ef-
fects. The graph encoder model produces embeddings for each node in the graph.
They proposed a new model that assigns separate processing channels for each
relation type and returns an embedding for each node in the graph. Then, the
Decagon decoder for polypharmacy side effects relation types takes pairs of em-
beddings and produces a score. Thus, Decagon can predict the side effect of a pair
of drugs.

All the approaches mentioned above are limited to predicting DDIs and their
effects between pairs of drugs. However, in our view, the interactions and their ef-
fects need to be considered as a whole and not in pairs in polypharmacy treatments.
Our symbolic system resorts to a set of rules that state the implicit definition of
new DDIs generated as a result of the combination of multiple drugs in treatment.
Since cancer treatment schemes are usually composed of more than two drugs, and
patients may have several co-existing diseases requiring additional medications, it
is of significant relevance in holistically deducing DDIs.

3.2.2 Treatment Response Prediction

Deep learning is extensively used in medical applications, focusing on disease
detection and diagnosis [5, 25]. However, there are limited studies on predict-
ing treatment responses. Recent studies have employed deep learning to predict
treatment responses by analyzing images [61, 71]. Cheng Jin [24] presents a multi-
task deep learning approach that allows for simultaneous tumor segmentation and
response prediction. The model is trained with magnetic resonance images of
rectal cancer patients to predict pathologic response after neoadjuvant chemora-
diotherapy. In addition, Watts [30] presents a review paper about machine learn-
ing techniques for predicting treatment response using Electroencephalography
(EEG) in major depressive disorder (MDD). Watts points to the promising use
of EEG within machine learning models to predict treatment responses in MDD.
All the above approaches aim to predict treatment response through image anal-
ysis. However, we propose to predict treatment response based on the drugs and
their description, i.e., DDIs with their effects, DPIs, and the genes encoded by
the proteins. Then, our neuro-symbolic system that enables expressive reason-
ing and robust learning enhances the predictive capacity of KGE models. Thus,
our approach supports clinicians in having a treatment response at the time of
treatment.
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3.3 Symbolic Systems

The ability to formally capture semantics, such as that of symbolic systems,
enables human and machine experts to interpret information unambiguously. Fur-
thermore, symbolic systems allow further data enrichment using symbolic inference
mechanisms, such as Descriptive Logic inference [8] and rule-based reasoning [16,
23]. Stavropoulos et al. [125] present a rule-based approach for detecting health-
related problems from wearable sensor lifestyle data that aggregate clinical value to
make informed decisions on monitoring and intervention. To achieve interoperabil-
ity at different levels, they use OWL 2 ontologies [46] as the underlying knowledge
representation formalism, generating interoperable Knowledge Graphs (KGs). The
KG is further enriched with a set of preconfigured rules to derive logical conse-
quences and semantically enrich KGs. They use rules to provide expert knowledge
in the form of constraints and SHACL rules [48] to recognize patterns, anomalies,
and situations of interest based on predefined rules and conditions. Thus, the sys-
tem is able to alert of patterns and anomalies in patients, and clinicians can make
quick decisions regarding interventions and follow-up.

In recent years, there has been a growing interest in Pharmacovigilance. Ex-
tensive research has been conducted to predict potential DDI. One approach to
predicting potential DDI is based on similarity [36, 124, 132, 146], with the core
idea of predicting the existence of a DDI by comparing candidate drug pairs with
known interacting drug pairs. These approaches define a wide variety of drug
similarity measures for comparison. The known DDIs that are very similar to a
candidate pair provide evidence for the presence of a DDI between the candidate
pair drugs. Sridhar et al. [124] propose a probabilistic approach for inferring un-
known DDIs from a network of multiple drug-based similarities and known DDIs.
They used the probabilistic programming framework Probabilistic Soft Logic. This
symbolic approach predicts three types of interacctions [124], CYP-related inter-
actions (CRDs), where both drugs are metabolized by the same CYP enzyme,
NCRDs, where no CYP is shared between the drugs and general DDI from Drug-
bank. Furthermore, they consider seven drug-drug similarities. Thus, they found
five novels DDIs validated by external sources.

Albeit representing domain-specific knowledge, the approaches mentioned
above cannot solve the problem of predicting unknown relationships in KG and are
limited to the defined rules. We provide a neuro-symbolic system that integrates
a symbolic and sub-symbolic system considering semantics in the KG and is able
to predict unknown relationships.
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3.4 Knowledge Discovery in Industry 4.0 Domains

In recent years, a great deal of research has been investigating key aspects of
discovering standards communities. Furthermore, many approaches are proposed
to corroborate and extend the knowledge of the standardization frameworks and
resolve semantic interoperability issues.

3.4.1 Unsupervised Learning

Unsupervised learning techniques do not rely on the class attribute for model
building; instead, they extract knowledge from discovering interrelationships be-
tween data elements. The main types of unsupervised learning tasks are clustering
and association. These algorithms discover hidden patterns or clusters of data
without the need for human intervention. Its ability to discover similarities and
differences in information makes it the ideal solution for exploratory data analysis.
SemEP [94] is an unsupervised semantics-based edge partitioning method. SemEP
combines a data mining framework for link prediction, semantic similarities, and
an algorithmic approach to partition the edges of a graph. Thus, the semEP prob-
lem is to create a minimal partitioning of the edges such that the cluster density
of each subset of edges is maximal. An advantage of semEP edge clustering is that
it allows a node to participate in more than one cluster.
METIS [66] is a model for partitioning large irregular graphs and computing fill-
reducing orderings of sparse matrices. The algorithm implemented in METIS is
based on the multilevel graph partitioning paradigm [67], which quickly produces
high-quality partitioning. METIS can partition an unstructured graph into a user-
specified number k of parts.
The KMeans algorithm [7] clusters the data by separating the samples into equal
variance groups. This algorithm requires the number of clusters to be specified.
KMeans has three steps; the first one chooses the initial centroids. The second
step is a loop between the following two steps. First, it assigns each sample to
its nearest centroid. The second step creates new centroids by taking the average
value of all samples assigned to each previous centroid. Then, the difference be-
tween the old and new centroids is calculated, and the algorithm repeats this loop
until the difference is less than a threshold.

3.4.2 Solving Interoperability in I4.0

Zeid et al. [144] study different approaches to achieve interoperability of dif-
ferent standardization frameworks. In this work, the current landscape for smart
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manufacturing is described by highlighting the existing standardization frame-
works in different regions of the globe. Lin et al. [76] present similarities and
differences between the RAMI4.0 model and the IIRA architecture. Based on
the study of these similarities and differences, the authors proposed a functional
alignment among layers in RAMI4.0 with the functional domains and crosscutting
functions in IIRA. Monteiro et al. [85] and Velazquez et al. [130] further report
on the comparison of the RAMI4.0 and IIRA frameworks. This work presents a
cooperation model to align both standardization frameworks. Furthermore, map-
pings between RAMI4.0 IT Layers and the IIRA functional domain are established.
Moreover, the IIRA and RAMI4.0 frameworks are compared based on different fea-
tures, e.g., country of origin, source organization, basic characteristics, application
scope, and structure. It further details where correspondences exist between the
IIRA viewpoints and RAMI4.0 layers. In [29], Darmois et al. present the main
contributions to the analysis of IoT standardization. This work has defined knowl-
edge areas used for the classification of standards and identifies the standardiza-
tion gaps. The purpose is to support interoperability in complex IoT systems and
provide guidelines contributing to semantic interoperability approaches. Aligning
standardization frameworks is useful for solving interoperability problems, but not
all standards are classified by layers in the standardization frameworks. However,
these approaches aim to solve interoperability problems by mapping the different
frameworks without creating a common vocabulary that semantically represents
the standards. This thesis proposes an approach to solve interoperability problems
among I4.0 standards by discovering unknown relationships.

3.4.3 Ontology-based Approaches in I4.0

Ontology-based approaches have contributed to creating a shared understand-
ing of the I4.0 domain. Lelli et al. [74] propose the reuse of existing ontologies
as one of the main principles in ontology design. For this purpose, they make
use of Linked Open Vocabulary (LOV) and collect 22 ontologies related to IoT.
They state that project developers in the IoT community do not reuse existing
works, damaging the attempt to define a shared understanding of smart interop-
erability. Kovalenko and Euzenat [70] have equipped data integration with diverse
methods for ontology alignment. They examine the problems of ontological cor-
respondence in the context of engineering knowledge integration. Kovalenko and
Euzenat present technologies for defining mappings between ontologies to sup-
port data integration. Finally, they illustrate how mappings can be generated
from definitions in the Expressive and Declarative Ontology Alignment Language
(EDOAL). These approaches are limited to representing the existing characteris-
tics of the knowledge domain in ontologies, which is useful because it enables data
integration in Industry 4.0. However, there are standards that are not classified in

40



3.4. Knowledge Discovery in Industry 4.0 Domains

any standardization framework, and this limits the solution of the interoperability
problem. In this work, we employ the Standard Ontology (STO) for represent-
ing the main properties of standards and standardization frameworks, as well as
relationships among them [45].

3.4.4 Knowledge Graphs and Semantic Data Integration

Sebastian et al. [9] propose a semantically annotated knowledge graph for In-
dustry 4.0-related standards, norms, and frameworks. The I4.0 knowledge graph
helps overcome Industry 4.0 challenges requiring comprehensive knowledge of the
different standards. Furthermore, the I4.0 knowledge graph considers the seman-
tics and relations between standards and the standardization framework. Garofalo
et al. [41] outline Knowledge Graph Embeddings for I4.0 use cases. Existing tech-
niques for generating embeddings on top of KG are examined. Further, the analysis
of how these techniques can be applied to the I4.0 domain is described; specifically,
it identifies predictive maintenance, quality control, and context-aware robots as
the most promising areas to apply the combination of KGs with embeddings.
These approaches mentioned above support data-driven pipelines to transform in-
dustrial data into actionable knowledge in smart factories. Galinski [38] examines
the problem of semantic data integration and interoperability between standards.
This work emphasizes the need for metadata, data models, and metamodels for
standards. It also presents an interesting description of which data to consider
when describing a standard. Hodges et al. [57] propose an approach for seman-
tic integration of standards to achieve interoperability between them by means of
ontologies; relevant standards and well-known ontologies to represent standards
are also identified. Albeit representing domain-specific knowledge, the approaches
mentioned above cannot discover alignments across I4.0 standards. We overcome
this limitation by exploiting embeddings over a knowledge graph of I4.0 standards
to predict relatedness among standards.

The approaches presented in this section describe and characterize existing
knowledge in the I4.0 domain. However, in our view, two directions need to be
considered to enhance the knowledge in the domain; 1) the use of a KG-based ap-
proach to encoding the semantics, and 2) the use of machine learning techniques to
discover and predict new communities of standards based on their relations. Our
goal is to uncover alignments among related standards. Nevertheless, finding align-
ments across I4.0 requires the encoding of domain-specific knowledge represented
in standards of diverse nature.
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3.5 Summary
Based on the above-mentioned analysis of the existing approaches, this thesis

focuses on integrating neuro-symbolic AI systems to uncover reliable knowledge
from heterogeneous data. These systems should be able to discover new relation-
ships and patterns hidden in the data. The representation of the heterogeneous
data and their meaning needs to be preserved to improve the performance of data
analytics and predictive models. More importantly, a suitable representation of
the data and appropriate semantic enrichment of data are required to extract more
powerful and relevant insights.
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A Neuro-Symbolic Artificial
Intelligence System over Knowledge
Graphs

Neuro-Symbolic AI is a highly active area that has been studied for decades [39]
and endeavors to combine symbolic and sub-symbolic AI models. AI aims to sim-
ulate human behavior, which is often driven by cognition and mental processing.
The symbolic systems are the most prominent tools for modeling behavior, and
the sub-symbolic systems are for modeling cognition and the brain. Complex
problem-solving using AI requires a significantly enriched language. Symbolic and
sub-symbolic systems differ fundamentally in how they represent data and infor-
mation. Symbolic systems typically use structured representation languages from
formal logic, and sub-symbolic systems usually use representations based on vector
space. Thus, neuro-symbolic integration aims to bridge the gap between symbolic
and sub-symbolic systems.
Integrating neuro-symbolic into real-world applications is a challenging task. Even
in controlled environments, e.g., training simulators, neuro-symbolic integration
may not be completed successfully [52]. For instance, Fernlund et al. [35] describe
systems that use machine learning to learn relations from expert observations.
While these systems are successful in learning, they lack the expressive power of
symbolic systems. Another example of neuro-symbolic systems in bioinformatics
is Connectionist Inductive Learning and Logic Programming (CILP) [40], which
combines connectionist learning (neural networks) with logic programming. CILP
models may struggle with limited data availability. Connectionist learning relies
heavily on having sufficient labeled examples for training, and logic programming
may require substantial domain-specific knowledge. CILP models can face scala-
bility challenges, especially when dealing with large-scale datasets. The training
and inference processes of neural networks can be computationally expensive, par-
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ticularly when combined with logical reasoning. Furthermore, Karpathy et al. [65]
combine convolutional neural networks (CNNs) with bidirectional recurrent neural
networks (RNNs) over sentences to recognize and label image regions. Combin-
ing CNNs with bidirectional RNNs has shown promising results in various tasks,
including image captioning and visual question answering. Despite advances in
neuro-symbolic AI integration, symbol processing currently has limited scope and
applicability. In this chapter, we propose an approach that integrates a domain-
agnostic symbolic system with a Knowledge Graph Embedding (KGE) model to
reduce the KG sparsity towards improving the model’s predictive capability. Thus,
we broaden the scope and applicability in several domains of neuro-symbolic in-
tegration. Figure 4.1 shows the main challenges tackled in this chapter and the
contribution to addressing the challenges. The content of this chapter is based
on the publication [104]. The results of this chapter provide an answer to the
following research questions:

RQ1: How can metadata encoding data meaning be exploited to discover
relationships in knowledge graphs?

RQ2: How can heterogeneous data sources be integrated to obtain a unified
knowledge representation?

RQ3: How can implicit knowledge be used to enhance knowledge discovery
tasks?

RQ4: What is the impact of deductive reasoning on accurately uncovering
knowledge?

To address research questions RQ1 and RQ3, we present an approach based
on the integration of Neuro-Symbolic AI systems. The symbolic system is imple-
mented by deductive databases, enhancing the predictive capacity of sub-symbolic
systems implemented by KGE models. The deductive databases are defined for an
abstract target prediction over a knowledge graph. Our proposed solution builds
the ego networks of the entities that correspond to the head and tail of the abstract
target prediction to deduce new relationships and enhance the ego networks. The
ego network consists of three main components. The ego represents the node of in-
terest from which connections are examined and analyzed. The neighboring nodes
are the entities directly connected to the ego and the relationships between their
neighbors. The sub-symbolic systems benefit from the enhanced ego networks and
perform better predictions. To address research questions RQ2 and RQ4, we
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Figure 4.1: Challenges and contributions. This chapter focuses on discovering
relationships in a knowledge graph and proposes an approach based on the inte-
gration of Neuro-Symbolic AI systems to solve the problem.

build a knowledge graph to integrate heterogeneous data sources, enabling the de-
scription of the meaning of data. We empirically evaluate the effectiveness of our
Neuro-Symbolic AI approach. We conduct an ablation study on the components of
our approach, considering state-of-the-art KG embedding methods. The deductive
system reduces the data sparsity issues in the KG, enabling the knowledge graph
to become meaningful in the discovery task and enhancing the KGE algorithms
in the link prediction task. We summarize the contributions of this chapter as
follows:

• A domain-agnostic approach able to empower the predictive capacity of sub-
symbolic systems with a deductive database system. The deductive system
minimizes the data sparsity issues by deducing the implicit relationships in
the KG.

• A formalization of the symbolic systems for an abstract target prediction
over a knowledge graph. The symbolic system enhances the ego networks of
the target prediction with implicit relations.

• An extensive evaluation of symbolic-sub-symbolic systems in the state-of-the-
art KGE algorithms. We demonstrate the benefit of integrating symbolic and
sub-symbolic systems.

The remainder of this chapter is structured as follows. Section 4.1 presents a
motivating example showing the data sparsity issue in a knowledge graph for the
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link prediction task. We illustrate the need to minimize the data sparsity issue
to obtain accurate predictions. Next, Section 4.2 presents the Neuro-Symbolic AI
approach, addressing the research question RQ1. The approach assumes that a
link prediction problem is defined in terms of an abstract target prediction over
a KG. We integrate a deductive database system with the sub-symbolic system,
where the deductive system alleviates the data sparsity issues in KG and allows the
sub-symbolic system to predict links accurately. To address the research question
RQ3, we present a deductive database system for an abstract target prediction
over a KG based on the existing approaches of deductive database systems. The
deductive system is implemented in Datalog and can derive deductions, e.g., con-
clude new facts. Furthermore, the proposed deductive system explicitly states the
experts’ knowledge by rules and transfers the implicit knowledge to the knowl-
edge graph. In Section 4.3, we address the problem of predicting polypharmacy
treatment effectiveness by applying our Neuro-Symbolic AI approach. We inte-
grate heterogeneous data sources and build a polypharmacy treatment knowledge
graph solving the RQ2. Then, the problem of predicting treatment effectiveness
is modeled as a problem of link prediction. Next, Section 4.4 presents an empirical
evaluation assessing the impact of the Neuro-Symbolic AI system proposed. The
empirical results put the deduction power of deductive databases into perspec-
tive; they improve the predictive capacity of existing KGE models, answering the
research question RQ4. Finally, Section4.5 presents the closing remarks of this
chapter.

4.1 Motivating Example

We motivate the problem addressed in this chapter through a knowledge graph
with sparsity issues. Currently, we face severe data sparsity issues in KGs because
of privacy concerns or limited information available in the Open World Assump-
tion. Data sparsity negatively impacts the tasks of knowledge discovery on top of
KGs. We aim to show that minimizing the data sparsity in the KG can lead to
better prediction in the knowledge discovery task.

Figure 4.2a illustrates a knowledge graph with entities belonging to three
classes. The entities of Class 1 are related by property P1, e.g., ⟨A,P1, B⟩. In
addition, the entities of Class 2 can contain entities of Class 1 by the property
partOf, e.g., ⟨A, partOf, F1⟩. Moreover, entities of Class 2 can be related to enti-
ties of Class 3 by the property P2, e.g., ⟨F1, P2, Y1⟩. Figure 4.2b presents an ideal
knowledge graph where all the implicit relations are explicitly represented, whereas
the dotted arrows represent the implicit relations. A symbolic system, e.g., a De-
ductive Database, transfers the implicit deduced knowledge to the KG explicitly.
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Figure 4.2: Motivating Example. Figure 4.2a illustrates a portion of a KG with
data sparsity issues. Figure 4.2b shows the ideal KG with implicit knowledge, and
an AI model predicts relationships between entities of Class 2 and Class 3. The
model learns latent vector representations of entities and relations in the ideal KG,
and the link ⟨F2, P2, Y1⟩ is predicted.

The symbolic system is expressed in a deductive database system implemented in
Datalog. The rules that define how new relations are generated can be stated, e.g.,
in a Datalog program, and represent the experts’ knowledge explicitly transferred
to the knowledge graph. Thus, the data sparsity issue is minimized by considering
the symbolic system. The deduced relations ⟨A,P1, C⟩, and ⟨A,P1, D⟩ increase
the descriptions of the entities of Class 2 and make F1 and F2 share more relation-
ships. Then, a sub-symbolic system, e.g., a KGE model, can better learn latent
vector representations of entities, minimizing the data sparsity issue. The KGE
model can predict the missing link ⟨F2, P2, Y1⟩, considering that the model repre-
sents the entity F1 and F2 nearby in the embedding space, and predict the triple.
We aim to integrate a neuro-symbolic system where the predictive capability of
the sub-symbolic systems is empowered by the symbolic system, reducing the data
sparsity issue.

4.2 Neuro-Symbolic Artificial Intelligence Ap-
proach

4.2.1 Preliminaries

A knowledge graph is a data structure representing factual statements with
entities and their relationships using a data graph [49]. KGs are used in countless
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Figure 4.3: Example Knowledge Graph. Figure 4.3a shows a KG with three
classes, five green entities belonging to class Drug, two gray entities belonging to
class Treatment, and two red entities belonging to class Response. Figure 4.3b
illustrates the ego network for the entity T1, where the entities D1, D2, D3, D4,
and low_effect are the neighbors of T1. Figure 4.3c shows the KG resulting from
DS. The red arrows represent the new deduced links in the ego network ego(.).

domains because of their ability to model data in a machine-readable form [58].
Let KG = (V,E, L, C, I,D,R,N , ego, α) be a KG, where:

• V is a set of nodes that correspond to concepts (e.g., classes and entities).

• E ⊆ V ×L×V is a set of edges representing relationships, i.e., triples (s, p, o),
between concepts.

• L is a set of properties.

• C is a set of classes C ⊆ V .

• I : V → C is a function that maps each entity in V to a class C.

• D : L→ C maps a property to the class that corresponds to the domain of
the property.

• R : L → C maps each property to a class that corresponds to the range of
the property.

• N : V → 2V , where 2V represents the power set of nodes V . N (v) defines
the neighbors of the entity v, i.e., N (v) = {vi|(v, r, vi) ∈ E ∨ (vi, r, v) ∈ E}.
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• ego : V → 2V×L×V , the function ego(.) represents ego networks in the knowl-
edge graph. ego(v) assigns to each concept in V the set of labeled edges,
where v is in the subject or object position. ego(v) = {(u1, r, u2)|(u1, r, u2) ∈
E ∧ (u1 = v ∨ u2 = v)}. The ego(v) defines the ego network of the entity v.

• α : 2V → 2V×L×V . The function α(.) returns a set of triples between
the pairs of elements in the input.If F is a set of entities in V , α(F ) =
{(v1, r, v2)|(v1, r, v2) ∈ E ∧ v1 ∈ F ∧ v2 ∈ F}. The function α(.) returns the
edges between pairs of entities in the input set F .

Figure 4.3a depicts a KG, where the set of classes are represented by
C = {Drug, Treatment, Response}. The class for each entity is represented by
the function I(v), e.g., I(T1) = Treatment. For the property has_response ∈ L,
the domain is defined by the function D(has_response) = Treatment, while
the range is R(has_response) = Response. Figure 4.3b illustrates the ego
network of the entity T1, where the neighbors of the entity T1 are defined
by N (T1) = {D1, D2, D3, D4, low_effect}. Furthermore, the set of edges be-
tween pairs of entities in the set of neighbors of entity T1 is defined by α(N (T1)) =
{(D1, interacts_with,D2), (D2, interacts_with,D4), (D3, interacts_with,D2)},
where we can observe the three triples in Figure 4.3a. Note that although
low_effect is in the ego network of the entity T1, this entity is not related to any
other entity in this ego network.

An ideal knowledge graph: An ideal knowledge graph is a knowledge
graph KG ′ = (V,E ′, L, C, I,D,R,N , ego, α) that contains all the true existing
relations between entities in V . The Closed World Assumption (CWA) is assumed
on KG ′, i.e., what is unknown to be true in KG ′ is false.
An actual knowledge graph: An actual knowledge graph KG =
(V,E, L, C, I,D,R,N , ego, α) is a knowledge graph that follows the assumption
Open World Assumption (OWA), i.e., what is not known to be true is just
unknown and may be true.
A complete knowledge graph: A complete knowledge graph KGcomp =
(V,Ecomp, L, C, I,D,RN , ego, α) is a knowledge graph, which includes a relation
for each possible combination of entities in V . Note that not all relationships in
KGcomp are necessarily true.
A knowledge graph KG may only contain a portion of the edges represented
in KG ′, i.e., E ⊆ E ′; it represents those relations that are known and are
not necessarily complete. On the other hand, since KGcomp is a complete
knowledge graph, E ⊆ E ′ ⊆ Ecomp. The set of missing edges in KG is defined
as ∆(E ′, E) = E ′ − E, i.e., it is the set of relations existing in the ideal
knowledge graph KG ′ that are not represented in KG. Figure 4.4 illustrates
three knowledge graphs. Figure 4.4b is an ideal knowledge graph that states
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that only three relationships are true. The actual knowledge graph, presented
in Figure 4.4a, is incomplete and only includes two relationships; (C, p2, B) is
unknown and is not part of the current knowledge graph. Figure 4.4c illustrates
a complete knowledge graph, with a relation for each combination of entities
in V and properties in L. All the possible relationships are included in this graph.
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C
(a) Actual Knowledge

Graph KG
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p1 p2

C
(b) Ideal Knowledge Graph
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p2
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A B
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(c) Complete Knowledge

Graph KGcomp

Figure 4.4: Example of actual, ideal, and complete knowledge graph.

An abstract target prediction over a KG is defined in terms of a tuple
τ = ⟨KG, r, prediction,DS,KGE⟩:

• KG is a knowledge graph KG = (V,E, L, C, I,D,R,N , ego, α).

• r represents a prediction property, r ∈ L.

• prediction indicates the head or the tail of triples to predict. A tail prediction
of triples ⟨h, r, t⟩ is the process of finding t for the incomplete triple ⟨h, r, ? ⟩,
head predictions can be defined analogously.

• DS is the deductive database system over KG.

• KGE is the knowledge graph embedding over KG.

The deductive system DS derives new facts from inference rules and facts stored in
a database [101]; it is expressed as a set of extensional and intensional rules in Dat-
alog. Datalog considers two sets of clauses: a set of ground facts called the Exten-
sional Database (EDB) and a Datalog program P called the Intensional Database
(IDB). The predicates in the EDB and IDB are divided into two disjoint sets, EDB
predicates, which occur in the EDB, and the IDB predicates, which occur in IDB.
The head predicate of each clause in P is an IDB predicate, and the EDB predicate
can occur in the body of the rule. If C1 and C2 are the domain and range of r
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respectively, then EDB comprises ground facts of the form: p(s, o) where the triple
(s, p, o) ∈ ego(v) ∪ α(N (v)), and I(v) ∈ {C1, C2}. The EDB in our DS contains
ground facts from the ego networks and from their neighbors. Given a prediction
property r = has_response we know the domain D(has_response) = Treatment
and range R(has_response) = Response. Figure 4.3a shows entities of type
Treatment and entities of type Response for the domain and range of the property
has_response, respectively. The EDB comprises all the ground facts defined by
the ego networks: ego(T1), ego(T2), ego(low_effect), and ego(effective), and their
neighbors α(N (T1)), α(N (T2)), α(N (T low_effect)), and α(N (effective)), where
entities T1 and T2 belong to class Treatment, and low_effect and effective be-
long to the class Response.

An example of EDB is the set of facts
{interacts_with(D1, D2), interacts_with(D2, D4)}, where the property
interacts_with ∈ L and the entities {D1, D2, D4} ⊆ V . The predicate
interacts_with represents interactions between two drugs. Let P be a Datalog
program containing the following clauses:

r1 interactsWith(A,X) ⇒ inferredInteraction(A,X).

r2 inferredInteraction(B,X), interactsWith(A,B) ⇒ inferredInteraction(A,X).

Rule r2 states that exist an inferred_interaction between drug A and X, if there
is another drug B which interacts with A with the predicate interacts_with,
and there is an inferred_interaction from B to X. The evaluation results of r2 is
{inferred_interaction(D1, D4)}, shown in Figure 4.3c with a red arrow.

KGE is a machine learning model that learns vector representation (i.e.,
KG embeddings) in a low dimensional continuous vector space for entities v ∈ V
and relations e ∈ E in a KG. KGE model exploits the KG structure to predict
new relations in E. The KGE model resorts to a scoring function ϕ to estimate
the plausibility of the vector representation of a triple, where higher ϕ values yield
higher plausibility [110]. Link prediction is performed by identifying which vector
representation of an entity provides the best values of the scoring function ϕ; these
entities are added to the incomplete triples as heads or tails. If prediction = tail,
then the link prediction task is the process of finding t as the best scoring tail for
the incomplete triple ⟨h, r, ? ⟩:

argmax
t∈V

ϕ(h, r, t).

If prediction = head, it can be defined analogously. The state of the art of KGE
methods may be negatively impacted by the data sparsity issue, i.e., ground facts
that can be used as positive samples to guide KGE training represent only a minor
portion. The proposed deductive database system for abstract target prediction
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alleviates the data sparsity issue by enhancing links in the ego network ego(v),
which are managed as new ground facts.

Suppose the abstract target prediction is defined for the current knowl-
edge graph KG presented in Figure4.3a where the prediction property is r =
has_response, and the prediction corresponds to the tail, i.e., prediction = tail.
The link prediction task predicts incomplete triples ⟨h, r, ? ⟩, where the head h
represents entities of class Treatment, i.e., entities h in V such that I(h) =
Treatment, and the relation is r = has_response.

4.2.2 Problem Statement

Given an actual knowledge graph KG = (V,E, L, C, I,D,R,N , ego, α) and
its corresponding ideal knowledge graph KG ′ = (V,E ′, L, C, I,D,R,N , ego, α).
Given an abstract target prediction over an actual knowledge graph KG, τ =
⟨KG, r, prediction,DS,KGE⟩, we tackle the problem of predicting relationships
over KG.

Given a relation, e ∈ ∆(Ecomp, E) (i.e., the set of missing edges in KG), the
problem of predicting relationships consists of determining whether e ∈ E ′, i.e.,
if a relation e corresponds to an existing relation in the ideal knowledge graph
KG ′. We are interested in finding the maximal set of relationships or edges Ea

that belongs to the ideal KG ′, i.e., find a set Ea that corresponds to a solution of
the following optimization problem:

argmax
Ea⊆Ecomp

|Ea ∩ E ′|.

4.2.3 Proposed Solution

Our proposed solution resorts to a symbolic system implemented by a
deductive database to enhance the predictive capacity of the link prediction
task solved by knowledge graph embedding models. The approach assumes
that a link prediction problem is defined in terms of an abstract target pre-
diction τ = ⟨KG, r, prediction,DS,KGE⟩ over a knowledge graph KG =
(V,E, L, C, I,D,R,N , ego, α).
A Symbolic System: Deductive system DS corresponds to the deductive
databases where the EDB comprises ground facts of the form: p(s, o), where the
triple ⟨s, p, o⟩ ∈ ego(v) ∪ α(N (v)), I(v) ∈ {C1, C2}, C1 = D(r), and C2 = R(r).
The variables C1 and C2 represent the domain and range of the property r, re-
spectively. The IDB contains rules that allow deducing new relationships in the
ego network ego(v). Then, the stratified negation is the fragment of Datalog used,
which is a restricted form of negation. In stratified Datalog, rules are organized
into layers or strata, where each stratum contains rules that depend only on rules
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Figure 4.5: Approach. The input is a knowledge graph (KG), an abstract target
prediction τ , and a deductive system, and returns a KGE model. The symbolic
system is implemented by a deductive system DS(EDB, IDB) that deduces new
relationships in the ego network ego(v) and between their neighbors α(N (v)).
Then, the sub-symbolic system implemented by a KGE model employs the KG
with the deduced new relationships to predict incomplete triples. KGE solves the
abstract target prediction τ for the relation r and the prediction head or tail.

in lower strata. It allows for the negation of facts or rules that are in the lower
strata but not in the same or higher strata as a rule using negation. This restriction
ensures that there are no circular dependencies between rules and that the pro-
gram can be evaluated using a bottom-up approach. The computational method
executed to empower the ego networks ego(v) is built on the results of deductive
databases to compute the minimal model of the deductive database[22]. This min-
imal model is defined in terms of the fixed-point assignment σego(.)

minFix, that deduces
relationships between entities vi and vj in the neighbors N (.). The minimal model
for DS(EDB, IDB) can be computed in polynomial time in the overall size of
the ego network ego(v) and the neighbors α(N (v)) for all the entities v where
I(v) ∈ {C1, C2}, C1 = D(r), and C2 = R(r).
A Sub-symbolic System: A model to learn Knowledge Graph Embeddings
solves the abstract target prediction τ over KG for the relation r and the prediction
head or tail. The sub-symbolic system predicts incomplete triples of the way
⟨h, r, ? ⟩ if prediction = tail and ⟨? , r, t⟩ if prediction = head.
The Integration of Symbolic and Sub-symbolic Systems: The ego net-
work ego(v) and the edges between their neighbors α(N (v)) are extended with
explicit relationships among entities in the neighbors N (v) by the deductive
system DS(EDB, IDB). As a result, the symbolic system implemented by
DS(EDB, IDB) alleviates the data sparsity issues in KG that may negatively
affect the learning of the KGE in the abstract target prediction τ .
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4.2.4 The Symbolic and Sub-symbolic System Architecture

Figure 4.5 depicts the architecture that implements the proposed approach.
The architecture receives a knowledge graph KG = (V,E, L, C, I,D,R,N , ego, α)
and an abstract target prediction τ = ⟨KG, r, prediction,DS,KGE⟩, where KG
is the knowledge graph, r is a property, prediction represents the head or tail
of triples to predict, DS is the deductive system, and KGE is the knowledge
graph embedding. The architecture returns a learned model of embeddings. These
embeddings are used to solve the target prediction task defined by τ .

The architecture is composed of two main steps. First, the relationships implic-
itly defined by the deductive system are deduced by means of a Datalog program.
Second, once KG is augmented with new deduced relationships, KGE learns a
latent representation of entities and properties of KG in a low-dimensional space.
The architecture is agnostic of the method to learn the embeddings. Moreover, our
approach is domain-agnostic. For example, it can be applied in the context of In-
dustry 4.0 to discover relations between standards and thus solve interoperability
issues between standardization frameworks [105, 107].

4.2.5 Abstract Target Prediction Task. Running example

Albeit illustrated in the context of treatment response, the proposed method is
domain-agnostic. It only requires the definition of the deductive system to enhance
the relationships in the ego network of the entities v where I(v) ∈ {C1, C2}, C1 =
D(r), and C2 = R(r). Figure 4.6 illustrates the proposed steps to enhance the
predictive capacity by knowledge graph embedding models. The KG shown in
Figure 4.6(A) is the same as in Figure 4.3a. Assuming we receive as input the
abstract target prediction τ = ⟨KG, r, prediction,DS,KGE⟩, where the KG is
represented in Figure 4.6(A), the property is r = has_response, the prediction =
tail, DS is the deductive system, and KGE is the KGE algorithm. The EDB
of the DS comprises all the ground facts of the form: p(s, o), where the triple
(s, p, o) ∈ ego(v) ∪ α(N (v)), I(v) ∈ {C1, C2}, C1 = D(has_response), and C2 =
R(has_response). Then, the domain and range of the property r = has_response
are Treatment and Response, respectively. In addition, the entity type for v in
ego network ego(v) is Treatment or Response. The entities of type Response are
low_effect and effective, and T1 and T2 are entities of type Treatment.

The EDB comprises all the ground facts defined by the ego net-
works: ego(T1), ego(T2), ego(low_effect), and ego(effective), and their neigh-
bors α(N (T1)), α(N (T2)), α(N (low_effect)), and α(N (effective)). Figure 4.6(B)
shows the ego networks ego(T1) and ego(T2) with the set of edges between
pairs of entities in the set of neighbors of entity T1 and T2 defined by
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Figure 4.6: Running example. Figure 4.6 illustrates the proposed steps to en-
hance the predictive capacity by KGE models. Step A: given a KG and an
abstract target prediction τ the ego networks ego(v) are defined. Step B: illus-
trates the ego network ego(T1) and ego(T2) and a deductive system deduces new
relationships to enhances the ego(v) in KG. Step C: depicts a KGE model in
which predictive capability is enhanced by symbolic reasoning. The relationships
in E and the new facts deduced by DS improve the link prediction task.

α(N (T1)) and α(N (T2)), respectively. Then, DS deduces new relationships
enhancing the links in the ego(T1) and ego(T2); red arrows represent the
deduced relationships. Considering the Datalog program P (1) as the IDB
for DS, the facts inferred_interaction(D1, D4), inferred_interaction(D3, D4),
inferred_interaction(D5, D4), and inferred_interaction(D5, D2) are deduced en-
hancing the ego network.

The SPARQL query in Listing 1 extracts the ego network ego(T1) and the set
of edges between pairs of entities in the set of neighbors of entity T1 defined as
α(N (T1)). Listing 1 illustrates a CONSTRUCT query that returns RDF triples
in the form of subject, predicate, and object and represents the ground facts of
the EDB. The predicate represents the ground predicated in the EDB, the subject
represents the first term of the ground predicated, and the object represents the
second term.

The IDB described by the Datalog program P (1) allows deducing new relation-
ships and increasing the ego networks ego(T1) and ego(T2). The deduced relations
are inserted into the KG through the SPARQL query in Listing 2. The deduced
relationship e belongs to E ′, i.e., e ∈ E ′.
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PREFIX ex: <http://example/vocab/>
CONSTRUCT {?A <interacts_with> ?B} WHERE {

?A ex:part_of <T1> .
?B ex:part_of <T1> .
?A ex:interacts_with ?B .

Listing 1: SPARQL query to ground the extensional predicate
interacts_with(A,B)

PREFIX ex: <http://example/vocab/>
INSERT DATA {

<A> ex:interacts_with <X>
}

Listing 2: SPARQL query to insert the deduced relationships from the
intensional predicate inferred_interaction(A,X)

Figure 4.6(C) illustrates a KGE model in which the symbolic system en-
hances the predictive capacity. The DS increases the relationships E in KG,
alleviating the data sparsity issues in KG. Thus, the KG that contains new
facts deduced by DS guides the KGE model, improving the link prediction
task for r = has_response and prediction = tail. Figure 4.6(C) shows the
link prediction task of finding t as the best scoring tail for the incomplete triple
(T2, has_response, ? ): argmaxt∈V ϕ(T2, has_response, t). Treatment T2 is pre-
dicted to have a response low_effect (T2, has_response, low_effect), i.e., T1 and
T2 are nearby in the embedding space after enhancing the ego(v) in KG.

4.3 Polypharmacy Treatment Effectiveness Pre-
diction with a Neuro-Symbolic AI System

As a proof concept, we apply our Neuro-Symbolic AI approach to address
the problem of predicting polypharmacy treatment effectiveness. We have imple-
mented a deductive system on top of a Treatment Knowledge Graph (KG). The
technique aims to identify the combination of drugs whose interactions may affect
the treatment’s effectiveness. Then, the problem of predicting treatment effec-
tiveness is modeled as a problem of link prediction between treatments and the
responses: low-effect or effective.
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4.3.1 Motivating Example

We motivate our work in healthcare, specifically for predicting polypharmacy
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Figure 4.7: Motivating Example. Figure 4.7a shows two polypharmacy oncolog-
ical treatments, T1 and T2, represented in RDF. The drugs DB00193, DB00642,
and DB00958 are part of T1, and the drug-drug interactions are represented by the
property InteractsWith. The therapeutic response of T1 is annotated as low_effect
by the property has_response, while the therapeutic response of T2 is unknown.
Figure 4.7b depicts the ideal RDF graph, where a symbolic system generates a new
DDI between DB00193 and DB00958. Ideally, a sub-symbolic system detects that
both treatments are similar and predicts the effectiveness of T2 as low effective.

treatment response. Polypharmacy is the concurrent use of multiple drugs in treat-
ments, and it is a standard procedure to treat severe diseases, e.g., lung cancer.
Polypharmacy is a topic of concern due to the increasing number of unknown
drug-drug interactions (DDIs) that may affect the response to medical treatments.
There are two types of DDIs, pharmacodynamics, i.e., the effect of a drug in the
body, and pharmacokinetics, i.e., the course of a drug in the body. Pharmacoki-
netics DDIs alter a drug’s absorption, distribution, metabolism, or excretion. For
example, an increase in absorption will increase the object drug’s bioavailability
and vice versa. If a DDI affects the object’s drug distribution, the drug transport
by plasma proteins is altered. Moreover, a drug’s therapeutic efficacy and toxic-
ity are affected when a pharmacokinetics DDI alters the object’s drug metabolism.

57



Chapter 4. A Neuro-Symbolic Artificial Intelligence System over Knowledge Graphs

Lastly, if the excretion of an object drug is reduced, the drug’s elimination half-life
will be increased. Notice that the pharmacokinetic interactions can be encoded in
a symbolic system.

Figure 4.7a shows two polypharmacy oncological treatments encoded in RDF.
We extract the known DDIs between the drugs of these treatments from Drug-
Bank2. However, polypharmacy therapies produce unforeseen DDIs due to drug
interactions in the treatment. Since DDIs affect the effectiveness of a treatment,
there is a great interest in uncovering these DDIs. Figure 4.7b depicts an ideal
RDF graph where all the true relations are explicitly represented. Dotted red ar-
rows represent DDI between the drugs DB00193 and DB00958 that are generated
as the result of DDIs among drugs in the treatment. Rules that specify how these
DDIs are generated can be represented in a Datalog program where the exten-
sional database corresponds to facts representing explicit relationships. On the
other hand, the implicit DDIs can be deduced via the intensional rules of the de-
ductive system. The DDI between DB00193 and DB00958 increases the description
of treatments T1 and T2, enabling both treatments to share more relationships.
Then, a sub-symbolic system, e.g., implemented using a KGE model, can explore
this enhanced and make a more accurate prediction of the treatment response by
employing the deduced DDIs. For example, the geometric model TransH places T1
and T2 nearby in the embedding space after deducing DDIs and predicts the thera-
peutic response of T2. As a result, this neuro-symbolic system enhances treatment
information by identifying drug combinations whose interactions may affect treat-
ment effectiveness. We propose an approach that resorts to symbolic reasoning
implemented by a Datalog database and stage-of-the-art KGE models; it deduces
DDIs within a treatment. Then, the KGE model embeds all the knowledge in the
graph and predicts treatment responses. Although we depict the method in the
context of treatment effectiveness, this approach is domain-agnostic and could be
applied to any other link prediction task.

4.3.2 Treatment Knowledge Graph Creation

The P4-LUCAT consortium1 collected heterogeneous data sources that com-
prise clinical records, drugs, and scientific publications and built a knowledge graph
that provides an integrated view of these data. The KG is built with the aim of
personalized medicine for Lung Cancer treatments. The treatments are extracted
from Electronic Health Records (EHRs) from the Hospital Universitario Puerta
del Hierro of Majadahonda of Madrid (HUPHM). Furthermore, the DDIs are ex-
tracted from DrugBank, in the approved category. The interactions’ type and effect
are extracted using named entity and linking methods implemented by Sakor et

1https://p4-lucat.eu/
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Table 4.1: Summary of the Lung Cancer Knowledge Graph.

Knowledge Graph for Lung Cancer Records

Lung Cancer Patients 1’242
Lung Cancer Drug 45
Chemotherapy Drug 7
Immunotherapy Drug 3
Antiangiogenic Drug 2
Tki Drug 5
Non Oncological Drug 41
Oncological Surgery 9
Tumor Stage 6
Publications 178’265
Drugs 8’453
Drug-Drug Interactions 1’550’586

al. [114]. These methods have also been used to extract DDIs in covid-19 and
lung cancer treatments [115, 131]. Table 4.1 contains a summary of the number of
annotations by classes in the Lung Cancer Knowledge Graph.

Figure 4.8 describes a Lung Cancer patient in the Lung Cancer Knowledge
Graph. The patient P1 is in stage II and has surgery. Also, P1 received treatment
on 10.07.2020 with an effective therapeutic response. In that treatment, P1 is
treated with a combination of chemotherapy drugs and one non-oncological drug.
Drug-Drug Interactions with the effect and their impact is reported.
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Figure 4.8: Representation of a patient in the Lung Cancer Knowledge
Graph.
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The input KG in our use case contains 548 polypharmacy cancer treatments
T extracted from lung cancer clinical records, with the therapeutic response from
each of them and the known Drug-Drug Interactions. The therapeutic response is
the target class and can be set to the value low-effect or effective treatment. The
meaning of an effective treatment is because of a complete therapeutic response
or stable disease. A low-effect treatment means a partial therapeutic response
or disease progression. Figure 4.9 depicts a descriptive analysis of the treatment
response according to the data extracted from the clinical records. Figure 4.9a
shows the treatment response distribution, where there are 149 effective treatments
and 399 low-effect treatments. Figure 4.9b and 4.9c present the histogram for
the class effective and low-effect, respectively. We can observe that there are
treatments with nine and ten drugs in both treatments’ response classes. Also, the
most low-effect treatments are composed of more drugs than effective treatments.
The rate of drugs between five and ten can be explained by the fact that in patients
with multiple comorbidities, multiple drugs are prescribed to treat the disease.
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Figure 4.9: Descriptive analysis of the treatment responses.

For each treatment, ti ∈ T , the DDIs and their effect are known from Drug-
Bank [140]. Then, the treatments, the treatment response, the drugs, DDIs, and
DDI effects for each treatment are managed in KG. The polypharmacy treatment
knowledge graph KG = (V,E, L, C, I,D,R,N , ego, α) is defined as follows:
• The types Drug, Treatment, DDI, Effect of DDI, and Treatment Response

belong to C.

• Drugs, Treatments, DDIs, Effect of DDI, and Treatment Response are rep-
resented as instances of V .

• Edges in E that belong to V × V represent relations about drugs into a
treatment.

• Properties tgk:has_response, tgk:part_of, tgk:precipitant_drug,
tgk:object_drug, tgk:ddiEffect, tgk:hasInteraction, and rdf:type correspond to
labels in L.
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Figure 4.10: Portion of Polypharmacy Treatment Knowledge Graph KG.
The entity treatment tkge:treatment1, is composed by three drugs represented by
the nodes, tkge:DB00338, tkge:DB12267, and tkge:DB00958. The entity treatment
tkge:treatment2, contains two drugs and shares tkge:DB00958 with tkge:treatment1.
The node tkge:DB00338DB12267 represents a DDI in the treatment1 where the
tkge:DB00338 is the precipitant, and tkge:DB12267 is the object drug. The ef-
fect of the DDI is represented by the node tkge:metabolism_increase. The treat-
ment tkge:treatment1 has a low effective response represented by the property
tkg:has_response.

Figure 4.10 shows a portion of KG. We model treatments, their prescribed
drugs, drug-drug interactions, drug-protein interactions, publications related to the
drug-protein interactions, and the gene that encodes the proteins in a knowledge
graph.
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4.3.3 Symbolic System. Deductive Database

Let τ = ⟨KG, r, prediction,DS,KGE⟩ be the input abstract target prediction,
where KG is the polypharmacy treatment knowledge graph, r = has_response,
prediction = tail, DS the deductive database system, and KGE the knowledge
graph embedding algorithm. The IDB of the DS comprises a set of rules to deduce
new DDIs in treatments. A DDI is deduced when a set of drugs are taken together
and is represented as a relation in the minimal model of the deductive database DS.
The extensional database corresponds to statements about interactions between
drugs stated in KG. The ground predicates included in the EDB are the following;
they are extracted from the KG by executing SPARQL queries:

rule1(serum, increase). rule2(serum, decrease).
rule1(metabolism, decrease). rule2(metabolism, increase).
rule1(absorption, increase). rule2(absorption, decrease).
rule1(excretion, decrease). rule2(excretion, increase).
precipitant(DB00958DB06186, DB00958). object(DB00958DB06186, DB06186).
effect(DB00958DB06186, excretion). impact(DB00958DB06186, decrease).

SPARQL queries in Listing 3 and Listing 4 declaratively define the ground
rule1 and rule2 in the EDB. Both queries are executed on top of the KG; the
CONSTRUCT query returns RDF triples in the form of subject, predicate, and
object. The predicate in the RDF triples represents the ground predicate in the
EDB.
PREFIX tkg: <http://research.tib.eu/lung-cancer/vocab/>
PREFIX tkge: <http://research.tib.eu/lung-cancer/entity/>
CONSTRUCT {?E <rule1> ?I} WHERE {

?ddi a tkge:DDI .
?ddi tkg:effect ?E .
?ddi tkg:impact ?I .
FILTER((?E in (tkge:serum, tkge:absorption) && ?I="increase") ||

(?E in (tkge:metabolism, tkge:excreation) && ?I="decrease")) }

Listing 3: SPARQL query to ground the extensional predicate rule1(E, I)

The facts included in the ground predicates precipitant, object, effect, and im-
pact from the EDB are extracted using the CONSTRUCT query of Listing 5. The
EDB contains thousands of facts for those predicates; therefore, only a few ground
facts are presented.

The above-mentioned rule1 identifies the combinations of effect and impact
that alter the toxicity of an object drug, while rule2 extracts the combinations of
effect and impact that alter the effectiveness of an object drug. The intensional
database (a.k.a. IDB) comprises Horn rules that state when a new DDI can be
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PREFIX tkg: <http://research.tib.eu/lung-cancer/vocab/>
PREFIX tkge: <http://research.tib.eu/lung-cancer/entity/>
CONSTRUCT {?E <rule2> ?I} WHERE {

?ddi a tkge:DDI .
?ddi tkg:effect ?E .
?ddi tkg:impact ?I .
FILTER((?E in (tkge:serum, tkge:absorption) && ?I="decrease") ||

(?E in (tkge:metabolism, tkge:excreation) && ?I="increase")) }

Listing 4: SPARQL query to ground the extensional predicate rule2(E, I)

PREFIX tkg: <http://research.tib.eu/lung-cancer/vocab/>
PREFIX tkge: <http://research.tib.eu/lung-cancer/entity/>
CONSTRUCT { ?ddi <precipitant> ?A .

?ddi <object> ?B .
?ddi <effect> ?E .
?ddi <impact> ?I } WHERE {

?ddi a tkge:DDI .
?ddi tkg:precipitant ?A .
?ddi tkg:object ?B .
?ddi tkg:effect ?E .
?ddi tkg:impact ?I }

Listing 5: SPARQL query to extract the ground the extensional predi-
cates precipitant(ddi,A), object(ddi,B), effect(ddi,E), and impact(ddi,I)

deduced as a result of the combination of the treatment’s drug. These rules are
negation free; thus, the interpretation of the deductive database corresponds to
the minimal model of the EDB and IDB. The intensional database relies on the
fact that pharmacokinetic DDIs cause the concentration of one of the interacting
drugs (a.k.a. object) to be altered when combined with the other drug (a.k.a.
precipitant). Thus, the absorption, distribution, metabolism, or excretion rate of
the object drug is affected. Whenever the object drug absorption is decreased
(resp. increased), the bioavailability of the drug is also affected. Furthermore, any
alteration in the metabolism or excretion of the object drug has consequences on
the therapeutic efficacy and toxicity of the drug. The following Datalog rules state
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the effect of pharmacokinetic DDIs:

precipitant(ID, A), object(ID, B), effect(ID, E), impact(ID, I)⇒
ddi(A,E, I, B). (1)

ddi(A,E, I, B)⇒
inferred_ddi(A,E, I, B). (2)

inferred_ddi(A,E2, I2, B), ddi(B,E, I, C), rule1(E, I), rule1(E2, I2), (A! = C)⇒
inferred_ddi(A,E, I, C). (3)

inferred_ddi(A,E2, I2, B), ddi(B,E, I, C), rule2(E, I), rule2(E2, I2), (A! = C)⇒
inferred_ddi(A,E, I, C). (4)

Rule (2) states the base case of the IDB. The predicate symbol ddi represents
the DDIs with their effect and impact in KG. Precipitant drug A generates effect
E (e.g., absorption, excretion, metabolism, serum concentration) with impact I
(e.g., increase or decrease) in object drug B. The predicate symbol inferred_ddi
expresses a deduced DDI, where the first term is the precipitant drug, the second
and third terms represent the value of the property effect and impact of the DDIs
deduced, and the last term is the object drug. Rule (3) and (4) define the effects
of combining drugs that interact in a polypharmacy treatment and comprises the
clauses to deduce relationships encoded in KG. The head predicate inferred_ddi
becomes valid when the predicate symbols in the body of the rule are also valid.
The DDIs deduced from the Rule (3) increase the toxicity of the object drug, and
the DDIs deduced from Rule (4) alter the effectiveness of the object drug. Those
deduced DDIs are aggregated to the KG; they represent valuable insights into each
treatment. Each DDI deduced, which is part of the minimal model of the IDB
predicate inferred_ddi(A,E,I,C), is inserted into the KG using the query shown in
Listing 6. From the motivating example, we can observe that by applying the DDI
deductive system to the treatment T1 in Figure 4.7a, a new DDI is deduced in
Figure 4.7b; it represents a new true triple enhancing the treatment information,
reducing thus, data sparsity.

4.3.4 Sub-Symbolic System. Knowledge Graph Embedding
Model

Once the deductive system DS deduces new DDIs, the Knowledge Graph
Embedding algorithm KGE is applied to learn a latent representation of the
entities in a low-dimensional space. The DS increases the relationships in the
ego networks ego(v) such as I(v) ∈ {C1, C2}, C1 = D(has_response), and
C2 = R(has_response). The DS minimizes the data sparsity issues by aug-
menting the description of the treatments with newly deduced DDIs. Then, KGE
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PREFIX tkg: <http://research.tib.eu/lung-cancer/vocab/>
INSERT DATA {

<ddi> tkg:precipitant <A> .
<ddi> tkg:object <C> .
<ddi> tkg:effect <E> .
<ddi> tkg:impact <I>
}

Listing 6: SPARQL query to insert the deduced DDI from the intensional
predicate inferred_ddi(A,E,I,C)

is able to improve the entities’ representation in the embedding space. Thus, the
scoring function ϕ(h, r, t) of the KGE is improved, and the link prediction task
infers missing links that correspond to triples ⟨h, r, ? ⟩, where I(h) = D(r) and
r = has_response. Symbolic and sub-symbolic systems are highly complementary
to each other. Sub-symbolic AI systems are able to solve complex problems that
humans cannot analyze to draw conclusions or make predictions. Sub-symbolic
methods are generally robust to data noise, while symbolic systems are vulnerable
to data noise, which contrasts with the strength of sub-symbolic approaches.

4.4 Experimental Study

In this chapter, we empirically assess the impact of the DDIs encoded in KG on
our approach’s behavior. In particular, this chapter explores the following research
questions: Q1 Can the problem of predicting treatment effectiveness be effectively
modeled as a problem of link prediction? Q2 Can the Symbolic System for an
abstract target prediction improve the link prediction capacity of the KGEs? Q3
Can knowledge encoded in drug-drug interactions enhance the accuracy of the
predictive task?

4.4.1 Experiment Setup

We empirically evaluate the effectiveness of our approach to capture knowledge
encoded in KG and predict polypharmacy treatment response.
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(a) KGbasic (b) KG (c) KGrandom

Figure 4.11: Benchmarks to evaluate. Figure 4.11a represents the KGbasic, and
it includes treatments from clinical records and pharmacokinetic DDI extracted
from Drugbank. Figure 4.11b represents the KG and includes treatments from
clinical records, pharmacokinetic DDI extracted from Drugbank, and a new set of
pharmacokinetic DDI deduced by the DDI Deductive System. Figure 4.11c repre-
sents the KGrandom and includes treatments from clinical records, pharmacokinetic
DDI extracted from Drugbank, and the same number of new links deduced in KG
is generated randomly.

Benchmarks

We conduct our evaluation over three Knowledge Graphs represented in Fig-
ure 4.11. KGbasic is the Knowledge Graph which only contains for each polyphar-
macy treatment the DDIs and their effect extracted from Drugbank. The second
Knowledge Graph, KG, includes not only the DDIs extracted from DrugBank but
also the ones deduced by Deductive Database, i.e., it contains new deduced DDIs
and their effects. Lastly, the third Knowledge Graph, KGrandom is created from
KGbasic; it also includes the same number of links included in KG, but these links
are randomly generated, i.e., they correspond to false or true relations. We aim
to validate whether the links discovered by our DDI Deductive System improve
the prediction of treatment responses.

Knowledge Graph Embedding Models

We utilize eleven models to compute latent representations, e.g., vectors, of entities
and relations in the three KGs and then employ them to infer new facts. In
particular, we utilize three main families of models:

• Tensor Decomposition models such as HolE and RESCAL.
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Table 4.2: Statistics of Knowledge Graph. Metrics to measure size, diversity,
and sparsity in Knowledge Graph

KG T E R RE EE RD ED

KGbasic 5630 1069 7 1.615 10.846 804.286 10.533
KG 6675 1069 7 1.726 10.989 953.571 12.488
KGrandom 6675 1069 7 1.710 11.291 953.571 12.488

• Geometric models such as RotatE, QuatE, and the Trans∗ family models
TransE, TransH, TransD, and TransR.

• Deep Learning models such as UM, SE and ERMLP.

The PyKEEN (Python KnowlEdge EmbeddiNgs) framework [4] is used to learn the
embeddings. The hyper-parameters utilized to train the model are epoch number
200 and training loops: stochastic local closed world assumption (sLCWA). The
negative sampling techniques used are Uniform negative sampling and Bernoulli
negative sampling. The embedding dimensions and the rest of the parameters are
set by default. To assure statistical robustness, we apply 5-fold cross-validation.
For evaluating the performance of embeddings methods, we measure the metrics:
Precision = TP

TP+FP
, Recall = TP

TP+FN
, F1-Score = 2∗(precision∗recall)

(precision+recall)
.

Implementations

The pipeline for predicting polypharmacy treatment response has been imple-
mented in Python 3.9. Experiments are executed using 12 CPUs Intel® Xeon(R)
W-2133 at 3.60GHz, 64 GB RAM, and 1 GPU GeForce GTX 1080 Ti/PCIe/SSE2
with 12 GB VRAM. We used the library pyDatalog2 to develop the Deductive
System and the library PyKEEN3, to learn the embeddings.

4.4.2 Metrics to Characterize the Benchmarks

Table 4.2 shows the statistics of the three KGs. We considered the metrics,
Number of Triples (T ), Entities (E), and Relations or properties (R), to measure
the size in KG. The metrics Relation entropy (RE) and Entity entropy (EE) are
considered to measure diversity and Relational density (RD) and Entity density
(ED) to measure sparsity in Knowledge Graph.

The metrics RE and EE measure the distribution of relationships and entities
in the KG, respectively. Higher values of RE mean that all possible relations

2https://sites.google.com/site/pydatalog/home
3https://pykeen.readthedocs.io/en/stable/index.html
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are equally probable, and lower values mean one or more relations have a high
probability. The values of the metric RE mean that all possible relations in KG
are more equally probable than all possible relations in KGbasic and KGrandom. The
three KGs have a higher EE value than RE as they use a small set of manually
defined relations but contain many entities. The metrics RD and ED measure the
sparsity of entities and relationships in the KG, respectively. We measure sparsity
as information density, where RD means average triples per relation and ED is
the average triples per entity. KGbasic has the lower average triples per relation
and entity while KG and KGrandom have the higher average triples per entity. The
metrics evaluated in Table 4.2 are defined in the paper [99], implemented in our
GitHub4.

4.4.3 Impact of Capturing Symbolic Knowledge

Figure 4.12 shows the behavior of the scoring function for the entities predicted
by TransH and RotatE embedding models. For the purpose of brevity, we only
show the score value results for two embedding models. The evaluation material
is available in the GitHub repository5. We can notice how DS for the predic-
tion property r = has_response is impacting the KGE models. Figure 4.12a to
4.12c and Figure 4.12g to 4.12i show the score values of the entities predicted on
the link prediction task given the predicate ex:has_response and object effective
by the TransH and RotatE models, respectively. Figure 4.12d to 4.12f and Fig-
ure 4.12j to 4.12l report on the score values of the entities predicted given the
predicate ex:has_response and object low-effect by the TransH and RotatE mod-
els, respectively. We can observe that both models have different behaviors for
each benchmark (KGbasic,KG,KGrandom). The vertical line in each plot represents
the cut-off in a specific percentile. The percentile used for each KG was based
on the percentage of links to the entity effective and low-effect in the KG. The
portion of entities predicted, delimited by the vertical line, is evaluated in terms
of precision, recall, and f1-score.

4.4.4 Evaluating the performance of our integrated
Symbolic-Sub-symbolic System

The selected portions of entities predicted are measured with precision, recall,
and f1-score on average because of cross-validation. Figure 4.13 and Figure 4.14
show the evaluation of the Link Prediction task through Uniform negative sampling
and Bernoulli negative sampling, respectively. Uniform sampling randomly chooses

4https://github.com/SDM-TIB/StatisticsKnowledgeGraph
5https://github.com/arivasm/Neuro-SymbolicTreatment-Response.git
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Figure 4.12: Score value of the predicted entities. The green line represents
the cut-off at the 27 and 73 percentiles for the three KGs.

the candidate entity based on a uniform probability between all possible entities.
Bernoulli sampling corrupts the head with probability p and the tail with 1 − p,
where p is an average number of unique tail entities per unique head entities
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given a relation r. The relation with cardinally 1-n has a higher probability of
corrupting the head, and relations n-1 have a higher probability of corrupting
the tail. Figure 4.13 and 4.14 show the results of the three KG benchmarks.
Each plot depicts the results of a metric for each embedding model and KG.
The best performing embedding model in the three metrics is TransH. The KGE
models have all better performance in KG obtained in the three metrics in both
negative sampling techniques. In addition, the worst performance is observed in
KGrandom. These results suggest that the deduced DDIs by the Deductive System
are meaningful to the treatment responses. More importantly, they put the crucial
role of the deduced relations into perspective.
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Figure 4.13: Evaluation of the Link Prediction task in terms of precision, recall,
and f-measure. Utilizing Uniform negative sampling.
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Figure 4.14: Evaluation of the Link Prediction task in terms of precision, recall,
and f-measure. Utilizing Bernoulli negative sampling.

4.4.5 Discussion

The techniques proposed in this chapter rely on known relations between en-
tities to predict novel links in the KG. During the experimental study, we observe
that these techniques could improve the prediction of treatment effectiveness. Fig-
ure 4.15 shows a box plot of cosine similarity. Five treatments with a low-effect
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Figure 4.15: Box-plot of Cosine Similarity. The boxplot illustrates the dis-
tribution of cosine similarity values between treatments in x-axe with a list of
treatments. We observe the five treatments in the x-axe are more similar to the
treatments in KG than in KGbasic.

response are selected, and KGbasic misclassify them, but KG predicts them cor-
rectly. Next, all the treatments with a low-effect response are selected. Thus,
the cosine similarity is computed between the selected treatment and the list of
treatments with the same response. We can observe that the five treatments are
more similar to the list of treatments in KG than in KGbasic. The first quartile,
median, and third quartile values in the boxplot are higher in KG than in KGbasic.
Therefore, these outcomes put in evidence the quality of the deduced links in KG
and their impact on the accuracy of the KGE models in the resolution of the task
of predicting treatment effectiveness.

Figure 4.16 shows the distribution of DDIs by treatment in KGbasic, KG, and
KGrandom. The x-axis represents the count of DDIs in treatment, and the y-axis
represents the density of treatments in the KG with a specific x value. We utilized
the Kernel Density Estimation (KDE) function to compute the probability density
of the count of DDIs in each KG. We can observe for both treatment response
effective and low-effect that KG have less density for treatments with five or fewer
DDIs than the other two KGs and more density for treatments with more than
five DDIs than the rest of the KGs. Furthermore, most treatments with effective
response contain less than five DDIs while treatments with low-effect response
contain more than five DDIs. These outcomes evidence the crucial role implicit
DDIs have on a treatment’s response and the need to deduce them using symbolic
systems.

Analysis of deduced DDI by Treatment classes: Figure 4.17 exhibits the
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Figure 4.16: The distribution of DDIs by treatment for each KG. Fig-
ure 4.16a shows the density of treatments by DDIs for the treatment response
effective in KGbasic, KG, and KGrandom. Figure 4.16b shows the density of treat-
ments by DDIs for the treatment response low-effect.
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Figure 4.17: Distribution of DDIs by treatment response.

distribution of DDIs by treatment response in both KGbasic and KG. The DDI
Deductive System deduces new DDIs in 23.1% of treatments with low-effect re-
sponses while only 10.7% of treatments with effective responses deduce new DDIs.
This analysis indicates that the DDI Deductive System deduces more than twice
the number of DDIs in low-effect response treatments than in effective response
treatments.

4.5 Summary
In this chapter, we present an approach based on integrating Neuro-Symbolic

Artificial Intelligence systems and propose a deductive database over a knowledge
graph based on the existing approaches of deductive database systems. Knowl-
edge graphs enable the description of the meaning of data, the integration of data
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from heterogeneous sources, and the discovery of unknown patterns. However,
they are limited by the data sparsity issues for knowledge discovery. The proposed
deductive database makes implicit knowledge explicit and machine-readable. Our
proposed solution builds ego networks of an abstract target prediction to deduce
new relationships and enhances the ego networks. Thus, the deductive database
reduces the data sparsity issue, enabling the knowledge graph to become mean-
ingful in the discovery task. The proposed neuro-symbolic AI system integrates
the deductive database with KGE models, which benefit from the symbolic system
as it assists in overcoming data sparsity issues. We assess the performance of our
approach in a KG for lung cancer to discover treatment effectiveness. The de-
ductive system improves existing embedding models by performing the treatment
prediction task. Results of a 5-fold cross-validation process demonstrate that our
Neuro-Symbolic AI approach improves the state-of-the-art KGE models evalu-
ated. Overall with the proposed approach, knowledge represented semantically in
knowledge graphs can be exploited to solve a broad range of problems.
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Chapter 5

Discover Relations across Industry
4.0 Standards with a
Neuro-Symbolic AI System

The main objective of the fourth industrial revolution, Industry 4.0 (I4.0), is
the creation of smart factories by combining the Internet of Things (IoT), Internet
of Services (IoS), and Cyber-Physical Systems (CPS). In smart factories, humans,
machines, materials, and CPS cooperate intelligently to produce individualized
products. This cooperation requires effective communication and the resolution of
interoperability issues generated whenever the same products are described with
different standards. Different industrial communities have defined standardiza-
tion frameworks aligning standards according to their features and expressiveness.
Relevant examples are the Reference Architecture for Industry 4.0 (RAMI4.0) [2]
or the Industrial Internet Connectivity Framework (IICF) in the US [77]. De-
spite the capacity to categorize existing standards, standardization frameworks
may present divergent interpretations of the same standard. Mismatches among
standard classifications generate semantic interoperability conflicts that negatively
impact communication effectiveness in smart factories.

Database and Semantic Web communities have extensively studied the problem
of data integration [42, 70, 86], and various approaches have been proposed to sup-
port data-driven pipelines to transform industrial data into actionable knowledge
in smart factories [9, 57, 92]. Ontology-based approaches have also contributed
to creating a shared understanding of the domain [74], specifically Kovalenko and
Euzenat [70] have equipped data integration with diverse methods for ontology
alignment. Furthermore, Lin et al. [76] identify interoperability conflicts across
domain-specific standards (e.g., RAMI4.0 model and the IICF architecture), while
works by Grangel-Gonzalez et al. [43, 44, 45] show the relevant role that Descrip-
tive Logic and Datalog play in liaising I4.0 standards. Certainly, the extensive
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literature in data integration provides the foundations for enabling the semantic
description and alignment of "similar" things in a smart factory. Nevertheless,
finding alignments across I4.0 requires encoding domain-specific knowledge rep-
resented in standards of diverse nature and standardization frameworks defined
with different industrial goals. We rely on state-of-the-art knowledge representa-
tion and discovery approaches to embedding meaningful associations and features
of the I4.0 landscape to enable interoperability.

In this chapter, we address the problem of determining relatedness across I4.0
standards described in terms of their main features and standardization frame-
works. Our goal is to uncover alignments among related standards, i.e., standards
that define the same type of smart factory components. Moreover, we aim to
provide a precise classification of the standards and contribute to a more precise
categorization in the standardization frameworks. Figure 5.1 shows the challenges
we tackle in this chapter and the contributions to address the challenges. The
research work presented in this chapter is based on the publications [105, 107].
This chapter addresses the following research questions:

RQ1: How can metadata encoding data meaning be exploited to discover
relationships in knowledge graphs?

RQ3: How can implicit knowledge be used to enhance knowledge discovery
tasks?

To answer the research questions RQ1 and RQ3, we propose a knowledge-
driven approach able to integrate standards and standardization frameworks into
a knowledge graph for discovering relations. The Neuro-Symbolic AI approach
presented in Chapter 4 is employed to discover relationships between standards
in the KG. We present a symbolic system implemented by a deductive database
to enhance the performance of knowledge graph embedding models. The features
of the standards represented in a knowledge graph are exploited to build latent
representations in a low-dimensional space, i.e., embeddings. Values of similarity
metrics between embeddings are used in conjunction with state-of-the-art com-
munity detection algorithms to identify patterns among standards. Then, the
homophily prediction principle is performed in each community to discover new
links between standards and frameworks. The observed results demonstrate the
benefits of exploiting knowledge graphs for the computation of alignments across
standards. These outcomes provide evidence of the accuracy of the uncovered
patterns and the discovered relations The main contributions of this chapter are:

• A formalization of the problem of finding relations among I4.0 standards.
It presents I4.0RD, a knowledge-driven approach to unveil these relations.
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Figure 5.1: Challenges and contributions. This chapter focuses on discovering
relationships in a knowledge graph and proposes an approach based on the inte-
gration of Neuro-Symbolic AI systems to solve the problem.

I4.0RD exploits the semantic description encoded in a knowledge graph via a
symbolic system and the creation of embeddings to identify the communities
of standards that should be related.

• An extensive evaluation of I4.0RD in different embeddings learning mod-
els, similarity measures, and community detection algorithms. The eval-
uation material is available at https://github.com/i40-Tools/I40KG-
Embeddings.

This chapter is structured as follows: Section 5.1 motivates the work pre-
sented in this chapter by illustrating the interoperability problem presented in
Industry 4.0. Section 5.2 formalizes the problem statement and proposed solution
addressed in this chapter. Section 5.3 describes our I4.0RD architecture that is
proposed to address the problem presented in Section 5.2. Section 5.4 presents
an empirical evaluation of I4.0RD and an analysis of the obtained results. The
observed results reveal the benefits of I4.0RD for the computation of alignments
across standards. Finally, concluding remarks for this chapter are presented in
Section 5.5.

5.1 Motivating Example
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RAMI 4.0 IICF
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Figure 5.2: Motivating Example. The RAMI4.0 and IICF standardization
frameworks are developed for diverse industrial goals; they classify standards in
layers according to their functions, e.g., OPC UA and MQTT under the com-
munication layer in RAMI4.0, and OPC UA and MQTT in the framework and
transport layers in IICF, respectively. Further, some standards, e.g., IEC 61580
and ISO 15531, are not classified yet.

Existing efforts to achieve interoperability in I4.0 mainly focus on the defini-
tion of standardization frameworks. A standardization framework defines different
layers of group-related I4.0 standards based on their functions and main charac-
teristics. Typically, classifying existing standards in a certain layer is not a trivial
task, and it is biased by the point of view of the community that developed the
framework. RAMI4.0 and IICF are exemplar frameworks. The former is devel-
oped in Germany while the latter is in the US; they meet specific I4.0 requirements
of certain locations around the globe. RAMI4.0 classifies OPC UA and MQTT
standards into the Communication layer, stating that both standards are similar.
Contrary, IICF presents OPC UA and MQTT at distinct layers, i.e., the framework
and the transport layers, respectively. Furthermore, independently of the classifi-
cation of the standards made by standardization frameworks, standards have rela-
tions based on their functions. Therefore, IEC 61580 is an international standard
defining communication protocol for intelligent electronic devices, and ISO 15531
is a standard for industrial automation systems. Both standards are not classified
at all. Figure 5.2 depicts these relations across the frameworks RAMI4.0 and IICF
and the standards; it illustrates interoperability issues in the I4.0 landscape.

Existing data integration approaches rely on the description of the character-
istics of entities to solve interoperability by discovering alignments among them.
Specifically, in the context of I4.0, semantic-based approaches have been proposed
to represent standards, known relations among them, as well as their classifica-
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tion according to existing frameworks [10, 26, 76, 79]. Despite the information, the
structured modeling of the I4.0 landscape only provides the foundations for detect-
ing interoperability issues. We propose I4.0RD, an approach capable of discovering
relations over I4.0 knowledge graphs to identify unknown relations among stan-
dards. Our proposed methods exploit relations represented in an I4.0 knowledge
graph to compute the similarity of the modeled standards. Then, an unsupervised
graph partitioning method determines similar communities of similar standards.
I4.0RD explores communities to identify possible relations of standards, thus en-
hancing interoperability.

5.2 Problem Statement and Proposed Solution

In this chapter, we tackle the problem of unveiling relations between I4.0 stan-
dards. Relations among standards and standardization frameworks (e.g., in Figure
5.3a) are represented in a knowledge graph named I4.0KG. To populate the I40KG,
Grangel-Gonzalez, Bader et al. [9] has surveyed and analyzed the standards land-
scape from a semantic perspective, and the resulting I40KG represents knowledge
expressed in over 200 industry-related documents, including technical reports and
research papers. Nodes in the I4.0KG correspond to standards and frameworks;
edges represent relations among standards, as well as the standards group in a
framework layer. An I4.0KG is defined as follows:

Given sets Ve and Vt of entities and types, respectively, a set E of labeled
edges representing relations and a set L of labels. An I.40KG is defined as G
= (Ve ∪ Vt, E, L, I,D,R, ego,N , α):

• The types Standard, Frameworks, and Framework Layer belong to Vt.

• I4.0 standards, frameworks, and layers are represented as instances of Ve.

• The types of the entities in Ve are represented as edges in E that belong to
Ve × Vt.

• Edges in E that belong to Ve×Ve represent relations between standards and
their classifications into layers according to a framework.

• Properties relatedTo, Type, classifiedAs, isLayerOf correspond to labels in L
that represent the relations between standards, their type, their classification
into layers, and the layers of a framework, respectively.

• I : Ve → Vt maps each entity to a class.

• D : L→ C maps a property to a domain class.
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(a) Actual I4.0 KG
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Figure 5.3: Example of I4.0KGs. (a) shows known relationships among stan-
dards to Framework Layer and Standardization Framework. (b) depicts all the
ideal relationships between the standards expressed with the property relatedTo.
Standards OPC UA and MQTT are related, as well as the standards IEC 61968
and IEC 61400. Our aim is discovering relations relatedTo in (b).

• R : L→ C maps each property to a class range.

• ego : Ve → 2Ve×L×Ve , the function ego(.) represents ego networks in the
knowledge graph. ego(v) assigns to each concept in Ve the set of labeled
edges where v is in the subject or object position.

• ego(v) = {(u1, r, u2)|(u1, r, u2) ∈ E ∧ (u1 = v ∨ u2 = v)}. The ego(v) defines
the ego network of the entity v.

• N (v) = {vi|(v, r, vi) ∈ E ∨ (vi, r, v) ∈ E}. The function N (v) defines the
neighbors of the entity v. N (v) assigns to each concept in Ve the set of
concepts N (v), where v and each element of N (v) are in the subject or
object position of E.

• α : 2Ve → 2Ve×L×Ve . The function α(.) returns a set of edges between the
pairs of elements in the input, where 2Ve represents the power set of entities
in Ve.

• α(T ) = {(v1, r, v2)|(v1, r, v2) ∈ E ∧ v1 ∈ T ∧ v2 ∈ T}. The function α(.)
returns the set of edges between pairs of entities in the input set T .

An ideal knowledge graph: Let G ′ = (Ve ∪ Vt, E
′, L, I,D,R, ego,N , α) be an

ideal I4.0 knowledge graph that contains all the existing relations between stan-
dard entities and frameworks in Ve, i.e., an oracle that knows whether two standard
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entities are related or not, and to which layer they should belong. Figure 5.3b il-
lustrates a portion of an ideal I4.0KG, where the relations between standards are
explicitly represented. G ′ assumes the CWA, i.e., what is unknown to be true must
be false.
An Actual knowledge graph: Let G = (Ve ∪ Vt, E, L, I,D,R, ego,N , α) be the
actual I4.0KG, e.g., in Figure 5.3a, that follows the assumption OWA, i.e., what
is not known to be true is just unknown.
A complete knowledge graph: Let Gcomp = (Ve∪Vt, Ecomp, L, I,D,R, ego,N , α)
be a complete knowledge graph which includes a relation for each possible com-
bination of elements in Ve and labels in L, i.e., E ⊆ E ′ ⊆ Ecomp, where not all
relationships are necessarily true.
G only contains a portion of the relations represented in G ′, i.e., E ⊆ E ′; it
represents those relations that are known and are not necessarily complete. Let
∆(E ′, E) = E ′−E be the set of relations existing in the ideal knowledge graph G ′
that is not represented in G.

5.2.1 Problem Statement

Given a relation e ∈ ∆(Ecomp, E), the problem of discovering relations con-
sists of determining whether e ∈ E ′, i.e., if a relation represented by an edge
r=(ei l ej) corresponds to an existing relation in the ideal knowledge graph G ′.
Specifically, we focus on the problem of discovering relations between standards
in G = (Ve ∪Vt, E, L, I,D,R, ego,N , α). We are interested in finding the maximal
set of relationships or edges Ea that belongs to the ideal I4.0KG, i.e., find a set
Ea that corresponds to a solution of the following optimization problem:

argmax
Ea⊆Ecomp

|Ea ∩ E ′|

Considering the knowledge graphs depicted in Figures 5.3a and Figures 5.3b,
the problem addressed in this work corresponds to the identification of edges in the
ideal knowledge graph that corresponds to unknown relations between standards.

5.2.2 Proposed Solution

We present a neuro-symbolic AI approach to discover relationships between
standards in Industry 4.0 KG. We propose a symbolic system implemented by a
deductive database to enhance the performance of knowledge graph embedding
models. The EDB of the deductive database DS contains ground facts of the
ego networks ego(v), where I(v) ∈ {C1, C2}, C1 ∈ D(r), C2 ∈ R(r), and r =
relatedTo. The variables C1 and C2 represent the domain and range of the property
r, respectively. The IDB comprises rules for deducing relations in ego(v). The
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Figure 5.4: The I4.0RD Architecture. I4.0RD receives the actual I4.0 KG and
outputs an extended version of the I4.0KG including novel relations. The symbolic
system is implemented by a deductive system DS(EDB, IDB) that deduces new
relationships in the ego networks ego(v). Then, the sub-symbolic system imple-
mented by a KGE model receives the I4.0KG enhanced by the symbolic system.
Trans* family of models creates embeddings for each standard, and similarity val-
ues between embeddings are computed; these values are used to partition standards
into communities. Finally, the homophily prediction principle is applied to each
community to discover unknown relations. A knowledge graph closer to the ideal
I4.0 KG is generated.

sub-symbolic systems implemented by KGE models learn a latent representation
of entities and relations and exploit relations represented in an I4.0KG. Further,
an unsupervised graph partitioning method determines the parts of the I4.0KG
or communities of standards that are similar. Then, the homophily prediction
principle is applied in a way that similar standards in a community are considered
to be related.

5.3 The I4.0RD Architecture

We call I4.0RD the proposed architecture capable of discovering relations over
I4.0 knowledge graphs to identify unknown relations among standards. Figure 5.4
presents I4.0RD, a pipeline that implements the proposed approach. I4.0RD
receives an I4.0KG G and returns an I4.0KG G ′ that corresponds to a solution
to the problem of discovering relations between standards. First, the symbolic
system DS deduces new relationships in the ego(v) minimizing the data sparsity
issues in the I4.0KG. Second, in order to compute the similarity values between
the entities an I4.0KG, the sub-symbolic system learns a latent representation of
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the standards in a low-dimensional space. Our approach resorts to the Trans∗
family of KGE models to compute the embeddings of the standards. Then, a
distance metric for vector spaces is applied to compute the values of similarity
between standards. Next, community detection algorithms are applied to identify
communities of related standards. METIS [66], KMeans [7], and SemEP [95] are
methods included in the pipeline to produce different communities of standards.
Finally, I4.0RD applies the homophily principle to each community to predict
relations or alignments among standards.

5.3.1 Symbolic System in I4.0KG. Deductive Database

The EDB of our deductive database system DS corresponds to statements
in the ego networks ego(v), where I(v) ∈ {C1, C2}, C1 ∈ D(r), C2 ∈ R(r),
r = relatedTo, and C1 and C2 represent the domain and range of the property
r, respectively. The IDB contains a set of rules to deduce the implicit relation-
ships between standards in the ego networks. The relation relatedTo is extracted
from the literature and represents a relation that connects two standards. Beside
relatedTo is an equivalence relation that satisfies three properties, i.e., the relation
is reflexive, symmetric, and transitive. They are defined as follows:

• Reflexive: ∀ei ∈ Ve(ei, relatedTo, ei)

• Symmetric: ∀ei, ej ∈ Ve((ei, relatedTo, ej)⇔ (ej, relatedTo, ei))

• Transitive: ∀ei, ej, ek ∈ Ve : ((ei, relatedTo, ej) ∧ (ej, relatedTo, ek)) ⇒
(ei, relatedTo, ek)

An example of the transitivity property of relatedTo is presented with the
following three standards: IEC 61310 P3 E2; IEC 61310 P1 E2; IEC 61310 P2
E2. Those standards describe electrical features and entitle machinery safety -
Indication, marking, and actuation. From the literature the next relations are
known: (IEC 61310 P3 E2, relatedTo, IEC 61310 P1 E2) ∧ (IE 61310 P1 E2,
relatedTo, IEC 61310 P2 E2) and that implies: (IEC 61310 P3 E2, relatedTo, IEC
61310 P2 E2). Since the property relatedTo between standards is an equivalent
relation, the transitive closure of the relations is materialized in I4.0KG. Thus, we
can capture implicit relations between I4.0 standards. The following Datalog rules
state when the property relatedTo relates pairs of standards.

relatedTO(A, B)⇒ inferred_relatedTO(A, B). (5)
type(A, Standard)⇒ inferred_relatedTO(A,A). (6)
relatedTO(B, A)⇒ inferred_relatedTO(A, B). (7)

inferred_relatedTO(A, B), relatedTO(B, C)⇒ inferred_relatedTO(A, C). (8)
classifiedAs(A, C), classifiedAs(B, C)⇒ inferred_relatedTO(A, B). (9)
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Rule (5) states the base case of the IDB, where the predicate
inferred_relatedTO contains the facts of the predicate relatedTO, variables A and
B are related standards. Rule (6) states the reflexive property of relatedTo, where
the variable A is of type Standard. Rule (7) defines the symmetric property of
relatedTo, and Rule (8) declares the transitive property of relatedTo, where the
variables A,B, and C are of type Standard. Rule (9) states that standards be-
longing to the same class are related by the relatedTo property. Figure 5.5 shows
the relation relatedTo before applying the deductive system in I4.0KG (cf. Figure
5.5a) and after being applied Figure 5.5b. Figure 5.5b illustrates how the I4.0 stan-
dards knowledge graph is more connected after the symbolic system DS deduces
new relationships. The graphs are plotted using Cytoscape1 .

5.3.2 Sub-Symbolic System in I4.0KG

Learning Latent Representations of Standards. I4.0RD utilizes the
Trans∗ family of models to compute latent representations, e.g., vectors, of entities
and relations in an I4.0 knowledge graph. In particular, I4.0RD utilizes TransE,
TransD, TransH, and TransR. These models differ in the representation of the
embeddings for the entities and relations (Wang et al. [136]). Suppose ei, ej, and
p denote the vectorial representation of two entities related by the labeled edge p
in an I4.0 knowledge graph. Furthermore, ∥x∥2 represents the Euclidean norm.

TransE, TransH, and TranR represent the entity embeddings as (ei, ej ∈ Rd),
while TransD characterizes the entity embeddings as (ei, wei ∈ Rd − ei, wej ∈
Rd). As a consequence of different embedding representations, the scoring function
also varies. For example, TransE is defined in terms of the score function ∥ei +
p − ej∥22, while ∥Mpei + p −Mpej∥22 defines TransR2. Furthermore, TransH score
function corresponds to ∥ei⊥ + dp− ej⊥∥

2
2, where the variables ei⊥ and ej⊥ denote

a projection to the hyperplane wp of the labeled relation p, and dp is the vector
of a relation-specific translation in the hyperplane wp. To learn the embeddings,
I4.0RD resorts to the PyKeen (Python KnowlEdge EmbeddiNgs) framework [4].
As hyperparameters for the models of the Trans∗ family, we use the ones specified
in the original papers of the models. The hyperparameters include embedding
dimension (set to 50), number of epochs (set to 500), batch size (set to 64), seed
(set to 0), learning rate (set to 0.01), scoring function (set to 1 for TransE, and
2 for the rest), margin loss (set to 1 for TransE and 0.05 for the rest). All the
configuration classes and hyperparameters are open in GitHub 3.

1https://cytoscape.org/
2Mp corresponds to a projection matrix Mp ∈ Rdxk that projects entities from the entity

space to the relation space; further p ∈ Rk.
3https://github.com/i40-Tools/I4.0KG-Embeddings
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(b) Explicit and implicit relations between I4.0 KG standards by the property relatedTo

Figure 5.5: Relations between I4.0 KG standards. (a) Using explicit relations
between standards in I4.0 KG, 109 connected components are found. (b) Applying
the symbolic system DS for the property relatedTo, 20 connected components are
found, 89 less than in (a). Standards in I4.0 KG are more connected, and new
relations in the connected components correspond to meaningful relations.

85



Chapter 5. Discover Relations across Industry 4.0 Standards with a Neuro-Symbolic
AI System

Computing Similarity Values Between Standards. Once the algorithm–
Trans∗ family–that computes the embeddings reaches a termination condition, e.g.,
the maximum number of epochs, the I4.0KG embeddings are learned. As the next
step, I4.0RD calculates a similarity symmetric matrix between the embeddings
that represent the I4.0 standards. Any distance metric for vector spaces can be
utilized to calculate this value. However, as a proof of concept, I4.0RD applies
the Cosine Similarity and the Inverse Euclidean Distance. Let u be an embedding
of the Standard-A and v an embedding of the Standard-B; the similarity score
between both standards is defined by Cosine Similarity4 as follows:

cosine(u, v) =
u.v

||u||2||v||2

The Inverse Euclidean Distance5 between the vectors u and v, is defined as
follows:

d(u, v) = 1− ||u− v||2
After building the similarity symmetric matrix, I4.0RD applies a threshold to

restrict the similarity values. I4.0RD relies on percentiles to calculate the value of
such a threshold. Further, I4.0RD utilizes the function Kernel Density Estimation
(KDE) to compute the density of both similarity measures, Cosine Similarity and
Inverse Euclidean Distance; it sets to zero the similarity values lower than the
given threshold.

Detecting Communities of Standards. I4.0RD maps the problem of com-
puting groups of potentially related standards to the problem of community detec-
tion. Once the embeddings are learned, the standards are represented in a vectorial
way according to their functions, preserving their semantic characteristics. Using
the embeddings, I4.0RD computes the similarity between the standards in the
I4.0 KG, as mentioned in the previous section. The values of similarity between
standards are utilized to partition the set of standards in a way that standards in a
community are highly similar but dissimilar to the standards in other communities.
As proof of concept, three state-of-the-art community detection algorithms have
been used in I4.0RD: SemEP, METIS, and KMeans. They implement diverse
strategies for partitioning a set based on the values of similarity, and our goal is
to evaluate which of the three is more suitable to identify meaningful connections
between standards.

Discovering Relations Between Standards. New relations between stan-
dards are discovered in this step; the homophily prediction principle is applied

4https://docs.scipy.org/doc/scipy/reference/generated/
scipy.spatial.distance.cosine.html

5https://docs.scipy.org/doc/scipy/reference/generated/
scipy.spatial.distance.euclidean.html
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over each of the communities, and all the standards in a community are as-
sumed to be related. Figure 5.6 depicts an example where new relations are
computed from two communities; unknown relations correspond to connections
between standards in a community that does not exist in the input I4.0KG (G).
Figure 5.6a shows the equivalent classes of the I4.0KG example. Community
1 has five standards where three of them belong to Equivalent Class 1, and
the other two belong to Equivalent Class 2. Applying the homophily predic-
tion principle to Community 1, six new relations are found between standards
from Equivalent Class 1 and Equivalent Class 2; these are (std1, std4), (std2, std4),
(std3, std4), (std1, std5), (std2, std5), (std3, std5). These new relations are evaluated
by experts to proof that they correspond to meaningful relations.

Equivalent Class 1

std1 std2 std3

Equivalent Class 2

std4 std5
std6 std7

Equivalent Class 3

std8 std9

(a) Equivalent classes
induced by the

property relatedTo

  
   Community 2

 

   Community 1 (std1,std2); (std1,std3); 
(std1,std4); (std1,std5);
(std2,std3); (std2,std4);
(std2,std5); (std3,std4);
(std3,std5); (std4,std5)

(std6,std7); (std6,std8); 
(std6,std9); (std7,std8);
(std7,std9); (std8,std9);

std1 std2

std4 std5

std3

std8 std9

std6std7

(b) Application of the Homophily
Prediction Principle

Test set
std1 std2

relatedTo

std4 std5
relatedTo

relatedTo

std8 std9
relatedTo

relatedTo
std3

std6

relatedTo

std7

(c) Known Relations used to
determine discovered

relations between standards

Figure 5.6: Discovering relations between standards. (a) The homophily
prediction principle is applied to two communities. As a result, 16 relations be-
tween standards are found. (b) Five out of the 16 found relations correspond to
meaningful relations.

5.4 Experimental Evaluation

We use the equivalent classes induced by the property relatedTo as a baseline.
An equivalent class is induced by equivalent relations like relatedTo that satisfy
three properties, i.e., the relation is reflexive, symmetric, and transitive. The
equivalent classes are partitions of the set of standards induced by the relation
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relatedTo. Figure 5.7 shows the number of partitions and how many standards
each partition of our baseline has. Equivalent Class 1 has the highest number of
standards, with 148. All the standards in each equivalent class are related to each
other but isolated from the other equivalent classes. Assuming that the differ-
ent combinations of similarity measures and the community detection algorithms
are effective predictors of the standards communities, the distances between the
equivalent classes and the communities discovered should be close. The Average
Category-based Score measure assesses the distance between Communities and the
baseline.
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Figure 5.7: Baseline of Equivalent Classes. I4.0KG has 20 Equivalent Classes,
and most of them have less than 10 standards except the Equivalent Classes 1, 2,
and 5.

We report on the impact that the knowledge encoded in the I4.0 knowledge
graph has in the behavior of I4.0RD. In particular, we assess the following research
questions:

Q1) How the function used to determine the relatedness between standards im-
pact the outcome of the problem of uncovering relations among standards?

Q2) Does a semantic community-based analysis on I4.0KG allow for improving
the quality of predicting new relations on the I4.0 standards landscape?

Q3) What is the effect of combining distinct similarity measures, embedding tech-
niques, and community detection algorithms in the task of detecting the
relatedness among standards?

Experiment Setup: Four embedding algorithms are considered to build the
standards embedding. Each of these algorithms is evaluated independently. Next,
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a similarity matrix for the standards embedding is computed. Cosine Similarity
and Inverse Euclidean Distance are considered similarity measures. The similar-
ity matrix is required for applying the community detection algorithms. In our
experiments, three algorithms are used to compute the Communities. In overall,
we evaluate twenty-four combinations between embedding algorithms, similarity
measures, and community detection algorithms. To assure statistical robustness,
we execute 5-fold cross-validation with one run. For the purposes of understand-
ing how the Trans∗ methods, similarity measures, and community detection al-
gorithms are performing, we evaluate the similarity density of the standards by
Trans∗ methods, also the quality of the generated Communities, the accuracy of
the Communities in discovering new relationships and the distance between the
Communities and the baseline using Cosine and Inverse Euclidean Distance.

Implementation: Our proposed approach is implemented in Python 2.7 and
integrated with the PyKeen (Python KnowlEdge EmbeddiNgs) framework [4],
METIS 5.1 6, SemEP 7, and Kmeans 8. The experiments were executed on a GPU
server with ten chips Intel(R) Xeon(R) CPU E5-2660, two chips GeForce GTX
108, and 100 GB RAM.

Thresholds for Computing Values of Similarity. Figure 5.8 depicts the
density function of each fold for each embedding algorithm using the similarity
metrics Cosine Similarity and Inverse Euclidean Distance. We notice that Inverse
Euclidean Distance finds a higher density of similar standards than the Cosine
Similarity metric in all Trans∗ methods. Figures 5.8a and 5.8b show the values
of the folds of TransD and TransE in Cosine Similarity, where all the similarity
values are close to 0.0, i.e., all the standards are different. Figure 5.8d suggests
that all the folds have similar behavior with values between 0.0 and 0.5 and a
short group of standards with similarity values in 0.8. Figure 5.8c and Figure 5.8g
show a group of standards similar with values close to 1.0 and the rest of the
standards between 0.0 and 0.4. The percentile of the similarity matrix is computed
with a threshold of 0.85. That means all values of the similarity matrix, which
are less than the percentile computed, are filled with 0.0, and then, these two
standards are dissimilar. After analyzing the density of each fold (cf. Figure 5.8),
the thresholds of TransH and TransR using Cosine Similarity are set to 0.50 and
0.75, respectively. The reason is that the two cases with a high threshold find all
similar standards, and creating more than one Community of standards will not be
possible. The thresholds of the similarity matrix using Inverse Euclidean Distance
are also modified for the same reason. TransD, TransH, and TransR are set to
0.95, 0.60, and 0.75, respectively. In the case of TransH, there is a high density of

6http://glaros.dtc.umn.edu/gkhome/metis/metis/download
7https://github.com/SDM-TIB/semEP
8https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Figure 5.8: Similarity density by Cosine and Inverse Euclidean Distance
of each fold per Trans∗ methods. Results from the Inverse Euclidean Distance
in all the Trans∗ methods have higher similarity values than Cosine similarity.
Figures 5.8a, 5.8b, and 5.8d show that all folds have values close to zero, i.e., with
embeddings created by TransD, TransE, and TransR the standards are very differ-
ent from each other. However, TransH in both similarity measures (cf. Figure 5.8c
and Figure 5.8g) exploits properties of the standards and generates embeddings
with a different distribution of similarity, i.e., values between 0.0 and 0.4, as well
as values close to 1.0. According to known characteristics of the I4.0 standards,
the TransH distribution of similarity using both Cosine Similarity and Inverse Eu-
clidean Distance better represents their relatedness.
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values close to 1.0; it indicates that for a threshold of 0.85, the percentile computed
is almost 1.0. the values of the similarity matrix less than the threshold are filled
with 0.0; values of 0.0 represent that the compared standards are not similar.

5.4.1 Impact of Metrics for Determining Relatedness among
Standards

There are a variety of metrics to evaluate the quality of clusters. We used
five recognized cluster metrics to estimate the quality of the communities from
the I4.0KG embeddings. All the metrics are normalized in the range [0,1] where
higher is a better score.

a) Conductance (InvC): measures relatedness of entities in a community and
how different they are to entities outside the community [37]. The inverse of
Conductance is reported: 1 − Conductance(K), where K = {k1, k2, ...., kn}
the set of standards communities obtained by the clustering algorithm, and
ki are the computed clusters.

b) Performance (P): sums up the number of intra-community relationships,
plus the number of non-existent relationships between communities [37].
Higher values indicate that a cluster is both internally dense and externally
sparse.

c) Total Cut (InvTC): sums up all similarities among entities in different
communities [21]. The Total Cut values are normalized by dividing the sum
of the similarities between the entities. The inverse of Total Cut is reported
as follows: 1−NormTotalCut(K)

d) Modularity (M): is the value of the intra-community similarities between
the entities divided by the sum of all the similarities between the entities
minus the sum of the similarities among the entities in different communities,
in case they are randomly distributed in the communities [88]. The value of
the Modularity is in the range of [−0.5, 1], which can be scaled to [0, 1] by
computing: Modularity(K)+0.5

1.5
.

e) Coverage (Co): compares the fraction of intra-community similarities be-
tween entities to the sum of all similarities between entities [37]. Higher
coverage values mean that there are more edges within clusters than edges
linking different clusters.
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5.4.2 Quality of the Predicted Relations among Standards

The quality of the predicted relations among standards is evaluated by accu-
racy. In order to measure the accuracy of the predicted relations in the communi-
ties, we are comparing them with the relations in the test set. The test set (TS) is
used to validate the results, and it is represented as TS = {⟨s, p, o⟩|s, o ∈ Ve, p ∈
relatedTo} and Ve are standards (cf. Figure 5.6c). Considering we are applying
the homophily prediction principle in the communities, all the standards in a com-
munity (c) are related to each other (cf. Figure 5.6b). Homophily prediction in a
community is defined as follows: H(c) = {⟨s, p, o⟩|s, o ∈ c∧p ∈ relatedTo∧ s ̸= o}.
Then, we are selecting from TS the set of triples ⟨s, p, o⟩ where s or o are standards
from cluster c; it is defined as follows: S(c, TS) = {⟨s, p, o⟩|⟨s, p, o⟩ ∈ TS ∧ (s ∈
c∨o ∈ c)}. Finally, is evaluated the percentage of predicted relations acc(c) among
standards in the community c; acc(c) = |S(c,TS)∪H(c)|

|S(c,TS)| , where the numerator corre-
sponds to the number of discovered relations from c. Since we are executing 5-fold
cross-validation with one run, is reported the average accuracy.

5.4.3 Impact of Community Detection Methods

Average Category-based Score: We compared our baseline, Equivalent
Classes, with the communities generated by the community detection algorithms.
Given a Community C of standards, the average Category-based Score, C(C),
corresponds to the average of the ‘Category-based’ measure for each pair of stan-
dards in the clusters of C. Values of C(C) are in the ranges between 0.0 and 1.0.
A value equal to 0.0 indicates that there is no intersection between the classes of
equivalence of the pairs of standards in the clusters of C, whereas a value close
to 1.0 represents that almost all the pairs of standards in each cluster of C share
exactly the same classes of equivalence. Let EC be the Equivalent classes, ECi be
the set of standards in the Equivalent Class i, Ck be the set of standards in the
Community k, and Comb(n) represents the number of pair of standards given a
set of standards with cardinality n; it is computed by the number of two combi-
nations of a set of n elements, Comb(n, r = 2) = n!

(n−2)!∗2! =
n∗(n−1)

2
. The Average

Category-based Score is defined as follows:

C(Ck) =

∑|EC|
i=1 Comb(|Ck ∪ ECi|)

Comb(|Ck|)

avg(C) =
∑|C|

k=1 C(Ck)

|C|
Quality of the communities: We evaluated three community detection algo-

rithms with two different similarity metrics and four Trans* methods. Considering
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Figure 5.9: Quality of the generated communities. The communities are
evaluated in terms of prediction metrics using the SemEP, METIS, and KMeans
algorithms. Communities are derived for each combination of the Trans∗ method
and similarity measure. In this case, higher values are better. Our approach
exhibits the best performance with TransH embeddings in Cosine Similarity and
Inverse Euclidean Distance, i.e., Figure 5.9c and Figure 5.9g. SemEP achieves the
highest values in the five evaluated parameters using Inverse Euclidean Distance
and in four of the five evaluated parameters with Cosine Similarity.

the five metrics for assessing the communities, the best communities are obtained
by Inverse Euclidean Distance, TransH, and with the SemEP and KMeans algo-
rithms. Figure 5.9g shows how the InvTC, M, and Co have values close to one for
SemEP and KMeans. The Performance (P) for SemEP and KMeans is 0.8 and
0.7, respectively, meaning that communities built by KMeans have more external
links to other communities than those built by SemEP. The inverse of Conduc-
tance (InvC) is high in SemEP and KMeans, with 0.93 and 0.99, respectively. This
metric measures the relatedness of standards in a community and how different
they are from standards outside the community.

The I4.0RD accuracy: Figure 5.10b shows the best performance for TransH-
KMeans achieving 100% of accuracy. However, KMeans is only able to discover
three communities of standards while our baseline is already known to have twenty
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equivalence classes. This means that KMeans is clustering our 249 standards into
just three clusters. K-Means finds the optimal number of clusters by computing the
K-Elbow curve, but the results are not close to our baseline. Nevertheless, SemEP
achieves an accuracy of over 90% in both similarity measures, and furthermore,
the number of communities discovered is very close to our baseline, reaching a
mean of 16 communities. All the communities are assessed against the baseline to
validate their closeness to the equivalence classes.
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Figure 5.10: The I4.0RD accuracy. Percentage of the test set for the property
relatedTo is achieved in each cluster. Figure 5.10a and Figure 5.10b show the
precision of the community detection algorithms by the measure Cosine Similarity
and Inverse Euclidean Distance, respectively. Our approach exhibits the best per-
formance using TransH embedding and with the SemEP and KMeans algorithms
in both similarity measures reaching an accuracy of up to 90%.

Baseline: TransH is selected as the best embedding according to the results
achieved in the metrics for determining relatedness among Standards (cf. Figure
5.9) and quality of the predicted relations among standards (cf. Figure 5.10).
Taking TransH as the best embedding of the communities generated by the three
community detection algorithms, the two similarity measures are evaluated. Fig-
ure 5.11 depicts the results of the measure Average Category-based Score for both
similarity measures. The combination SemEP and TransH achieved the best per-
formance in both similarity measures; see Figure 5.11a and Figure 5.11b. Al-
though KMeans has the highest accuracy, the performance in the measure Average
Category-based Score, where it is compared with the baseline, is one of the lowest.
In contrast, SemEP has the highest values for this measure and is also over 90%
accuracy, which means that the communities discovered by SemEP are the closest
to our baseline and with high accuracy.
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Figure 5.11: Average Category Based Score respect to Equivalence Class.
Figure 5.11a and Figure 5.11b show how similar our communities are to the base-
line. Our approach exhibits the best performance with Inverse Euclidean Distance
and SemEP, achieving 82%.

Network analysis: The I4.0KG is updated with the communities found by
the combination of TransH, Inverse Euclidean Distance, and SemEP, which is
the best performer for the metrics evaluated. With the updated I4.0KG, we are
adding new links predicted by the communities. Table 5.1 shows the analysis of
I4.0KG with new predicted links against our baseline. We improve the standards
connectivity by predicting new links.

Q1 - Corroborating the quality of communities in I4.0KG. We executed
a five-fold cross-validation procedure to compute the accuracy of I4.0RD. To
that end, the data set is divided into five consecutive folds shuffling the data
before splitting into folds. Each fold is used once as validation, i.e., the test set,
while the remaining fourth folds form the training set. Figure 5.9 depicts the
impact of metrics for evaluating communities. The best results are obtained with
the combination of the Inverse Euclidean Distance and TransH with SemEP and
KMeans algorithms; see Figure 5.9g. The values obtained for this combination
for both SemEP and KMeans are high except for the metric Performance (P).
SemEP and KMeans have values of 0.8 and 0.7, respectively, which means that
communities built by KMeans have more external links to other communities than
communities by SemEP.

Q2 - Predicting new relations between standards. In order to assess the
second research question, the data set is divided into five consecutive folds. Each
fold comprises 20% of the relationships between standards. Next, precision mea-
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Table 5.1: Network connectivity analysis. Table 5.1 shows the statistics for
I4.0KG after transitive closure of the property relatedTo between standards and
the statistics I4.0KG with the new links predicted by combining TransH, Inverse
Euclidean Distance, and SemEP. Results reveal a general improvement in connec-
tivity when predicting new links. The Number of edges, Avg. number of neighbors,
and Network density increase predicting new links, allowing for fewer connected
components and improving data integration. Measures that improve are high-
lighted in bold. The network analysis was performed by Cytoscape [119].

Statistic Baseline TransH-Inv.Euclidean-SemEP
Number of nodes 249 249
Number of edges 22,969 23,207
Avg. number of neighbors 91.245 92.201
Network diameter 1 3
Network radius 1 1
Characteristic path length 1.000 1.001
Clustering coefficient 0.976 0.974
Network density 0.368 0.372
Connected components 20 13
Multi-edge node pairs 11,360 11,479
Number of self-loops 249 249

surement is applied to evaluate the main objective: to unveil uncovered associ-
ations and, at the same time, corroborate knowledge patterns that are already
known. As shown in Figure 5.10, the best performances for the property relatedTo
are achieved by TransH embeddings in combination with the SemEP and KMeans
algorithm in both similarity measures. KMeans reaches higher accuracy than Se-
mEP; however, KMeans discover only three communities of standards while our
baseline is already known to have twenty Equivalence Classes. On the other hand,
the number of communities discovered by SemEP is very close to our baseline,
reaching a mean of 16 communities. The communities of standards discovered
using TransH embeddings, Inverse Euclidean Distance, and the SemEP algorithm
contribute to the resolution of interoperability in I4.0 standards. To provide an
example of this, we observe a resulting cluster with the standards IEC 60255 P27
E2, IEC 60255 P151 E1, IEC 60255 2010, IEC 60255 P1 E1, IEC 60255 P149
E1 and MTConnect. The former provides an information model for describing
manufacturing data. The latter offers a vocabulary for manufacturing equipment.
It is important to note that the standard MTConnect is not related to the training
set nor in I4.0KG. The membership of those standards in the cluster means that
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they should be classified together in the standardization frameworks. Besides, it
also suggests to the creators of the standards that they might look after possi-
ble existing synergies between them. This example suggests that the techniques
employed in this work are capable of discovering new communities of standards.
These communities can be used to improve the classification that the standardiza-
tion frameworks provide for the standards.

Q3 - Comparison with the baseline of equivalent classes. From the com-
bination of four Trans embeddings, two similarity measures, and three community
detection algorithms, we asses 24 results. In both the evaluation of the quality of
the communities and the accuracy of new relations, the best results are reached
with the TransH embedding, SemEP, and KMeans as cluster algorithms and both
similarity metrics. Finally, in the evaluation with the baseline, the best similarity
metric is Inverse Euclidean Distance, and the best clustering algorithm is SemEP.
Figure 5.11b shows the Average Category Based Score achieved by SemEP with
respect to Equivalence Class. We reach high values, meaning that almost all the
pairs of standards in each community share the same equivalence classes.

5.4.4 Discussion

The techniques proposed in this chapter rely on known relations between I4.0
standards to discover novel patterns and new relations. During the experimental
study, we observed that these techniques could group together standards that are
known to be related and standards whose relatedness is implicitly represented in
the I4.0KG. This feature facilitates the detection of high-quality communities as
reported in Figure 5.9, as well as for an accurate discovery of relations between
standards (cf. Figure 5.10) and for the evaluation with the baseline of equivalent
classes, as shown in Figure 5.11. As observed, the accuracy of the approach can
be benefited from the application of the Trans∗ family algorithms, e.g., TransH,
and from similarity measures, e.g., Inverse Euclidean Distance. Additionally, Se-
mEP groups in the same communities have highly similar standards and lead
our approach to high-quality discoveries. Our results suggest that the techniques
TransH, Inverse Euclidean Distance, and SemEP uncover meaningful communi-
ties with high quality because the performance of the five metrics for evaluating
communities are close to one, which means that standards in a community are
different from standards outside the community, and there are more edges within
communities than edges linking different communities. Also, the accuracy is up
90%, which means that are discovered over 90% of the relationships and evaluat-
ing with the baseline achieving 82%, i.e., almost all the pairs of standards in each
community share exactly the same equivalence classes. Moreover, the number of
communities is close to the number of equivalence classes in the baseline.
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We analyze both techniques in detail to understand why the aforementioned
combination of TransH, Inverse Euclidean Distance and SemEP produces the best
results. TransH introduces the mechanism of projecting the relation to a specific
hyperplane [137], enabling, thus, the representation of relations with cardinality
many to many. Since the materialization of transitivity and symmetry of the
property relatedTo corresponds to many to many relations, the instances of this
materialization are taken into account during the generation of the embeddings,
specifically during the translating operation on a hyperplane. Thus, even though
semantics is not explicitly utilized during the computation of the embeddings,
considering different types of relations empowers the embeddings generated by
TransH. Moreover, it allows for a more precise encoding of the standards rep-
resented in I4.0KG. Figures 5.8c and 5.8g illustrate groups of standards in the
similarity intervals [0.9, 1.0], and [0.0, 0.4]. Inverse Euclidean Distance is able to
find in all the Trans∗ methods a higher density of similar standards than Cosine
Similarity. The SemEP algorithm can detect these similarities and represent them
in high-precision communities. The other three embedding models, i.e., TransD,
TransE, and TransR, do not represent the standards in the best way with either of
the two similarity measures. TransD, TransE, and TransR report that most of the
standards are in the similarity interval [0.0, 0.4] (cf. Figure 5.8). This means that
no community detection algorithm could be able to discover communities with
high quality. Reported results indicate that the presented approach enables – in
average– for discovering communities of standards by up to 90%. As an example
of a relevant community, we observed a resulting cluster with the standards IEC
60255 P27 E2, IEC 60255 P151 E1, IEC 60255 2010, IEC 60255 P1 E1, IEC
60255 P149 E1, and MTConnect. All of them are related to product safety re-
quirements and vocabulary for manufacturing equipment. It is important to note
that the MTConnect standard is in a different equivalent class than the other com-
munity standards. However, our approach I4.0RD is able to create a community
grouping all of them together. Although these results required the validation of
experts in the domain, an initial evaluation suggests the results are accurate.

5.5 Summary

This chapter presents the I4.0RD approach that combines a deductive
database system with knowledge graph embedding to discover relationships be-
tween I4.0 standards. We addressed the problem of exploiting encoded data in
knowledge graphs to discover relationships by applying our Neuro-Symbolic AI ap-
proach. Our approach resorts to I4.0KG to discover relations between standards;
I4.0KG represents relations between standards extracted from the literature or
defined according to the classifications stated by the standardization frameworks.
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The symbolic system implemented by a deductive database makes implicit re-
lationships explicit and minimizes the data sparsity issues in the KG. The IDB
establishes rules for the equivalence relation of the relatedTo property and rules
for declaring that standards belonging to the same classes are related by the relat-
edTo property. We integrate the deductive database system with the sub-symbolic
system implemented by KGE models. The KGE models benefit from the symbolic
system as it enhances the ego networks of standards, assisting in overcoming the
data sparsity issues in I4.0KG. Different algorithms for generating embeddings are
applied on top of I4.0KG. Two similarity measures are applied to assess the simi-
larity of the standards. We employed three community detection algorithms, i.e.,
SemEP, METIS, and KMeans, to identify similar standards, i.e., communities of
standards, as well as to analyze their properties. Additionally, by applying the ho-
mophily prediction principle, novel relations between standards are discovered. We
empirically evaluated the quality of the proposed techniques over 249 standards,
initially related through 736 instances of the property relatedTo. The deductive
database system makes 22,233 implicit relationships explicit in the I4.0KG. Fur-
thermore, the equivalent classes induced by the property relatedTo are used as
a baseline in the evaluation process. The Trans∗ family of embedding models is
used to identify a low-dimensional representation of the standards according to
the materialized instances of relatedTo. Results of a 5-fold cross-validation process
suggest that our approach is able to identify novel relations between standards ef-
fectively. In addition, the Inverse Euclidean Distance enables identifying relations
with higher precision. Thus, our work broadens the repertoire of knowledge-driven
frameworks for understanding I4.0 standards facilitating the resolution of the ex-
isting interoperability issues in the I4.0 landscape.
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Applications

In this chapter, we present the use of the Deductive System DS on three differ-
ent KGs and diseases. We investigate the applicability of the deductive database
system in the biomedical domain, specifically in four projects, iASiS5, BigMedi-
lytics6, P4-LUCAT7, and H2020 CLARIFY8. iASiS is a European Union Horizon
2020-funded project that seeks to pave the way for precision medicine by utiliz-
ing patient data insights. iASiS focuses on two disease use cases: lung cancer
and dementia. BigMedilytics is an H2020 project aiming to develop innovative
data-driven solutions to improve the healthcare system in Europe. BigMedilyt-
ics covers a wide range of chronic diseases and frequent cancers (e.g., prostate,
lung, and breast). We show the potential for discovering patterns that can enable
the explanation of treatment interactions and patient characterization. Thus, we
broaden the scope and applicability of DS in several domains. Figure 6.1 depicts
the main challenges, and the contribution tackled in this chapter. The content of
this chapter is based on the publications [3, 103, 104, 115, 131]. The results of this
chapter provide an answer to the following research question:

RQ5: How can the proposed approach be applied to real-world cases?

We present the main results that show a significant benefit in the discovery
task on a knowledge graph in each application. The remainder of this chapter is
structured as follows: Section 6.1 presents the deductive database DS to deduce
DDIs and compute the interaction score of drugs in treatment based on the wedge
concept. The results are evaluated in Knowledge4COVID-19 KG and real lung
cancer treatments. Section 6.2 explains the adverse effect of Covid-19 treatments
retrieved on top of the Knowledge4COVID-19 KG. Then, Section 6.3 assesses the
impact of DDIs on the effectiveness of lung cancer treatments DE4LungCancer
KG. Next, Section 6.4 presents a similarity measure that evaluates the similarity
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Figure 6.1: Challenges and contributions. This chapter focuses on discovering
relationships in a knowledge graph that can enable the explanation of treatment
interactions and patient characterization.

between patients, and a knowledge discovery technique is used to uncover patterns
in iASiS KG [131]. Finally, Section 6.5 presents the closing remarks of the chapter.

6.1 Traversal method to compute the interaction
score of a drug in treatment

Drug treatments have been of great interest over the years to ensure that they
are administered safely and with maximum benefit to any given patient. Patient
safety can be affected by exposure to combinations of drugs that could interact
with and cause toxicity or treatment failure. Nowadays, multi-drug treatments
are common, and identifying potential Drug-Drug Interactions is crucial. Pub-
lic drug databases and semi-structured resources provide a wealth of information
on drugs that can be exploited to enhance tasks, e.g., data mining, ranking, and
query answering. These databases mainly focus on drug-drug pair interactions,
while DDIs remain unknown when in multi-drug treatments. Unknown DDIs in
multi-drug treatments need to be revealed to enable clinicians to assess the effec-
tiveness of treatments and anticipate the toxicities. Database and Semantic Web
communities have extensively studied the problem of DDIs [68, 140, 149], and var-
ious approaches have been proposed to support the detection of potential DDIs
in treatments [55, 98]. Ontology- and knowledge graph-based approaches have
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also contributed to integrating DDIs and creating a minimal information model
for describing potential DDIs [55]. However, finding new DDIs in a multi-drug
treatment requires capturing knowledge about individual DDIs among drug pairs
and analyzing the effects of these DDIs in the whole treatment.

We model treatments, their prescribed drugs, and the DDIs in a knowledge
graph and address the problem of discovering relationships over knowledge graphs.
We propose a symbolic system to deduce relationships that considers the seman-
tics encoded in the knowledge graph and the connectivity of the relations. The
proposed symbolic system implemented by a deductive database deduces the un-
known relationships encoded in a set of rules through a Datalog program. Further,
the deductive database can compute the interaction score of drugs in treatment
through a graph traversal method. The traversal method relies on the computa-
tion of wedges in a knowledge graph and then computes the distribution of the
middle-vertex of wedges. A middle vertex is particularly important in a wedge
because it is the object drug of one DDI and the precipitant drug of another DDI.
Thus, drugs that correspond to the middle vertex of several wedges, represent
drugs whose presence in the treatment may negatively impact effectiveness. We
summarize the contributions of this section as follows:

1. A deductive database system based on Datalog that is capable of deducing
implicit DDI represented in a knowledge graph and providing a ranking of
interaction score of drugs in treatment.

2. An extensive evaluation of our approach to treatments of different diseases.
The evaluation material is available in CK-DDI1.

6.1.1 Symbolic System

The symbolic system corresponds to a deductive system DS, where the EDB
comprises ground facts. The deductive system proposed is based on the Datalog
program (1) presented in chapter 4. The extensional database corresponds to
statements about interactions between drugs stated in a KG, and the IDB of
the DS comprises a set of rules to deduce new DDIs and wedges in treatments.
We consider the same ground predicates included in the EDB of the deductive
database (1) together with the following predicate:

rule3(serum, increase). rule3(serum, decrease).
rule3(metabolism, decrease). rule3(metabolism, increase).
rule3(absorption, increase). rule3(absorption, decrease).
rule3(excretion, decrease). rule3(excretion, increase).

1https://mybinder.org/v2/gh/arivasm/KCAPDEMO/HEAD?urlpath=voila%2Frender%
2FcomputationdrugwedgeCOVID.ipynb
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The above-mentioned rule3 identifies the combinations of effect and impact
that alter the toxicity or effectiveness of an object drug representing the pharma-
cokinetic DDIs. The following IDB comprises Horn rules that state when a new
DDI can be deduced and when a wedge exists in a treatment:

precipitant(ID,A), object(ID,B), effect(ID, E), impact(ID, I)⇒
ddi(A,E, I, B).(10)

ddi(A,E, I, B)⇒
inferred_ddi(A,E, I, B).(11)

inferred_ddi(A,E2, I2, B), ddi(B,E, I, C), rule1(E, I), rule1(E2, I2), (A! = C)⇒
inferred_ddi(A,E, I, C).(12)

inferred_ddi(A,E2, I2, B), ddi(B,E, I, C), rule2(E, I), rule2(E2, I2), (A! = C)⇒
inferred_ddi(A,E, I, C).(13)

inferred_ddi(A,E, I, B), inferred_ddi(B,E2, I2, C), (A! = C)⇒
wedge(A,B,C,E, I, E2, I2).(14)

inferred_ddi(A,E, I, B), inferred_ddi(B,E2, I2, C), rule3(E, I), rule3(E2, I2), (A! = C)⇒

wedge_pk(A,B,C,E, I, E2, I2).(15)

A wedge w is a path with two edges in a directed labeled graphs [142]; w is
composed of three vertices {a, b, c} and two ordered pairs of edges {(a, b), (b, c)}
of the directed labeled graph. The vertex b is the middle vertex of w. We apply
the wedge concept to the DDIs knowledge graph, where the edges of a wedge
represent DDIs. The middle vertex is both the object drug of one interaction and
the precipitant drug of the other interaction. A wedge w is defined as the following:
w = vertex triplet(a,b,c), where {a, b, c} ⊆ V and {(a, b), (b, c)} ⊆ E. The node b
is the middle-vertex of w.

The rules for deducing DDIs in treatments are the same as presented in the
deductive database (1), and we include the Rule (15) for deducing the wedges in
treatments considering pharmacokinetic DDIs. Rule (14) determines the wedges
in treatments where the DDI can be pharmacokinetic or pharmacodynamic DDIs.
The head predicate wedge represents wedges, where the first three terms corre-
spond to the wedge vertexes. The second term is the middle vertex of the wedge.
The last four terms represent the effects and impacts of the DDIs in the wedge,
where the first two are the effect and impact of the first DDI, and the last two
represent the effect and impact of the second DDI. Figure 6.2 illustrates a multi-
drug treatment with two DDIs. Figure 6.2b shows in red color a DDIs deduced
by the Rule (12) in from the DS (10) and Figure 6.2c depicts a wedge deduced
by the Rule (14) and Rule (15) highlighted in red color where the drug glyburide
represents the middle vertex of the wedge.
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Figure 6.2: Wedge in a treatment. Figure 6.2a shows a treatment with two
interactions, drug memantine decreases the metabolism of the drug glyburide, and
the drug glyburide decreases the excretion of the drug olmesartan. Figure 6.2b
illustrates a deduced DDI in red color by DS; the drug memantine decreases the
excretion of the drug olmesartan with the Rule (12). Figure 6.2c represents the
deduced wedge(memantine, glyburide, olmesartan) with Rule (14) and Rule (15).
The drug glyburide is the middle vertex of the wedge.

6.1.2 Experimental Study

We empirically evaluate the effectiveness of our approach to deduce DDIs
in a knowledge graph and compute the interaction score of drugs in treatment.
The Knowledge4COVID-19 KG [115] is a unique source of knowledge to identify
patterns in the integrated networks of interactions, biomedical entities, and pub-
lications, e.g. adverse events generated by combining COVID-19 drugs and drugs
prescribed for pre-existing conditions. In particular, we aim to answer the following
research questions: Q1) Can our approach be able to uncover DDIs in a multi-
drug treatment? Q2) What is the impact of the symbolic system implemented in
Datalog on the computation of the interaction score of drugs in treatment? We
configure the following empirical study to assess these questions.
Benchmark: We conduct our evaluation over ten real treatments for three differ-
ent diseases. The first seven treatments (T1-T7) are for patients with COVID-19
who are treated with concomitant medications for an underlying medical con-
dition. The treatment for COVID-19 is extracted from [28]. The concomitant
medications for the first treatment, T1 are for the comorbidities antihypertensive:
Beta-blockers, statins, and Type 2 Diabetes, and for the second treatment, T2, are
asthma, statins, and Type 2 Diabetes. The comorbidities in the third treatment,
T3, are for the comorbidities asthma, high cholesterol, and pneumonia, and for the
fourth treatment, T4, are diabetes, hypertension, and pneumonia. The comorbidi-
ties in the fifth treatment, T5, are diabetes, high cholesterol, and hypertension.
The comorbidities in the sixth treatment, T6, are asthma and hypertension, and
for the seventh treatment, T7, are renal diseases, obesity, and hypertension. The
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treatment T8 is for Alzheimer’s disease and is extracted from the paper [63]. The
concomitant medications for T8 are Hypertension and Type 2 Diabetes comor-
bidities. The treatment for Hypertension is extracted from [1]; it is a therapy
with three antihypertensive agents: Angiotensin Receptor Blockers (ARB), a thi-
azide diuretic, and amlodipine, known as triple therapies. The treatment for Type
2 Diabetes is a typical drug to help your body secrete more insulin. The last
two treatments are for Parkinson’s disease; they are extracted from [87] and [93].
Parkinson’s disease is often accompanied by problems, which may be treatable
(e.g, depression, excessive sweating, and urinary incontinence [96]).
Metrics: We measure the deduced percentage of edges (D); it is defined as follows:
D = (|E2|−|E1|)/|E2|∗100, where E2 corresponds to the edges result of applying
the deductive system over Knowledge4COVID-19 KG, and E1 is the actual edges
in Knowledge4COVID-19 KG. D is a "higher is better" metric representing the
percentage of new edges added to the deduced graph.

Impact of Symbolic System on Identifying DDIs in Treatments

In this section, we evaluate the drug-drug interactions that can be deduced over
the Knowledge4COVID-19 KG and the effects of these interactions. Table 6.1
shows the percentage of DDIs deduced (D) and wedge absolute frequency (F ) for
each middle-vertex by the method [103] in existing treatments. The middle vertex
of a wedge is highly important because the middle vertex is both the object drug
for one interaction and the precipitant drug for another interaction. Thus, drugs
that correspond to the middle-vertex of wedges, represent drugs whose presence
in the treatment may negatively impact effectiveness and toxicity.

Table 6.1: Ten multi-drug Treatments. Frequency distribution of wedges with
the symbolic system. Treatments are evaluated in four interaction checker tools:
COVID-19 (C-19), WebMD (WD), Medscape (MS), and DrugBank (DB) (May
2nd, 2022). Each tool shows the DDI-Reduction percentage that indicates how
many DDIs are avoided in a treatment when the middle-vertex drug is removed.
The DDI-reduction percentage is a higher-is-better metric. The symbol "-" indi-
cates that the treatment is not part of the interaction checker tools. Middle-vertex
drugs reduce the DDIs, suggesting, thus, wedges and their middle vertices are part
of DDIs that affect treatment effectiveness and toxicities. Best values in bold.

T Symbolic System D DDI-Reduction Percentage

Middle-Vertex F C-19 WD MS DB
T1 hydroxychloroquine 22 52.17 66.7 50.0 50.0 50.0

azithromycin 18
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dapagliflozin 15
lovastatin 12
metoprolol 12

T2 hydroxychloroquine 22 56.52 100.0 33.3 33.3 50.0
azithromycin 18

glyburide 15
simvastatin 12
montelukast 12

T3 Azithromycin 9 45.45 100.0 100.0 100.0 42.9
Montelukast 4
Lovastatin 4

Hydroxychloroquine 0
Doxycycline 0

T4 Ciprofloxacin 12 52.17 33.3 75.0 75.0 44.4
Metoprolol 12 33.3 25.0 25.0 33.3

Hydroxychloroquine 9
Azithromycin 9
Linagliptin 7

T5 Hydroxychloroquine 5 33.33 100.0 25.0 25.0 60.0
Glyburide 5 0.0 50.0 50.0 60.0
Simvastatin 3

Azithromycin 3
Ramipril 0

T6 Propranolol 8 15.38 100.0 50.0 50.0 60.0
Hydroxychloroquine 5

Azithromycin 5
Theophylline 4

Ramipril 1

T7 Timolol 11 38.89 50.0 50.0 50.0 44.4
Cyclophosphamide 11 0.0 0.0 0.0 44.4

Azithromycin 7
Hydroxychloroquine 7

Bupropion 6

T8 glyburide 15 26.92 – 33.3 33.3 83.3
amlodipine 10
memantine 8
olmesartan 0
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donepezil 0
hydrochlorothiazide 0

T9 venlafaxine 21 36.84 – 20.0 20.0 45.5
darifenacin 6
oxybutynin 6
safinamide 4
levodopa 2
carbidopa 0

T10 imipramine 45 30.77 – 40.0 40.0 45.5
carbidopa 12
tolterodine 12
oxybutynin 8
entacapone 0
levodopa 0

We can observe in Table 6.1 that over 15% of new DDIs are deduced in all
the treatments. The middle vertexes with higher wedge absolute frequency are
highlighted in bold, which are the ones that could decrease the effectiveness of
the treatment. Table 6.1 shows the DDI-Reduction percentage for the drugs with
higher wedge absolute frequency (F) for each treatment. The DDI-Reduction
percentage is evaluated in four interaction checker tools on May 2nd, 2022, Liver-
pool COVID-19 Interactions2, WebMD3, Medscape4, and Drugbank5. The valida-
tion is done on the versions of Liverpool COVID-19 Interactions and Drugbank,
which correspond to 2022-04-13 and 2022-01-04, respectively. Existing tools (e.g.,
COVID-19 Drug Interactions for the University of Liverpool) only identify pair-
wise interactions. DDI-Reduction percentage is measured, and it indicates how
many DDIs are avoided in a treatment when the middle-vertex drug is withdrawn.
The evaluation suggests that withdrawing the middle vertex with higher absolute
frequency reduces most interactions. Thus, wedges and their middle-vertex rep-
resent DDIs affecting treatment effectiveness and toxicity. When more than one
drug contains the higher wedge absolute frequency (F) in treatment, clinicians
must decide which drug is withdrawn. The third COVID-19 treatment contains
concomitant drugs for asthma, high cholesterol, and pneumonia comorbidities.
The method proposed by [103] indicates Azithromycin as the drug with the high-
est absolute frequency of being the wedges middle-vertex. Therefore, it represents

2https://www.covid19-druginteractions.org/checker
3https://www.webmd.com/interaction-checker/default.htm
4https://reference.medscape.com/drug-interactionchecker
5https://go.drugbank.com/drug-interaction-checker
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the DDIs that affect treatment effectiveness and toxicities, and withdrawing it
reduces most interactions.

Ranking of Interaction score of Drugs in Treatment

A graph traversal method computes the wedges and the distribution of the
middle-vertex of wedges. The maximal possible number of wedges centered at
vertex v is defined as µ = |x|∗

(
n
r

)
= |x|∗ (n)!

r!(n−r)!
, where n: represents the number

of drugs in the treatment, r represents a pair of drugs involved in each different
DDIs, and x represents the set of effects and impacts of DDIs. µ computes the
combinations of pairs of drugs in the treatment multiplied by the cardinality of
the set of effects and impact of DDIs. The interaction score centered at each drug
v in treatment is computed by: Υv =

Wv

µ
, where Wv is the amount of wedge in the

vertices v. The interaction score represents drugs whose presence in the treatment
may negatively impact effectiveness and toxicity. The range of the interaction
score of Υv is [0, 1], where higher values mean drugs that correspond to the middle
vertex of several wedges and may negatively impact the treatment because they
participate in multiple DDIs as both precipitant and object drug. A zero value
in Υv means that the drug v is not the object drug for one interaction and the
precipitant drug for another interaction. Thus, drug v is not a middle-vertex of
the wedges, i.e., Wv = 0.

Since our method distinguishes between pharmacokinetic and pharmacody-
namic DDIs, the method produces two interaction-score rankings, one for phar-
macokinetic DDIs and one for both pharmacokinetic and pharmacodynamic DDIs.
We evaluate the following three real lung cancer treatments composed of oncolog-
ical drugs non Oncological drugs:

• First lung cancer treatment (LCT1):

– Oncological drugs: Gemcitabine, Nivolumab.

– Non-Oncological drugs: Ranitidine, Ciprofloxacin, Furosemide,
Gabapentin.

• Second lung cancer treatment (LCT2):

– Oncological drugs: Pemetrexed.

– Non-Oncological drugs: Omeprazole, Lormetazepam, Ondansetron,
Metoclopramide, Tamsulosin.

• Third lung cancer treatment (LCT3):

– Oncological drugs: Alectinib.
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– Non-Oncological drugs: Atorvastatin, Diazepam, Folic acid, Atenolol.

We computed the interaction score for each drug in the three treatments, and
clinicians evaluated the results. Table 6.2 shows the results of our DS computing
the interaction score of drugs in treatments. We can observe that non-oncological
drugs have higher interaction scores than oncological drugs when the treatment
contains comorbidities drugs. The behavior of the interaction score is similar,
either considering the pharmacokinetic DDIs or both pharmacokinetic and phar-
macodynamic DDIs. The oncological drug Nivolumab and the non-oncological
drug Gabapentin in the LCT1 treatment are not in the interaction score because
both drugs are not a middle vertex of a wedge in the treatment. We have devel-
oped an API6 to execute our method. The interaction score method is used for
the clinicians from the Hospital Universitario Puerta del Hierro of Majadahonda
of Madrid (HUPHM) in the project CLARIFY8.

Table 6.2: Interaction Score of Drugs in Treatments. The first column
represents the treatments, the second column represents the interaction score con-
sidering pharmacokinetic DDIs (PK), and the third column depicts the score con-
sidering pharmacokinetic and pharmacodynamic DDIs (PK-PD). Drugs with the
higher score are in bold.

Treatment Interaction Score (PK) Interaction Score (PK-PD)
Drug Score Drug Score

LCT1

Ciprofloxacin 0.333 Furosemide 0.762
Furosemide 0.267 Ciprofloxacin 0.333
Gemcitabine 0.000 Gemcitabine 0.000
Ranitidine 0.000 Ranitidine 0.000

LCT2

Tamsulosin 0.133 Ondansetron 0.095
Metoclopramide 0.083 Metoclopramide 0.086
Ondansetron 0.050 Tamsulosin 0.076
Pemetrexed 0.000 Pemetrexed 0.000
Omeprazole 0.000 Omeprazole 0.000
Lormetazepam 0.000 Lormetazepam 0.000

LCT3

Folic acid 0.333 Folic acid 0.333
Diazepam 0.333 Diazepam 0.333
Alectinib 0.200 Alectinib 0.200
Atenolol 0.000 Atenolol 0.000
Atorvastatin 0.000 Atorvastatin 0.000

6https://github.com/SDM-TIB/CLARIFYKGExplorationAPI
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6.1. Traversal method to compute the interaction score of a drug in treatment

Figure 6.3: Venn Diagram depicts the overlap among five sets of DDIs.
345,116 CRD pairs of drugs targeting at least one protein of the family CYP.
5,513 NCRD are pairs of drugs targeting a No CYP protein. 8,925 DDI-BLKG are
DDIs predicted by the DDI-BLKG method, while 5,907 DDI-BLKG-05 represents
the subset of DDIs in DDI-BLKG with a score equal to or greater than 0.5. 923
DeducedDDIs generated by the deductive system.

6.1.3 Effectiveness of the predictive tasks for DDI identifi-
cation

The Knowledge4COVID-19 KG integrates 216 COVID-19 treatments that com-
prise COVID-19 drugs and drugs for the most common comorbidities that impact
the survival of COVID-19 patients [31]. In addition, Knowledge4COVID-19 KG
incorporates 345,116 CRD, where CRD are drugs from DrugBank that target at
least one protein of the family CYP [123] and 5,513 NCRD pairs of drugs, where
NCRD drugs target at least one protein but are not of the family CYP [123].
Furthermore, Knowledge4COVID-19 KG integrates 923 deduced DDIs (a.k.a. De-
ducedDDIs), where DeducedDDIs are deduced DDIs by our DS (10), and 8,925
predicted DDIs generated by the DDI-BLKG method, 5,907 have a score equal to
or greater than 0.5 (a.k.a. DDI-BLKG-0.5). DDI-BLKG is proposed by Bougia-
tiotis et.al. [20] and predicts DDIs based on scientific publications. This method
analyses the paths connecting interacting and non-interacting drug pairs in this
Knowledge4COVID-19 KG and trains a machine learning algorithm (random for-
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est) to discriminate between those two classes. Based on the trained model is then
apply predictions to all non-interacting pairs to identify potential DDIs that were
not previously known based on the resulting prediction confidence scores.

We compute the DDI over the 216 COVID-19 treatments in
knowledge4COVID-19 KG with the methods DDI-BLKG and DeducedDDIs.
Then, we analyzed the DDIs predicted with the CRD and NCRD drug pairs.
Figure 6.3 reports on the overlap between the DDIs deduced on the drugs of
the COVID-19 treatments (a.k.a. DeducedDDIs), DDI-BLKG, DDI-BLKG-0.5
(DDI-BLKG with a prediction score equal or greater than 0.5), CRD, and NCRD.
It is essential to highlight that CRD and NCRD are computed from the whole
DrugBank dataset of drugs, while DDI-BLKG and DeducedDDIs are limited to
COVID-19 drugs. The percentages of overlap of DeducedDDIs, DDI-BLKG, and
DDI-BLKG-0.5 with CRD are 24.70%, 17.51%, and 22.60 %. Thus, both methods
(i.e., the deductive system and DDI-BLKG) can identify DDIs between drugs
mediated by the CYP enzyme family, i.e., CRD pairs of drugs. CYP enzymes
play an important role in catalyzing the metabolism of pharmaceuticals, and their
inhibition or induction causes clinically significant pharmacokinetic drug-drug
interactions [50]. Thus, these results suggest that even though these methods do
not exploit any information about the drug’s target enzymes, they can identify a
good proportion of DDIs that are part of the CRD group.

6.2 Relevant Adverse Effects Detected on
Knowledge4COVID-19

This section describes the adverse effect of Covid-19 treatments retrieved on
top of the Knowledge4COVID-19 KG. We aim to provide support for analyzing rel-
evant adverse effects that may be produced as a result of interactions among drugs
to treat COVID-19 and conditions. As a proof of concept, we illustrate the results
of the analysis of the most common comorbidities, i.e., hypertension, asthma, and
diabetes. These comorbidities are linked to the ACE-2 receptor expression and
may facilitate the entry of the virus into the host cells as a consequence of releas-
ing the proprotein convertase. More importantly, this effect may fire a "vicious
infectious circle," which may result in an increase in morbidity and mortality [33].
Nevertheless, a more detailed analysis of the impact of the combination of drugs
can be executed on the publicly available Jupyter Notebook7. Exemplar drug-drug
interactions represented in the Knowledge4COVID-19 KG can also be visualized8.

7https://colab.research.google.com/drive/146-oQTxDpZQoOifKY6iafaEwuupH7q3t?usp=
sharing

8https://youtu.be/7YsTYJzRfR0
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6.2. Relevant Adverse Effects Detected on Knowledge4COVID-19

Figure 6.4: The adverse effects generated as the result of the interactions among
COVID-19 drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments
for Asthma. Relations retrieved from the Knowledge4COVID-19 KG

Figure 6.4, Figure 6.5, and Figure 6.6 depict adverse effects that can be trig-
gered in COVID-19 patients who receive treatments for hypertension, asthma, or
diabetes. Each plot reports a labeled directed graph; nodes represent drugs, and an
edge between two drugs, represents an interaction. The label of an edge, denoted
by the line color and the figure legend, indicates the type of side effect.

Figure 6.4 presents 14 types of drug-drug interactions that may occur among
the COVID-19 drugs Hydroxychloriquine, Zinc, and Chloroquine, and asthma
drugs. The pharmacokinetic drug-drug interactions between a pair of drugs, A
and B, indicate that A impacts B’s absorption, metabolism, and excretion when
both drugs are administrated together. As a result, A may reduce the effective-
ness or increase toxicities. The rest of the interactions are pharmacodynamic, i.e.,
their pharmacological outcome may be affected. Six out of the 14 reported drug-
drug interactions are pharmacokinetic. Chloroquine may reduce the metabolism of
Zafirlukast, Mometasone, and Fluticasone; it can also decrease the excretion rate
of Levosalbutamol. Hydroxychloriquine also impacts the metabolism of Theo-
phylline. Furthermore, the serum concentration of Chloroquine may be increased
with asthma drugs by Methylprednisolone, Prednisone, and Budesonide. Thus, the
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Figure 6.5: The adverse effects generated as the result of the interactions among
COVID-19 drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments
for Type 2 Diabetes. Relations retrieved from the Knowledge4COVID-19 KG

Figure 6.6: The adverse effects generated as the result of the interactions among
COVID-19 drugs (Hydroxychloroquine, Zinc, and Chloroquine) with treatments
for Hypertension. Relations retrieved from the Knowledge4COVID-19 KG

effectiveness of the treatment was negatively affected. Four drugs may increase the
severity of the side effects of Hydroxychloriquine. At the pharmacodynamic level,
it can be observed that Montelukast and Chloroquine may increase the risk of
myopathy, and Salmeterol and Hydroxychloriquine may increase the risk of QT
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prolongation. Since the risk of cardiac events during QT syndrome is high, these
results suggest that the combinations of the treatments need to be administrated
with great precaution. Similarly, Figure 6.5 reveals a more significant number of
interactions among the drugs Hydroxychloriquine, Zinc, and Chloroquine and the
drugs typically prescribed to Type 2 diabetes patients. All the drugs affect the
efficacy of Hydroxychloriquine and the combination of Rosiglitazone in treatments
with Insulin Determir or Insulin Glargine. Additionally, the therapeutic efficacy
of Rosiglitazone can be increased when used in combination with Hydroxychloro-
quine, and Chloroquine may reduce the effectiveness of Metformin. They should
be administrated with precaution because their therapeutic efficacy may be re-
duced. Drug interactions of hypertension treatments based on drugs Angiotensin-
converting enzyme, with the drugs Hydroxychloriquine and Zinc, are reported in
Figure 6.6. As reported, the combination of these drugs may cause pharmacody-
namic interactions that can critically affect the function of nerve and muscle cells,
including those in the heart. The above results suggest that COVID-19 patients
receiving treatments for pre-existing conditions need to be carefully treated.

6.3 Assessment of the Impact of DDI in the Effec-
tiveness of the Lung Cancer Treatments

In this section, we evaluate the impact of DDIs on the effectiveness of lung
cancer treatments registered on a knowledge-driven data ecosystem (DE) named
DE4LungCancer. DE4LungCancer has been applied in the context of iASiS5,
BigMedilytics6, P4-LUCAT7, and EU H2020 CLARIFY8. The knowledge repre-
sented in the DE4LungCancer KG is exploited to understand the impact of the
interactions between a treatment’s drugs on the effectiveness of the treatment.
The evaluation of treatments’ effectiveness is performed based on the number of
toxicities observed in the lung cancer patients and the assessment of a treatment’s
response provided by the patients’ oncologists; these results are part of the clinical
records processed by the Clinical DE and integrated into the DE4LungCancer KG.
The DDIs in treatment are computed based on three computational methods. The
first method (DrugBank) computes the number of DDIs in treatment based on the
DDIs reported on DrugBank. We extracted the DDIs from DrugBank and included
them in our DE4LungCancer KG. The second method (DS) proposed by Rivas
and Vidal [103] deduces new DDIs based on a deductive system implemented in
Datalog on top of KG. The third method (DDI-BLKG) proposed by Bougiatiotis
et.al. [20] predicts DDIs based on scientific publications; in this section, we named
Literature.
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An
em

ia
th

ro
m

bo
cy

to
pe

ni
a

As
th

en
ia

Em
es

is

Ne
ut

ro
pe

ni
a

Ot
he

r
to

xi
cit

y

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

fre
qu

en
cy

 o
f p

at
ie

nt
s

Cisplatin-Vinorelbine
Complete therapeutic response
Disease Progression

Partial therapeutic response
Stable Disease

(e) Oncological drugs

Figure 6.7: Toxicity analysis of oncological treatments. Figure 6.7 shows five
bar plots of the toxicities produced by treatments in lung cancer patients. The
treatment responses are differentiated by color. The oncological treatments with
comorbidity drugs generate more toxicities than those without comorbidity drugs.

6.3.1 Treatment Toxicity Analysis

We have selected the most frequent oncological treatments for analyzing their tox-
icities from DE4LungCancer KG. The treatments in Figure 6.7a, Figure 6.7b, and
Figure 6.7c contain oncological and comorbidity drugs. Figure 6.7d and Figure 6.7e
show the same treatments as Figure 6.7a and Figure 6.7b without comorbidity
drugs. The x-axes represent the toxicities of patients receiving the treatment, and
the y-axes are the relative frequency of patients having toxicity. The treatment
responses are evaluated in four categories: complete therapeutic response, stable
disease, partial therapeutic response, and disease progression, where a complete
therapeutic response is the desired response, and disease progression is the worst
expected response. We observed that oncology treatments without comorbidity
drugs cause fewer toxicities in patients than oncology treatments together with
comorbidity drugs. In addition, for patients taking the treatment represented in
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Figure 6.7c without comorbidity drugs, no toxicity was caused. Furthermore, the
patients with a complete therapeutic response have fewer toxicities than the other
treatment response.

6.3.2 DDIs Analysis

This section describes the adverse effect of Covid-19 treatments retrieved on top of
the Knowledge4COVID-19 KG. This section describes the adverse effect of Covid-
19 treatments retrieved on top of the Knowledge4COVID-19 KG. We have ex-
tracted from DE4LungCancer KG the lung cancer treatments with their respective
responses. Our purpose is to compute the distribution of DDIs for each treatment
response. The hypothesis is that treatments with a complete therapeutic response
or stable disease have fewer DDIs than treatments with partial therapeutic response
and disease progression. The data are processed to have the treatments in four
disjoint sets of treatment responses. For treatments with different responses, the
most frequent response is selected. Thus, each treatment is classified into a single
response class. The DDIs for each treatment are computed based on the DDIs
reported on DrugBank, and two computational methods.
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Figure 6.8: Distribution of DDIs by treatment response.

Figure 6.8 shows the distribution of DDIs by each treatment response. The
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x-axis represents each treatment, and the y-axis represents the count of DDIs in
treatment. The three color lines on the plots represent the three methods employed
to compute the DDIs. We observe that for the three methods used, the distribution
of DDIs for treatments with a complete therapeutic response (Figure 6.8a) or stable
disease (Figure 6.8b) have fewer DDIs than treatments with partial therapeutic
response (Figure 6.8c) and disease progression (Figure 6.8d), corroborating our
hypothesis.

6.3.3 Correlation Analysis between DDIs and Treatment
Responses

This section describes the adverse effect of Covid-19 treatments retrieved on top
of the Knowledge4COVID-19 KG. We are interested in computing the correlation
between DDI in treatment and the number of patients with a specific response to
the treatment. The treatment responses are evaluated in four categories: complete
therapeutic response and stable disease are positive responses to treatment, while
partial therapeutic response and disease progression are negative responses. Our
hypothesis is to detect a negative correlation between DDI in treatment and the
number of patients with complete therapeutic response or stable disease. A neg-
ative correlation, in this case, means more patients with positive responses and
less DDI in the treatment. Moreover, we expect to identify a positive correlation
between DDI in treatment and the number of patients with a partial therapeutic
response or disease progression. We have extracted the lung cancer treatments
with their respective response from DE4LungCancer KG. Then, the number of
DDIs for each treatment is computed based on the DDIs reported on DrugBank,
and two computational methods, DS and Literature. Also, we compute the num-
ber of patients by treatment response for each treatment. Finally, we perform
a spearman correlation analysis between the four therapeutic responses and the
three computational methods for computing the DDIs.

Table 6.3: Spearman correlation coefficient analysis between DDIs and responses
over DE4LungCancer KG. Complete therapeutic response (CTR), Stable Disease
(SD), Partial therapeutic response (PTR), Disease Progression (DP).

Response DrugBank DS Literature
correlation p-value correlation p-value correlation p-value

CTR -0.31658 0.11509 -0.30451 0.13041 0.18642 0.36187
SD -0.20782 0.09150 -0.21407 0.08194 -0.09353 0.45156
PTR -0.33183 0.00027 -0.32374 0.00039 -0.29062 0.00155
DP -0.38461 0.00018 -0.39093 0.00014 -0.25746 0.01429
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Table 6.3 shows spearman’s results of the correlation analysis. We can observe a
negative correlation for all the combinations between treatment responses and DDI
methods except for complete therapeutic response and DDI based on Literature
but with a high p-value. Considering the data on DE4LungCancer KG, we do not
identify a positive correlation between the number of DDIs in treatment and the
number of patients with a partial therapeutic response or disease progression.

6.3.4 Correlation Analysis between Drugs and DDIs in
Treatment

We analyzed the correlation in lung cancer treatments between the number of drugs
and the number of DDIs. The hypothesis is that increasing the number of drugs in
treatment increases the number of DDIs. Therefore, a positive correlation should
be identified. We retrieved the lung cancer treatments from DE4LungCancer KG.
Then, we counted the number of drugs by treatment. The number of DDIs for
each treatment is computed based on the drug-drug interactions reported by the
three following computational methods DrugBank, DS, and Literature. Table 6.4
illustrates the strong positive correlation between the number of drugs and the
number of DDIs in treatments, i.e., the higher the number of drugs in treatment,
the higher the number of treatment interactions. Although the Spearman correla-
tion coefficient for the Literature method is low, it exhibits a positive correlation.

Table 6.4: Spearman correlation coefficient analysis between the number of drugs
in the treatment and the number of DDIs among these drugs.

DrugBank DS Literature
correlation p-value correlation p-value correlation p-value
0.75418 1.89e-21 0.76469 2.44e-22 0.13050 0.24860

6.4 Evaluation and Knowledge Discovery over the
IASIS KG

We propose a framework that resorts to computational extraction methods
for mining knowledge from data sources, e.g., clinical notes, images, or scientific
publications. The proposed framework is used in the context of the EU H2020-
funded project iASiS 5 with the aim of paving the way for accurate diagnostics
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and personalized treatments. Knowledge discovery techniques are used to uncover
patterns in the iASiS knowledge graph. Patterns include common characteristics
of patients depending on their toxic habits, familial antecedents, or comorbidities.

We define a similarity measure as a function that quantifies the similarity be-
tween two patients. The patient similarity combines similarity values of the main
characteristics of the two patients: age, gender, mutated genes, toxic habits, the
evolution of a tumor, the mutations, and the patient performance status (ecog).
Similarity values between these characteristics are computed based on different
similarity measures: i) Lists are compared using Spearman’s rho while the Jac-
card similarity coefficient is utilized for sets; ii) similarity between drugs is com-
puted based on the chemical structure of the drugs (SIMCOMP) 9; iii) side effects
are compared using the Human Phenotype Ontology similarity (HPOSim)10, and
iv) The UMLS similarity measure11 is used for UMLS terms.

The similarity values are combined in terms of a triangular norm. Figure 6.9a
depicts the density distribution of the similarity values for pairs of lung cancer
patients in the iASiS KG. We can observe that a considerably large portion of the
patient population has relatively high values of similarity, suggesting that a large
number of patients have similar reactions to the prescribed treatments. Further
analysis with clinical partners is required to validate the meaning of observed values
of similarity. Furthermore, we apply community detection algorithms to discover
patterns between patients that share similar properties in the iASiS knowledge
graph. We resort to semEP (Semantics Based Edge Partitioning Problem) [94]
for computing patients’ communities based on the similarity values. It creates a
minimal partitioning of the input graph, such that the density of each community is
maximal. The community density represents the degree of similarity of the entities
in a community. Figure 6.9b reports on the results of computing semEP against
the iASiS knowledge graph. The main properties of the patients involve mutations
of lung cancer-related genes, e.g., EGFR; demographic attributes, smoking habits,
treatments, and tumor stages. The studied population is composed of 739 patients.
The goal of the study is to identify the four communities of patients– out of 13
communities – with characteristics that differed from the whole population; the
Kolmogorov-Smirnov test was used to rank the communities. Figure 6.9b reports
on four communities of patients; using a heatmap plot, the percentage of patients
in each community or cluster is described in terms of age, gender, EGFR mutation,
and smoking habits. For example, patients in Cluster-1 are not current smokers,
and a considerable number of them are non-smokers; in addition, the biomarker
EGFR is negative for many of them. The results are initial and require further

9http://www.genome.jp/tools/simcomp/
10https://sourceforge.net/projects/hposim/
11http://www.d.umn.edu/~tpederse/umls-similarity.html
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Figure 6.9: Knowledge Analytics. (a) A function able to quantify the similarity
between two lung cancer patients is described in terms of frequency density; the
function takes into account treatments and the evolution of the tumors, muta-
tions, and patient performance. The reported results suggest that a large number
of patients react similarly to the treatments. However, more studies are required
to validate this observation. (b) Communities of lung cancer patients and the
summary of the observed features age, toxic habits, and EGFR mutations. Dis-
tributions of the observed features differ from the whole population, enabling the
study of patients with unique characteristics.

study from the clinical partners of the project. However, they suggest that these
techniques have the power to uncover patterns in the observed features of patients.

6.5 Summary

In this chapter, we present the applicability of our deductive database system
to real scenarios. The proposed deductive database makes implicit knowledge ex-
plicit deducing new relationships DS relies on known relations between drugs to
deduce the relationships encoded in a set of rules through a Datalog program. The
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deduction of wedges on top of the knowledge graph enables uncovering of combi-
nations of drugs whose interactions may reduce the effectiveness of treatment and
to compute the interaction score of drugs in treatment. The interaction score is
proving particularly useful for clinicians. Furthermore, DS reduces the data spar-
sity issue, enabling the knowledge graph to become meaningful in the discovery
task, e.g., we observe that treatments with partial therapeutic response or disease
progression have more DDI than treatments with complete therapeutic response
or stable disease. We show the benefit of our approach on Knowledge4COVID-
19 KG and lung cancer treatments by computing the DDI-Reduction Percentage
and interaction score of drugs in treatment. Moreover, we illustrate the bene-
fit of DS evaluating the effectiveness of the lung cancer treatments on top of
DE4LungCancer KG. In addition, we provide a framework that resorts to computa-
tional extraction methods for mining knowledge from data sources. The proposed
framework is used in iASiS project. We define a similarity measure that quantifies
the similarity between two lung cancer patients. Then, we apply community detec-
tion algorithms to discover patterns between patients that share similar properties
in the iASiS knowledge graph. We identified communities of patients with char-
acteristics that differed from the whole population. Overall, the results indicate
that our method can be of significant relevance in all these applications.
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Chapter 7

Conclusions and Future Directions

In this thesis, we studied the problem of knowledge discovery over knowledge
graphs built from heterogeneous data sources. We proposed a Neuro-Symbolic
Artificial Intelligence approach that discovers knowledge given a target prediction
in a knowledge graph and predicts unknown links in the KG. In particular, the dis-
cussion of the research problem, research questions, challenges, and contributions
to address the challenges are presented in Chapter 1. Fundamental background
concepts are examined in Chapter 2. An overview of state-of-the-art approaches
related to the problem tackled in this thesis is analyzed in Chapter 3. Then,
the following three chapters, Chapter 4, Chapter 5, and Chapter 6, describe and
evaluate the proposed solution to the challenges in discovering knowledge over
knowledge graphs. Finally, in this Chapter 7, we review the research questions
and examine the achieved results. Furthermore, we examine the limitations of the
work and outline possible future directions for future work.

7.1 Revising the Research Questions

RQ1: How can metadata encoding data meaning be exploited to discover
relationships in knowledge graphs?

To answer this research question, we proposed a neuro-symbolic artificial intel-
ligence approach over KGs that attempts to combine symbolic and sub-symbolic
AI models. In Chapter 4 and Chapter 5 this research question is addressed. We
show a domain-agnostic approach able to capture the implicit knowledge in a KG
by a symbolic system and enhance the predictive capacity of sub-symbolic sys-
tems. The symbolic system is implemented by deductive databases defined for
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an abstract target prediction over a knowledge graph. Our proposed solution
builds the ego networks of the entities that correspond to the domain and range
of the abstract target prediction to deduce new relationships enhancing the ego
networks. Sub-symbolic systems benefit from improved ego networks and perform
the link prediction problem. The approach assumes that a link prediction problem
is defined in terms of an abstract target prediction over a KG. We evaluate the
approach in the biomedical domain, predicting polypharmacy treatment effective-
ness and the Industry 4.0 context, demonstrating its effectiveness in determining
relatedness among standards and analyzing their properties to detect unknown
relations. We observed that by exploiting the data and metadata that encode the
meaning of the data with a symbolic system, we deduce relationships that improve
the behavior of the KGE models.

RQ2: How can heterogeneous data sources be integrated to obtain a unified
knowledge representation?

Chapter 4 answers this research question using a knowledge graph approach
that considers the metadata describing the semantics encoded in the data in the
biomedical context. We integrated treatments, their prescribed drugs, drug-drug
interactions, drug-protein interactions, publications related to the drug-protein in-
teractions, and the gene that encodes the proteins in a knowledge graph. The
knowledge graph of polypharmacy treatment responses is populated with descrip-
tions of 548 oncological treatments. Overall, the final knowledge graph is a unified
knowledge representation where we overcome the integration challenges. Integra-
tion tackles missing associations and incompleteness of heterogeneous data with
open data sources. The knowledge graph was linked to existing open web sources
such as DrugBank2, Wikidata3, Uniprot4, DBpedia9, and Pubmed10. The built
KG provides the advantage of retrieving new knowledge from open web sources
using the owl:sameAs OWL property via a federated query engine.

RQ3: How can implicit knowledge be used to enhance knowledge discovery
tasks?

This research question is addressed in Chapter 4 and Chapter 5. We presented
a formalization of the symbolic system DS that relies on existing approaches of
deductive database systems. DS is proposed for an abstract target prediction
over a knowledge graph that can derive new statements; it concludes new facts,
from inference rules and facts stored in the extensional database. The EDB of
DS comprises ground facts of the form s(p, o). The triples ⟨s, p, o⟩ belong to
the ego network v or the relations between their neighbors, where v belongs to
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the domain or range of the abstract target prediction. The IDB of DS contains
rules that allow deducing new relationships in the ego networks of the target
prediction. In summary, the deductive system DS minimizes the data sparsity
issues by adding the deduced implicit relationships in the KG. The new implicit
relationships incorporated into the KG are related to the abstract target prediction
and represent relevant relations to the predictive task.

RQ4: What is the impact of deductive reasoning on accurately uncovering
knowledge?

This research question is addressed in Chapter 4. We empirically evaluate the
effectiveness of our neuro-symbolic artificial intelligence approach. We conduct an
ablation study on the components of our system, considering state-of-the-art KG
embedding methods. The deductive system DS reduces the data sparsity issues in
the knowledge graph, enhancing the KGE methods in the link prediction task. We
evaluate using deductive reasoning, non-reasoning, and randomly adding the same
number of links deduced. The observed results provide evidence of the advan-
tages of our approach in improving the state-of-the-art KG embedding methods
analyzed. DS deduces new relationships accurately that represent implicit and
explicit knowledge.

RQ5: How can the proposed approach be applied to real-world cases?

Chapter 6 answers this research question by applying our symbolic system over
three KGs, DE4LungCancer KG [3], Knowledge4COVID-19 KG [115], and iASiS
KG [131]. We illustrate the applicability of our approach in four projects in the
biomedical context, iASiS5, BigMedilytics6, P4-LUCAT7, and H2020 CLARIFY8.
We presented the DS to deduce DDIs and compute the interaction score of drugs
in treatment based on the wedge concept in different diseases. We show the poten-
tial of DS for discovering patterns that can enable the explanation of treatment
interactions and patient characterization. Overall, we presented the benefit of the
discovery task on a knowledge graph.

7.2 Limitations

Despite the overall achieved research objectives, we acknowledge that there
are limitations that have yet to be covered in the scope of this thesis. First,
we are not applying a semantic reasoner to take advantage of the Web Ontology
Language (OWL) reasoning capabilities, including RDF/RDFS reasoning capabil-
ities. OWL allows expressing other schema definitions in RDF, e.g., expressing
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the equality of individuals, owl:sameAs, or equivalence or disjointness of prop-
erties and classes, owl:equivalentClass, owl:equivalentProperty, owl:disjointWith,
owl:propertyDisjointWith. Thus, reasoning can be done on the set of OWL prop-
erties, and the KG can be enriched with new implicit triples. The second limitation
is that the approach assumes the user can write the rules representing the experts’
knowledge. Third, the sub-symbolic systems, i.e., KGE models, considered in our
approach do not distinguish between the data and the metadata represented in the
KG, where metadata describes the data by defining classes and properties. KGE
models assume all the triples in the KG as data while considering the metadata in
the KGE model scoring function can help improve predictions.

7.3 Future Directions

Based on our findings, and the contributions made in this thesis, we now
present some of the future directions of this work for the research community:

• KGE models define a scoring function ϕ(h, r, t) for estimating the plausibility
of a triple ⟨h, r, t⟩ based on the embeddings of their elements. The scoring
function of the KGE models relies on statistical reasoning, e.g., neural net-
works, tensor decomposition, or geometric models. Although the results are
convincing, their inference mechanisms of KGE suffer from low interpretabil-
ity caused by high dimensionality. We envision extending our approach where
the scoring function of the KGE models considers the DS to assess the plausi-
bility of a triple. This neuro-symbolic combination can significantly improve
the interpretability of how a given model reached a particular response.

• Exploit semantic reasoning to leverage the capabilities of OWL. The prop-
erties of OWL to express equality between entities as well as to express
equivalence or disjointness of classes and properties allow reasoning new re-
lationships and enrich the knowledge graph.

• Extend the symbolic system with algorithms of learning rules from KGs.
The rule learning algorithm requires implementing a strategy to evaluate the
quality of the rules mined from the knowledge graph, such that meaningful
rules are generated and combinatorial explosion is avoided.

7.4 Closing Remarks

With the growing amount of heterogeneous data in the ongoing digitization
process, the problem of knowledge discovery is constantly facing new prospects
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and challenges. In this thesis, we have shown the benefits of semantic knowledge
integration to successfully tackle the problem of uncovering helpful knowledge. We
have integrated data and concepts semantically and provide a neuro-symbolic AI
approach, enabling the uncovering of relevant knowledge. The symbolic system
deduces implicit knowledge and makes it explicit in the KG, alleviating data spar-
sity issues and enhancing KGE models. Additionally, the proposed approach in
this thesis is applied in four projects, demonstrating the significant relevance in
all these applications. Future research work can build upon the presented contri-
butions to devise more interpretable and comprehensive discovery approaches.
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List of Publications

Papers in Proceedings of Peer-Reviewed Conferences

• Ariam Rivas, Maria-Esther Vidal: Capturing Knowledge about Drug-Drug
Interactions to Enhance Treatment Effectiveness. K-CAP ’21: Proceedings
of the 11th on Knowledge Capture Conference (2021). Nominated to the best
student paper.

• Ariam Rivas, Irlan Grangel-Gonzalez, Diego Collarana, Jens Lehmann,
and Maria-Esther Vidal: Unveiling Relations in the Industry 4.0 Standards
Landscape Based on Knowledge Graph Embeddings. In Proceeding of the
31st International Conference of Database and Expert Systems Applications
(DEXA 2020).

Peer-Reviewed International Journals

• Ariam Rivas, Diego Collarana, Maria Torrente, Maria-Esther Vidal. A
Neuro-Symbolic System over Knowledge Graphs for Link Prediction. In: Se-
mantic Web Journal (2022). (Under-Review).

• Fotis Aisopos, Samaneh Jozashoori, Emetis Niazmand, Disha Purohit,
Ariam Rivas, Ahmad Sakor, Enrique Iglesias, Dimitrios Vogiatzis,
Ernestina Menasalvas, Alejandro Rodriguez Gonzalez, Guillermo Vigueras,
Daniel Gomez Bravo, Maria Torrente, Roberto Hernández López, Mariano
Provencio Pulla, Athanasios Dalianis, Ana Triantafillou, Georgios Paliouras
and Maria-Esther Vidal. Knowledge Graphs for Enhancing Transparency in
Health Data Ecosystems. In: Semantic Web Journal (2022). (Under-Review)

• Alejandro Rodriguez Gonzalez, Ernestina Menasalvas, Fotis Aisopos, Dim-
itrios Vogiatzis, Anastasia Krithara, Georgios Paliouras, Samaneh Joza-
shoori, Ariam Rivas, Ahmad Sakor, Maria-Esther Vidal, Maria Torrente,
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Mariano Provencio Pulla, Anna Trinatafyllou, Athanasios Dalianis. Lung
Cancer Pilot. Book Chapter. 2022 (Under-Review).

• Ahmad Sakor, Samaneh Jozashoori, Emetis Niazmand, Ariam Rivas, Kon-
stantinos Bougiatiotis, Fotis Aisopos, Enrique Iglesias, Philipp D. Rohde,
Trupti Padiya, Anastasia Krithara, Georgios Paliouras, Maria-Esther Vi-
dal: Knowledge4COVID-19: A Semantic-based Approach for Constructing
a COVID-19 related Knowledge Graph from Various Sources and Analysing
Treatments’ Toxicities. Journal of Web Semantics (2022).

• Ariam Rivas, Irlan Grangel-Gonzalez, Diego Collarana, Jens Lehmann, and
Maria-Esther Vidal: Discover Relations in the Industry 4.0 Standards Via
Unsupervised Learning on Knowledge Graph Embeddings. Journal of Data
Intelligence (2020).

• Maria-Esther Vidal, Kemele M. Endris, Samaneh Jazashoori, Ahmad Sakor,
Ariam Rivas: Transforming Heterogeneous Data into Knowledge for Per-
sonalized Treatments - A Use Case. Datenbank-Spektrum volume 19, pages
95–106 (2019).
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