35,059 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Local martingale difference approach for service selection with dynamic QoS

    Get PDF
    AbstractUsers in Service-oriented architecture (SOA) seek the best Quality of service (QoS) by service selection from the candidates responding in succession. In case the QoS changes dynamically, choosing one service and stop the searching is problematic for a service user who makes the choice online. Lack of accurate knowledge of service distribution, the user is unable to make a good decision. The Local Martingale Difference (LMD) approach is developed in this paper to help users to achieve optimal results, in the sense of probability. The stopping time is proved to be bounded to ensure the existence of an optimal solution first. Then, a global estimation over the time horizon is transformed to a local determination based on current martingale difference to make the algorithm feasible. Independent of any predetermined threshold or manual intervention, LMD enables users to stop around the optimal time, based on the information collected during the stochastic process. Verified to be efficient by comparison with three traditional methods, LMD is adaptable in vast applications with dynamic QoS
    corecore