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a b s t r a c t

Users in Service-oriented architecture (SOA) seek the best Quality of service (QoS) by
service selection from the candidates responding in succession. In case the QoS changes
dynamically, choosing one service and stop the searching is problematic for a service user
who makes the choice online. Lack of accurate knowledge of service distribution, the user
is unable to make a good decision. The Local Martingale Difference (LMD) approach is
developed in this paper to help users to achieve optimal results, in the sense of probability.
The stopping time is proved to be bounded to ensure the existence of an optimal solution
first. Then, a global estimation over the timehorizon is transformed to a local determination
based on current martingale difference to make the algorithm feasible. Independent of any
predetermined threshold or manual intervention, LMD enables users to stop around the
optimal time, based on the information collected during the stochastic process. Verified
to be efficient by comparison with three traditional methods, LMD is adaptable in vast
applications with dynamic QoS.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Service-oriented architecture (SOA)-based application differ from traditional ones by its dynamic behavior, i.e., the
existing services may compose dynamically at runtime to complete a complex job according to users’ needs [1], and hence
simplify integration among various systems [2].

The services implementing the same functionality make up a group of functionally equivalent candidates for services
user, which are identified by their non-functional characteristics, i.e., Quality of Service (QoS) properties [3–5]. The user has
to evaluate the available candidates at runtime according to the favorite QoS indices, and selects the best index to achieve
the highest possible payoff.

The literature has proceeded to the origin, influence, and related methodologies of dynamic QoS though static QoS is
still the main aspect of SOA study [6–8]. Wu et al. concluded that enough information is necessary in wireless cellular
networks for guaranteeingQoS such as call dropping probability (CDP) and call blocking probability (CBP), but unfortunately,
the information is hard to be obtained [9]. Tansupasiri et al. noticed that QoS should be dynamically adaptable to user
requirements [10]. Shen et al. classified time to a distinctive QoS index set, decision-dependent index, to reflect its influence
on user decision, and proposed amixed strategy to solve the conflict among users led by the dynamic influence of time [11].
Díaz et al. went so far as to identify time on the systems where it plays an important role, as a special kind of user
requirements other than quality of service [12].
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Though dynamic QoS index grows in a significant way, the waiting time for the providers’ dependence is usually ignored
in real service selection scenarios. The reason widely accepted is that the runtime of services usually exceeds the time for
choosing the provider by far, so it will be ‘worth the wait’ for the best possible service [13]. This might be correct for large-
scale tasks, especially for the business processes containing human tasks.

However, the above reason (and the conclusion) is no longer correct because of the emergence of new architectures
for intelligent computing. For example, the trends of services with corpuscular size, resources with improving ability and
capability, and extended scope with more available providers are inevitable in cloud computing architecture, in order to
meet the needs of services easy to deploy, and pay only for what is used [14]. In this case, the time for completing a single
task tends to be shortened. Meanwhile, the time of waiting for service providers becomesmore time consuming than before
because users wish to choose themost suitable services from the providers coming in swarms, according to the properties of
their needs, especially under the environment of the communicationwith delay (e.g. wireless circumstance [15]). Therefore,
the proportion of the waiting time to the total time increases.

Therefore, online selecting approaches are proposed to save the waiting time for selecting services. For instance, Shen
and Fan developed an iterative online methodology that enable the user to renew the chosen services during the arriving
process of providers to obtain better QoS gradually, instead of waiting until all candidates respond to the request [16].

But the current online approaches apply traditional methods to determine when to stop waiting and kick off service.
Yasmine Charif-Djebbar and Nicolas Sabouret suggested the mediator agent be provided with a timeout value over which,
if no more messages arrive, it proceeds to service selection [17]. Three kinds of thresholds were suggested in Shen and Fan’s
paper to give the user a rule to stop waiting [16].

It merits noticing that the above methods depend on predetermined thresholds. But in fact, it is hard for the user to
predict the best threshold because of the little information about the number of providers that will respond to the request,
at what time and in which QoS level. If the user stops at an early stage because of a wrong threshold, the user might miss
the coming provider with better QoS. On the contrary, waiting the provider to arrive might end up with a notable waste of
valuable time, and hence decreases the payoff of the user. Thus the user sinks in a dilemma under such complex situation,
and will have a small possibility to obtain a QoS level higher than it should be.

A local martingale method named Local Martingale Difference (LMD) is proposed in this paper to equip the service user
with a condition to judgewhetherwaiting for next provider is profitable. The LMD approach is a self-adaptablemethodology
for service selection. It makes the decision based on all the dynamic information gathered during the process of waiting,
without any manual predetermined threshold or accurate parameters. The user is enable to make the optimal decision (in
the sense of probability) utilizing the approach, without any advanced knowledge.

This paper is organized as following. Section 2 defines the problem solved in this paper with related mathematical
background. Then, the dynamic QoS structure is explained in Section 3. On this basis, the stopping time is proved to be
bounded in Section 4 to ensure the existence of the optimal solution. The statistical approach for calculating stopping time
is given in Section 5. Section 6 evaluates the proposed method by quantitative experiments. Finally, Section 7 concludes the
paper.

2. Mathematical preliminaries and problem definition

The coming service providers construct a discrete stochastic process, in which a user wants to find an optimal moment of
stoppingwaiting. To achieve this, the process inwhich the decision is performed needs analysis. Mathematical preliminaries
are given below so as to facilitate the discussion [18].
• Let (Ω, A, P) denote a probability space, where Ω is a space, A is a σ -field in Ω , and P is the probability measure of A.
• Discrete Filtration is defined as an increasing sequence F = {Fn} of σ -fields in Ω;
• A process X is adapted to filtration F , i.e. F -adaptable, if and only if Xn is Fn-measurable for every n ∈ Z+.
• {Fn = σ {Xn′; n′ ≤ n}, n ∈ Z+} is called X-induced filtration. Here σ(C) denotes the smallest σ -field in Ω containing an

arbitrary class C of subsets of Ω .
• A submartingale is defined as a process X with Xn ≤ E[Xn+1|Fn] for every n ∈ Z+. Here Fn is X-induced filtration.
• A random time N ∈ Z++{∞} is said to be a F -stopping time if {N ≤ n} is Fn-measurable for every n ∈ Z+, that is, if the

process {Xn = 1(N ≤ n)} is adapted to F . (Here and in similar cases, the prefix F of F -stopping time is omitted when
there is no risk for confusion.)
• Say that a stopping time N is bounded if N ≤ n for some n ∈ Z+.
• Normal distribution has reproduction property, i.e., a linear function of any independent normally distributed variables

is itself normally distributed [19].

Let us focus on a kind of service S whose quality is identified bym independent QoS indices Q = {Q1,Q2, . . . ,Qm}. When
the ith provider Si with the corresponding QoS value {qi1, qi2, . . . , qim} arrives, the evaluation function (i.e. payoff function)
is

vn(Si) =
m−
j=1

αjq
(n)
ij . (1)

Here {αj|j = 1, 2, . . . ,m} are constants that a user chooses according to his fancy. The superscript (n) of qij indicates qij
changes when waiting is extended, e.g. its QoS value is q(n)

ij when the nth provider comes.
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Fig. 1. A typical dynamic QoS structure.

At this moment tn, the maximum value of vn(Si) among all the providers is denoted as vn, i.e.

vn =
n

max
i=1

vn(Si). (2)

What the service user looks for is a positive integerN so that {vn}
∞

n=1 reach itsmaximumwhenn = N , i.e. vN = max∞n=1 vn.
Since vn is a discrete stochastic process, the optimal Problem of Selecting services Online in a Dynamic QoS environment

(PSODQ) can only be defined in the sense of conditional mathematical expectation, as follows.

Definition 1. Let {Fi|i = 1, 2, . . .} be {vn}-induced filtration, then PSODQ is to find out the stopping time N so that
E(vn|FN) < vN for all n > N .

It needs illustrating first that the positive integer N in Definition 1 is surely a stopping time because E(vn|FN) and vN are
FN -adaptable for all n > N . At stopping time N , the evaluation function vn of service QoS reaches its upper bound.

In order to achieve the stopping time in Definition 1, the stochastic process {vn} and its corresponding QoS structure is
studied in the next section.

3. Dynamic QoS structure

Assuming the first m − 1 QoS values qij (j = 1, 2, . . . ,m − 1) of the ith provider Si are static QoS values depending
on Si itself, such as unit price, quality level, packaging, shipment, etc. (Hence the superscript (n) of q(n)

ij is omitted for
j = 1, 2, . . . ,m − 1.) And the last value q(n)

im represents a special QoS value, the total time of the service including service
time tsi and waiting time tn, i.e.

q(n)
im = tsi + tn. (3)

Here tsi is a static QoS value, similar as {qi1, qi2, . . . , qi,m−1}, while tn increases to tn+1, tn+2, . . . , alongwith the timemoving
forward.

This constructs a dynamic QoS structure, as shown in Fig. 1.

Let qi =
m−1−
j=1

αjqij + αmtsi . (4)

Substituting Eqs. (3) and (4) into the equation above, we have

vn(Si) = qi + αmtn.

Then the Eq. (2) is

vn =
n

max
i=1

qi + αmtn.

Assuming qij(i = 1, 2, . . . ; j = 1, 2, . . . ,m − 1) follows a normal distribution N (µj, σj), and tsi follows the normal
distribution N (µm, σm), independently. Since αj (j = 1, 2, . . . ,m) is a constant, and qij (j = 1, 2, . . . ,m − 1) and tsi are
independent static QoS values determined by provider itself, qi is normal distributed because of the reproduction property
of normal distribution [19]. So let us assume it follows N (µ, σ ).

And the service providers are assumed to arrive according to Poisson process with arrival rate λ, i.e. the time difference
series {tn+1 − tn} follows negative exponential distribution. It is always correct that αm < 0 because a shorter time means
a better payoff for most service users.

All the assumptions in this paper are listed above, which include only reasonable ones like normal distribution and
Poisson process. But all the parameters such as λ, µ, or σ are unknown, which challenges the solution in the paper and
will be solved in Section 5.
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4. Bounded stopping time and solution existence

It seems that the user has to predict E(vn|FN) for every n > N at time N , according to Definition 1. Although E(vn|FN)
is predictable since E(vn|FN) is FN -adaptable, it is still not practical for the user to predict all the vn because all the n > N
compose an infinite set. Thus, it is necessary for us to solve such infinite determination problem within finite steps while
the global optimization is achieved.

A stopping time can be reached in a finite time if it is bounded. In fact, the stopping time in Definition 1 possesses this
characteristic, which is approved as follows.

Lemma 1. E(vn+2|FN)− E[vn+1|FN ] ≤ E[vn+1|FN ] − E[vn|FN ] for all positive integers n ⩾ N.

Proof.

E[vn+1|FN ] − E[vn|FN ] = E


n+1
max
i=1

qi + αmtn+1 −
n

max
i=1

qi − αmtn|FN


= E


max


0, qn+1 −

n
max
i=1

qi


+ αm(tn+1 − tn)|FN


.

Because Poisson process increases independently, the above expression equals

E
[
max


0, qn+1 −

n
max
i=1

qi


|FN

]
+

αm

λ
.

So,

E(vn+2|FN)− E[vn+1|FN ] − {E[vn+1|FN ] − E[vn|FN ]}

= E
[
max


0, qn+2 −

n+1
max
i=1

qi


|FN

]
+

αm

λ
− E

[
max


0, qn+1 −

n
max
i=1

qi


|FN

]
−

αm

λ

= E
[
max


0, qn+2 −

n+1
max
i=1

qi


−max


0, qn+1 −

n
max
i=1

qi


|FN

]
≤ E

[
max


0, qn+2 −

n
max
i=1

qi


−max


0, qn+1 −

n
max
i=1

qi


|FN

]
.

The above expression equals 0 because qn+1 and qn+2 follows same distribution.
Therefore, E(vn+2|FN)− E[vn+1|FN ] ≤ E[vn+1|FN ] − E[vn|FN ]. �

Theorem 1. {vn} is a submartingale←→. For all N existing where n > N so that E(vn|FN) ⩾ vN .

Proof (Counterevidence). If {vn} is not a submartingale, then there must exist N ⩾ 1 so that E(vN+1|FN) < vN . Then for any
n > N , we have

E(vn|FN)− vN = E(vn|FN)− E(vn−1|FN)+

n−2−
i=N

[E(vi+1|FN)− E(vi|FN)].

From Lemma 1, the above expression

≤ 2[E(vn−1|FN)− E(vn−2|FN)] +

n−3−
i=N

[E(vi+1|FN)− E(vi|FN)]

≤ 3[E(vn−2|FN)− E(vn−3|FN)] +

n−4−
i=N

[E(vi+1|FN)− E(vi|FN)]

≤ · · ·

≤ (n− N)[E(vN+1|FN)− E(vN |FN)] < 0.

This brings a contradiction.
Conversely, assume that {vn} is a submartingale. Then E(vn|Fn−1) < vn−1. Hence for any n > N:
E(vn|FN) = E(E(vn|Fn−1)|FN) ⩾ E(vn−1|FN).
Consequently, E(vn−1|FN) ⩾ E(vn−2|FN) ⩾ · · · ⩾ E(vN |FN) = vN .
Thus, E(vn|FN) ⩾ vN holds.
The following corollary is the negative proposition of Theorem 1. �

Corollary 1. {vn} is not a submartingale←→. N exist so that E(vn|FN) < vN for all n > N.
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Lemma 2. limn→∞ E(vn) = −∞.

Proof. Denote the intensity function and distribution function of the normal distributed variable qi as f and F . Then

E


n
max
i=1

qi


=

∫
∞

−∞

xdF n
=

∫
∞

−∞

nxfF n−1dx.

Because f and F are non-negative, then the above expression

<

∫
∞

0
nxfF n−1dx

=

∫ √n

0
nxfF n−1dx+

∫
∞

√
n
nxfF n−1dx

<

∫ √n

0
n
√
nfF n−1dx+

∫
∞

√
n
x3fF n−1dx

<
√
nF n−1

|

√
n

µ +

∫
∞

√
n
x3f dx

<
√
n+

∫
∞

√
n
x3

1
√
2πσ

e−
(x−µ)2

2σ2 dx

<
√
n+

∫
∞

√
n
x3

1
√
2πσ

e
−

x−µ
√
2σ dx

=
√
n−

1
√
2πσ

e
−

x−µ
√
2σ


x3
√
2σ
+

3x2

2σ 2
+

3x
√
2σ 3
+

3
2σ 3


|
∞√
n

= o(n).

Since αm is negative, αmtn is -O(n) because of the property of Poisson process. Therefore,

E(vn) = E


n
max
i=1

qi + αmtn


n→∞
−→ −∞. �

Theorem 2. The stopping time N in Definition 1 is bounded.

Proof. According to Definition 1 and Corollary 1, it is only needed to prove that {vn} is not a submartingale.
(Counterevidence) If {vn} is a submartingale, then for any n, we have:

E(vn) = E[E(vn|Fn−1)] ⩾ E(vn−1) ⩾ · · · ⩾ E(v1).

Since E(v1) is a finite number, {E(vn)} is a monotonically increasing sequence of n, then limn→∞ E(vn) ≠ −∞,
inconsistent with Lemma 2. Therefore, Theorem 2 holds by counterevidence. �

Theorem 2 ensures the existence and availability of the optimal solution of the problem, according to the definition of
bounded stopping time. The next section proposes the statistic approach to obtain the solution.

5. Local martingale difference approach

The service user has to make a decision whether next coming provider is worth waiting for to obtain a better vn after the
first n providers come. It seems that the user has to predict E(vn|FN) for every n > N at time N , according to Definition 1.

Although E(vn|FN) is predictable since E(vn|FN) is FN -adaptable, it is still unacceptable for the user to predict all the vn
because all the n compose an infinite set. Thus, it is necessary for us to solve such an infinite determination problem within
finite steps while the global optimization is achieved.

For this problem, it can be indicated from the proof of Theorem 1 that the following sets are equal to each other.

{N|E(vN+1|FN) < vN , N ∈ Z+} = {N|E(vn|FN) < vN ,N ∈ Z+, for all n ⩾ N}

Therefore the minimum elements of the above sets are equal too. So the minimum N that holds E(vN+1|FN) < vN is
exactly the minimum N that holds E(vn|FN) < vN for all n > N , so that is the optimal stopping time of Definition 1. Hence it
can be determined that the optimal vN arrives, in the sense of mathematical expectation, once E(vN+1|FN) < vN is detected.

In other words, the user needs only to wait until the first E(vN+1|FN) < vN emerges, which solves the problem by
simplifying the global problem of verifying all n > N to that of checking the local martingale difference E(vn+1|Fn) − vn
only. This is the key point of the proposed approach in this paper.
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Denote un = maxni=1 qi, then the martingale difference E(vn+1|Fn)− vn

= E(un+1|Fn)− un + E(αmtn+1 − αmtn)

=

∫
∞

un
(x− un)

1
√
2πσ

e−
(x−µ)2

2σ2 dx+
αm

λ

=

∫
∞

un
(x− µ)

1
√
2πσ

e−
(x−µ)2

2σ2 dx+ (µ− un)

∫
∞

un

1
√
2πσ

e−
(x−µ)2

2σ2 dx+
αm

λ

=
σ
√
2π

e−
(un−µ)2

2σ2 + (µ− un)[1− F(un)] +
αm

λ
. (5)

However, the parameters λ, µ, and σ are all unknown, so it is unclear whether the above expression is positive or
negative. A statistical method is utilized here to solve the problem. Namely, unbiased estimators are established based on
the sample sequence {qi}, and applied in the expression (5), instead of the unknown parameters. The derived estimation of
the martingale difference is then used for determination.

Here the unbiased estimators are chosen as follows.

λ̂ =
n
tn

, µ̂ =

n∑
i=1

qi

n
, σ̂ =

n∑
i=1

(qi − µ̂)2

n− 1
. (6)

Therefore, the service user calculates the martingale difference (5) according to unbiased estimators (6) when each
service provider comes. Whenever the difference turns negative, the optimal service provider, in the sense of expected
value, is obtained while the stopping time defined in Definition 1 is reached.

The algorithm to implement the above methodology is listed as below.

1° A user publishes the service requirement in the SOA.
2° The user waits until the next, i.e. the nth service provider responding for the requirement.
3° The QoS values {qn1, qn2, . . . , qnm} including the time tn and tsn that the coming provider announces are collected.
4° Calculate qn =

∑m−1
j=1 αjqnj + αmtsn.

5° Estimate the parameters λ̂ = n
tn
, µ̂ =

∑n
i=1 qi
n , σ̂ =

∑n
i=1(qi−µ̂)2

n−1 .

6° Calculate the martingale difference σ
√
2π

e−
(un−µ̂)2

2σ̂2 + (µ̂− un)[1− F(un)]+
αm
λ̂
, where F(un) is obtained from any normal

distribution table.
7° If the calculated martingale difference is positive, turn to 1°.
8° Or else, stop waiting, and start binding the service with the provider with maximum qi so far.

The methodology for online service selection described above is called the local martingale determination (LMD)
approach. LMD is acquainted with the providers’ distribution gradually during the stochastic process, and provide the users
a condition to determine whether to stop waiting.

The performance of LMD is simulated in the next section.

6. Simulations

In order to verify the efficiency of LMD, 300 service providers with the same functionalities are generated according
to Poisson process with rate λ = 0.2/s. The QoS function qn can be simplified to a combined variable in the experiment
because of the reproductionproperty of normal distribution [19]. The expectation value and standard deviation of the normal
distributed QoS variable qn is set to µ = 100 s and σ = 300 s respectively. αm, the weight of time in the evaluation function
vn, is set to−0.2/s.

Fig. 2 shows a typical process of an experiment, in which the red curve reflects the evaluation function vn along with the
time. The martingale difference, the blue curve in Fig. 2., intersects downward the horizontal 0-line for the first time at the
time 407.74 s, hence it turns negative after that. This event triggers LMD to stop waiting and achieve a result 707.32 which
is such a satisfying payoff since it is only 4.03% lower than the global optimal value 737.02.

To compare the proposed approach against traditional ones, three determinationmethods suggested in [16], as described
below, are executed in same simulation environment.

• WEN (Waiting until Enough Number of providers). A threshold defining the maximum number of providers is chosen in
advance. The user waits until providers more than the threshold arrive.
• WET (Waiting until Enough Time). The user waits until the waiting time exceeds a threshold set before he starts waiting.
• WEP (Waiting until Enough Payoff). The user sets a QoS value acceptable. And then, skips all providers unable to reach

that level until a provider achieves it finally.
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Fig. 2. The performance of LMD in a typical experiment.
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Fig. 3. Performance of the four methods under various thresholds.

Table 1
Thresholds set for experiment groups.

Experiment group Threshold for the methods
WEN WET (s) WEP

1 20 100 300
2 40 200 450
3 80 400 600
4 120 600 750
5 160 800 900
6 200 1000 1050
7 240 1200 1200

8 groups of experiments are designed to compare LMD with the 3 methods described above. The thresholds for the
experiment groups are listed in Table 1.

1000 simulation experiments are implemented for each group of threshold combinations.
The stopping time of the three methods other than the LMD depends on thresholds set before experiments. So they gain

different evaluation in the 7000 experiments in the 7 groups with various thresholds. The average evaluation value of the
1000 simulations of each group is calculated separately, and listed in Fig. 3.
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Table 2
The comparison between LMD and the best possible payoff.

Experiment group Best payoff Payoff of LMD LMD/best (%)

1 838.0976234 750.1281238 89.50
2 845.6486432 761.8814627 90.09
3 841.7189020 756.8386247 89.92
4 848.7235743 764.0301300 90.02
5 845.4925235 762.0501038 90.13
6 848.5182703 759.1493571 89.47
7 839.4017429 759.5354315 90.49
Average 843.9430399 759.0876048 89.95

It can be concluded from Fig. 3. that
(1) The evaluation values of the three traditional methods vary in experiment groups, which imply that their performance

depends on the chosen thresholds. WEN, WET, and WEP reach their best payoff when their thresholds are set around
120, 600 s, and 750 respectively. On the contrary, the evaluation value of LMD keeps around 750 stably, independent of
any thresholds, so that is superior to the other methods in most cases.

(2) LMD overcomes WEN and WET in all the experimental groups, with an evaluation value up to 20% greater than that of
WEN or WET.

(3) LMD performs better than WEP in most cases. Only when the threshold chances to fall into a narrow neighborhood
around 750 canWEP slightly surpass LMD. But it is worth noticing that there is little possibility in which the user ofWEP
happens to choose the right threshold because such multi-group experiments are impossible to be handled practically
in advance.

It is difficult for the three traditional methods to predict a good threshold without a priori knowledge. On one hand, if
a too small threshold is chosen, the process will be terminated too early to return a satisfying provider. On the other hand,
the payoff will decrease gradually during the useless waiting process. Therefore, independent of any threshold, LMD has
extreme superiority over traditional ways.

Similar with Fig. 2., the best evaluation value of all experiments are recorded to evaluate the performance of LMD. Table 2
compares average payoff of LMD in each experimental group with that of the actual best result.

It can be concluded from Table 2 that LMD stabilizes its performance around 90% of the optimal payoff. As a probability-
based approachwithout a priori knowledge, LMD keeps so close to the best practical result that it represents an outstanding
efficiency in solving online service selecting problem.

7. Conclusion

After sending an inquiry on a specific service, a user in SOA has to evaluate the responding candidates one by one
and make an online decision of whether to continue to wait for a possible provider with a better QoS. Different from the
traditional methods, the LMD proposed in the paper requires neither predetermined threshold nor accurate parameters of
the providers’ distribution. So LMD becomes the first self-adaptable methodology in the domain since it makes the decision
based on the dynamic information all gathered during the process of waiting, without any manual intervention.

Another contribution of this paper is giving consideration to both the static and dynamic indices of the QoS, and develops
the stochastic process methods suitable for any linear QoS structure under a multi-index environment. It is expected to
benefit applications extensively, such as service selecting, resource scheduling, project management, etc.

LMD not only ensures the stopping time is bounded (i.e. the feasibility in finite steps), according to Theorem 2, but also
simplifies the global estimation over the time horizon to a local determination based on current martingale difference.
Therefore, the user is able to gain the stochastic optimal solution within a limited time.

The future work might focus on the following aspects.
(1) The assumption of a normal or Poisson population in the paper is popularly observed thus adoptable in most real

environments. It might needs deduction research for other populations when the idea of LMD is applied in special cases.
(2) The algorithm’s performance depends partially on the accuracy of the estimators in (6). It has been noticed during the

experiments that when a larger αm is set, the process tends to be terminated earlier (i.e. at smaller N) because of the
heavier time punishment. In this case, the bias of the estimators becomes greater since not enough samples have been
collected. Therefore, a better estimator for the expression (5) is necessary to be discovered to improve the LMD further,
especially in the case where time is so important that αm is high enough.
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