9,999 research outputs found

    A Novel Multi-Focus Image Fusion Method Based on Stochastic Coordinate Coding and Local Density Peaks Clustering

    Get PDF
    abstract: The multi-focus image fusion method is used in image processing to generate all-focus images that have large depth of field (DOF) based on original multi-focus images. Different approaches have been used in the spatial and transform domain to fuse multi-focus images. As one of the most popular image processing methods, dictionary-learning-based spare representation achieves great performance in multi-focus image fusion. Most of the existing dictionary-learning-based multi-focus image fusion methods directly use the whole source images for dictionary learning. However, it incurs a high error rate and high computation cost in dictionary learning process by using the whole source images. This paper proposes a novel stochastic coordinate coding-based image fusion framework integrated with local density peaks. The proposed multi-focus image fusion method consists of three steps. First, source images are split into small image patches, then the split image patches are classified into a few groups by local density peaks clustering. Next, the grouped image patches are used for sub-dictionary learning by stochastic coordinate coding. The trained sub-dictionaries are combined into a dictionary for sparse representation. Finally, the simultaneous orthogonal matching pursuit (SOMP) algorithm is used to carry out sparse representation. After the three steps, the obtained sparse coefficients are fused following the max L1-norm rule. The fused coefficients are inversely transformed to an image by using the learned dictionary. The results and analyses of comparison experiments demonstrate that fused images of the proposed method have higher qualities than existing state-of-the-art methods

    Structural Evolution of Tungsten Surface Exposed to Sequential Low-Energy Helium Ion Irradiation and Transient Heat Loading

    Get PDF
    Structural damage due to high flux particle irradiation can result in significant changes to the thermal strength of the plasma facing component surface (PFC) during off-normal events in a tokamak. Low-energy He+ ion irradiation of tungsten (W), which is currently the leading candidate material for future PFCs, can result in the development of a fiber form nanostructure, known as “fuzz”. In the current study, mirror-finished W foils were exposed to 100 eV He+ ion irradiation at a fluence of 2.6 × 1024 ions m−2 and a temperature of 1200 K. Then, samples were exposed to two different types of pulsed heat loading meant to replicate type-I edge-localized mode (ELM) heating at varying energy densities and base temperatures. Millisecond (ms) laser exposure done at 1200 K revealed a reduction in fuzz density with increasing energy density due to the conglomeration and local melting of W fibers. At higher energy densities (∼ 1.5 MJ m−2), RT exposures resulted in surface cracking, while 1200 K exposures resulted in surface roughening, demonstrating the role of base temperature on the crack formation in W. Electron beam heating presented similar trends in surface morphology evolution; a higher penetration depth led to reduced melt motion and plasticity. In situ mass loss measurements obtained via a quartz crystal microbalance (QCM) found an exponential increase in particle emission for RT exposures, while the prevalence of melting from 1200 K exposures yielded no observable trend

    Real-time optical manipulation of cardiac conduction in intact hearts

    Get PDF
    Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart

    Helium Line Emission Spectroscopy in the Prototype Material Plasma Exposure eXperiment for Evaluation of Electron Temperature and Density

    Get PDF
    The helium-line spectral monitoring (HELIOS) diagnostic measures T_e and n_e using a collisional radiative model (CRM) to interpret the relative intensity of neutral helium emission lines in the presence of plasma. The emission intensity can be measured at a data digitization rate of up to 1 MHz with a Filterscope radiometer. A HELIOS system was installed and tested on the Prototype Material Plasma Exposure eXperiment (Proto-MPEX), which is a precursor to the planned MPEX facility at Oak Ridge National Laboratory (ORNL). The open magnetic geometry of Proto-MPEX is ideal for testing and characterizing diagnostics. Validation studies were performed in a deuterium plasma and compared HELIOS measurements of T_e and n_e to Thomson Scattering (TS) measurements and edge Double Langmuir Probe (DLP) data. It was found that the helium line emission measured by HELIOS was localized to the plasma edge. The high plasma density (\u3e2.0×10^12 cm^(-3)) of the discharge core was preventing the neutral helium gas puff from penetrating past the plasma edge. In order to penetrate to the plasma core, the gas puff pressure was increased, which resulted in an increased ambient neutral pressure in the chamber. The increased neutral density in the plasma chamber caused radiation trapping of the singlet transition helium lines (21P31S and 21P31D). To account for radiation trapping, the ORNL CRM was modified using the optical emission factor (OEF) method. The HELIOS core data for the increased gas puff experiment was re-analyzed using the new ORNL OEF CRM (T_e≈3.4 eV; n_e≈7.80×10^12 cm^(-3)) and compared to DLP data collected on axis at the plasma core (T_e≈2.8 eV; n_e≈1.90×10^13 cm^(-3)). While the n_e measurements from HELIOS are somewhat low compared to the DLP data, the measurements are still within range of the estimated systematic errors. The inferred T_e values from the ORNL OEF CRM are consistent with the DLP data, supporting the conclusion that radiation trapping is an important consideration and needs to be included in the CRM for accurate HELIOS measurements of n_e and T_e

    Synergistic Effects of High Particle Fluxes and Transient Heat Loading on Material Performance in a Fusion Environment

    Get PDF
    The work presented in this thesis focuses on the thermal and structural evolution of different materials when exposed to both high-flux ion irradiation and high intensity pulsed heat loading. Nuclear fusion devices create an intense radiation environment consisting of very energetic deuterium (D+) and helium (He+) ions. During operation, off-normal plasma events, such as edge-localized modes (ELMs), could cause intense heating of the plasma-facing component (PFC) surface, leading to melting and possible splashing into the fusion plasma. High-Z, refractory metals, such as tungsten (W), are therefore seen as favorable, due to their high melting point, high thermal conductivity, and low sputtering yield. However, potential splashing of the molten wall could contaminate the plasma and shut down the reactor. High-flux He+ wall loading could further exacerbate melting and splashing of the PFC surface, due to the growth of fiber form nanostructures, called fuzz, which possess a much lower mechanical and thermal strength than that of a pristine surface. Experiments performed throughout the dissertation attempt to qualify the effect of He+-induced surface structuring on the PFC thermal response during type-I ELMs. Elementary surface characterization revealed that He+ loading blurs clear melting and droplet emission thresholds observed on pristine surfaces during ELM-like heat loading, inducing thermal damage gradually through localized melting and conglomeration of fuzz tendrils. The reduced thermal conductivity of fuzz nanostructures led to increased levels of erosion due to fragmentation of molten material. Decreasing the imparted heat flux, at the sacrifice of higher frequencies, through ELM mitigation techniques showed the potential for an intermediate operating window that could heal fuzz nanostructures via annealing without the onset of splashing. Tests on transversally-oriented W microstructures (which will be used in ITER) revealed that radiation hardening along grain boundaries due to high-flux He+ loading may preferentially enhance brittle failure. Differences in penetration depth between experimental heat loading methods (millisecond laser vs. electron beam) affected heat deposition in and plasticity of the damaged surface. Simultaneous He+ particle loading and ELM-like heat loading inhibited fuzz formation due to repetitive shock-induced conglomeration. The addition of D+ ion irradiation appeared to further reduce evidence of early-stage fuzz formation, due to super-saturation of D in the near-surface layer. Significant structuring due to D+ particle loading may diminish the impact of ELM intensity on surface roughening and melting. Future studies need to expand upon the surface analysis presented throughout this dissertation and investigate the details of the subsurface to determine how intense thermal loading impacts gas trapping and migration. In addition, future PFC erosion research must utilize highly sensitive, in situ measurement techniques to obtain reliable information on material lifetime and performance
    corecore