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Resumo

A engenharia espacial concentra-se no projeto, construção e operação de foguetões e satélites
e outras tecnologias usadas no espaço , abrangendo uma ampla gama de disciplinas, incluindo a
engenharia electroténica e de computadores. As imagens espaciais desempenham um papel crucial
na engenharia espacial, e a busca de observações da mais alta qualidade é de suma importância.
Ao capturar e analisar imagens de objetos e fenómenos celestes, os engenheiros podem calcular a
atitude dos satélites com star trackers, monitorizar as órbitas dos satélites a partir do solo, estudar
o lixo espacial e obter informações sobre objetos celestes. A mais alta qualidade de observação
garante que os dados coletados sejam exatos, precisos e confiáveis, permitindo que os engenheiros
tomem decisões informadas ao projetar e operar sistemas e tecnologias baseados no espaço. O
conhecimento preciso de objetos astronômicos, suas posições, composições e movimentos permite
navegação, posicionamento de espaçonaves e comunicação mais precisos, minimizando riscos e
maximizando o sucesso da missão.

No contexto dos telescópios terrestres, a aquisição de imagens do espaço profundo apre-
senta desafios substanciais devido aos efeitos induzidos pela atmosfera da Terra. Esses efeitos
manifestam-se como distorções, aberrações e fenómenos de cintilação. Esta dissertação visa inves-
tigar e comparar abordagens inovadoras utilizando técnicas de visão computacional para mitigar
esses problemas sistemáticos de forma eficaz. O documento começa com uma introdução sucinta,
fornecendo uma visão geral do problema em questão, os objetivos subjacentes e a organização
estrutural do documento. Em seguida, uma exploração abrangente de várias técnicas é realizada
para abordar diversas dificuldades que podem surgir ao considerar cenários de telescópio único
e multi-telescópio, culminando na criação de uma imagem mestre. Além disso, é apresentada
uma análise meticulosa do instrumento de imagem empregado na aquisição do conjunto de dados
para esta dissertação, juntamente com um exame abrangente dos distintos efeitos sistemáticos que
afetam o conjunto de dados. Posteriormente, quatro metodologias distintas são empregadas para
fundir várias imagens adquiridas por um único telescópio, reduzindo efetivamente os efeitos at-
mosféricos e gerando uma imagem com maior precisão a realidade. Além disso, é investigada a
fusão de imagens obtidas dos quatro telescópios que compõem o sistema GRAVITY, com o ob-
jetivo de produzir uma imagem mestre que se aproxime da realidade observada. Finalmente, é
realizada uma análise dos resultados obtidos com base nessas técnicas, facilitando uma avaliação
robusta da sua eficácia e implicações.
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Abstract

Space engineering focuses on the design, construction, and operation of spacecraft and other tech-
nology used in outer space, comprising a wide range of disciplines, including electrical engineer-
ing. Space imagery plays a crucial role in space engineering, and the pursuit of the highest quality
observations is of paramount importance. By capturing and analysing images of celestial objects
and phenomena, engineers can compute satellite atitude with star trackers, monitor the orbits of
satellites from the ground, study space debris as well as obtain information on celestial objects.
The highest quality of observation ensures that the data collected is accurate, precise, and reliable,
enabling engineers to make informed decisions in designing and operating space-based systems
and technologies. Precise knowledge of astronomical objects, their positions, compositions, and
movements allows for more accurate navigation, spacecraft positioning, and communication, min-
imising risks and maximising mission success.

In the context of ground-based telescopes, the acquisition of images of deep space presents
substantial challenges owing to the systematic effects induced by the Earth’s atmosphere. These
effects manifest as distortions, blurring, and the twinkling phenomenon encountered during celes-
tial observations. The present dissertation aims to investigate and compare innovative approaches
utilising computer vision techniques to mitigate these systematic issues effectively. The docu-
ment commences with a succinct introduction, providing an overview of the problem at hand, the
underlying objectives, and the structural organisation of the document. Following this, a com-
prehensive exploration of various techniques is undertaken to address diverse complications that
may arise when considering both single-telescope and multi-telescope scenarios, culminating in
the creation of a master image. Furthermore, a meticulous analysis of the imaging instrument
employed in acquiring the dataset for this dissertation is presented, along with a comprehensive
examination of the distinct systematic effects impacting the dataset. Subsequently, four distinct
methodologies are employed to fuse multiple frames acquired by a single telescope, effectively
nullifying atmospheric effects and generating an image that accurately represents reality. Further-
more, the fusion of images obtained from the four telescopes comprising the GRAVITY system
is investigated, aiming to produce a master image approximating the observed reality. Finally, a
comprehensive analysis of the obtained results based on these techniques is conducted, facilitating
a robust evaluation of their effectiveness and implications.
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Chapter 1

Introduction

1.1 Context

Deep space images are important in space engineering for a variety of reasons. First and foremost,

they provide valuable information about the objects and phenomena being observed, which can

help engineers design and build better spacecraft and other technology for exploring and studying

these objects. For example, images of distant planets and asteroids can help engineers to under-

stand the surface conditions and other characteristics of these objects, which can inform the design

of landers and other spacecraft that will be used to explore them. Deep space images can also pro-

vide valuable data about the structure and behaviour of celestial objects, such as stars and galaxies,

which can help engineers to develop new technologies for studying and observing these objects.

Additionally, deep space images can be used to test and validate the performance of existing space-

craft and other space-based technology and can help engineers to identify and troubleshoot any

issues that may arise.

The telescope, an instrument that dates back to the 17th century, has been the most important

piece of equipment in space exploration since Galileo Galilei (1564-1642) made his first observa-

tion of celestial bodies, allowing him to study and depict what he saw. Since then, a wide variety

of equipment and techniques have been developed that can detect various portions of the electro-

magnetic spectrum. A telescope is the first element in any space imaging system, collecting and

focusing light, producing images which allow us to look further into deep space. Techniques have

been developed to improve the quality of the observations in order to give the scientists who ex-

amine these images better data. These images contain a number of systematic effects that prevent

a straightforward approach of simply stacking these images together to create a final image.

This dissertation aims to develop novel approaches to deal with systematics using machine

vision techniques.

1



2 Introduction

1.2 Statement of the problem

Compared to space-based telescopes, a ground-based instrument like GRAVITY is much less ex-

pensive and simpler to maintain. However, because the telescope must see through the Earth’s

atmosphere, there are some drawbacks. The atmosphere, a layer of gases that surrounds certain

planets, shields humanity from harmful radiation by absorbing part of the electromagnetic spec-

trum. Although beneficial to humans, some of the wavelengths are blocked, degrading images

captured by ground-based telescopes. Due to time-variable optical distortions, the data acquired

by this type of telescope is faulty. Therefore, all celestial objects appear to blur and change posi-

tion over time. As was previously mentioned, in order to provide better data to the scientists that

study these images, methods have been devised to enhance the quality of the observations, but

they prove to be a labour-intensive procedure that needs both human resources and a variety of

tools to provide effective results. Based on what was previously stated, this dissertation suggests

processing these images using machine vision techniques, with the aim to try and produce a master

image that has improved quality, counteracting the preceding effects described.

1.3 Objectives

This dissertation aims to use machine vision techniques and other methods to create a novel ap-

proach to producing a master image from the observations made by GRAVITY. Therefore this

project has the following goals:

1. Identify the systematic effects of the atmosphere and other artefacts on the images acquired

by GRAVITY.

2. Analysis of techniques for both the single-telescope and multi-telescope image stitching

challenges.

3. Compare machine vision-based approaches to stitch the different images into a master im-

age.

4. Evaluation of the quality and performance of the proposed methods.

1.4 Structure of this Document

There are six chapters in this document. The first chapter is the current introduction, which pro-

vided a context and definition of the problem, as well as the main goals of this work. Chapter 2

contains an analysis of some state-of-the-art methods to problems that may arise when finding a

solution to combining both the frames from a single telescope and the final images from the tele-

scopes into a master image. In Chapter 3 contains a review of the instrumentation used to acquire

the data. Additionally, an acquisition of different features of both stars and frames is performed in

order to provide an analysis on the atmospheric effects on the dataset used in this dissertation. In
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Chapter 4, the methodology used for techniques chosen to combine the different frames from an

individual telescope into one single image is described, as well as a traditional image stitching al-

gorithm to combine the different images from the telescope into a final image. In Chapter 5 of this

document, a comprehensive assessment is conducted on the generated images obtained through

the multi-frame super-resolution techniques, alongside the master image derived from the con-

ventional image stitching algorithm, for each of the aforementioned methods. Finally, Chapter 6

contains the final conclusions about the results obtained through the performed study, in addition

to listing future work and possible modifications to the methodologies chosen.
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Chapter 2

State of the Art

This chapter of the dissertation aims to address the challenges involved in developing a novel

approach for producing a master image from observations affected by atmospheric effects. The

research explores potential solutions to overcome these challenges by employing machine vision

techniques and other methodologies. The analysis encompasses various aspects, including the

investigation of super-resolution techniques for multi-frame super-resolution and image stitching

techniques applicable to both single and multi-telescope image stitching. Additionally, it delves

into the integration of machine learning-based solutions. As will be clear later, machine learn-

ing solutions were not addressed as we can obtain very good results with classical approaches.

However, from a state-of-the-art survey perspective, it is addressed and along the present chapter.

By thoroughly exploring these avenues, the dissertation strives to establish a robust framework

for effectively generating high-quality master images from observations under the influence of

atmospheric effects.

2.1 Image Stitching Techniques

Image stitching plays a vital role in various applications in machine vision due to its inherent ad-

vantages. One of the key benefits is its ability to combine images acquired from different sensors

or modalities. By fusing information from multiple sources, such as visible and infrared imagery

or multi-spectral data, image fusion enables the creation of a unified representation that encom-

passes a broader range of information [1]. This capability finds applications in fields like remote

sensing, medical imaging, robotics and space images, where the fusion of complementary data

sources enhances visual information’s accuracy, reliability, and interpretability.

2.1.1 Overview of Feature Detection

Feature detection is a fundamental task in machine vision aimed at identifying distinctive pat-

terns or structures in an image that can be used for various applications such as object recogni-

tion, tracking, and matching. Overall, feature detection techniques such as Laplacian of Gaussian

(LoG), Difference of Gaussians (DoG), Scale-Invariant Feature Transform (SIFT), and Oriented

5



6 State of the Art

Fast and Rotated BRIEF (ORB) play a critical role in identifying and analysing blob features, such

as star features in space images, allowing space engineers and researchers to detect and track stars

automatically.

The Laplacian of Gaussian method [2] is based on the second derivative of the Gaussian func-

tion, which measures the curvature of a function. The process starts by convolving the image

with a Gaussian filter, resulting in a smoothed version of the image. Next, the Laplacian operator

is applied to the smoothed image to detect the edges of the blobs. The Laplacian of Gaussian

method is robust to noise and can detect different sizes of blobs. However, its main drawback is

its computational expense due to the Gaussian convolution.

The Gaussian function used in this technique is defined as [2]:

G(x,y;σ) =
1√

2πσ2
exp
(
−x2 + y2

2σ2

)
(2.1)

where σ represents the standard deviation. The Gaussian scale-space representation L(x,y;σ) of

an image f (x,y) is obtained by convolving the image with the Gaussian function [2, 3]:

L(x,y;σ) = f (x,y)∗G(x,y;σ) (2.2)

The Laplacian operator, denoted as ∇2, is then applied to the Gaussian scale-space represen-

tation, or equivalently, the LoG operator is computed first and then convolved with the image to

create the LoG scale-space representation [2]:

∇
2G(x,y) =

x2 + y2 −2σ2

πσ4 exp
(
−x2 + y2

2σ2

)
(2.3)

The Gaussian smoothing aims to reduce noise, while the Laplacian operator highlights re-

gions of rapid intensity change, making it suitable for edge detection. As the scale σ of the LoG

increases, blob-like structures converge to local extrema at a specific scale, making the LoG filter

an excellent option for blob detection [2].

Figure 2.1: Illustration of a second-order Gaussian kernel. (a) Three-dimensional visualisation;
(b) Planar visualization. From [4].
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On the other hand, the Difference of Gaussians method is based on the difference between two

Gaussian functions of different scales. This method is faster than the LoG approach and can also

detect blobs of various sizes [2]. The DoG method involves subtracting the image convolved with

a Gaussian kernel of a smaller scale from the image convolved with a Gaussian kernel of a larger

scale. The resulting image highlights the blobs whose sizes fall within the range of the two scales

used. However, the DoG method may miss small blobs and is sensitive to the selection of scales

[2, 3].

The DoG method produces the scale space by convolving the image with Gaussian kernels of

different standard deviations (σ ). The difference in Gaussian images (DoG) is then obtained by

subtracting the convolved images at different scales. The DoG function is defined as:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y) = L(x,y,kσ)−L(x,y,σ) (2.4)

where k represents the scale factor. The DoG feature detector identifies local extrema in the

DoG images, which serve as potential blob centres. The scale and shape factors at each centre

are determined by comparing the responses of neighbouring pixels. Thresholding techniques are

commonly applied to reduce false positives and improve the accuracy of blob detection [2, 3].

Both the LoG and DoG methods have been widely utilised for blob detection in various ap-

plications, particularly for objects with characteristic scales, such as cells in biological images or

stars in space images. The choice between the two methods depends on the application’s specific

requirements, considering factors like accuracy and computational efficiency.

Cho et al. [5] presents a novel method for keypoint detection called Higher Order Laplacian

of Gaussian (HLoG). The HLoG approach exhibits superior performance to the conventional DoG

technique, particularly in image retrieval. The development of Higher Order Difference of Gaus-

sians (HDoG) stemmed from the observation that DoG solely utilises the first-order derivative of

the scale-space (G) with respect to scale (σ ). In contrast, HDoG harnesses the power of higher-

order scale-space derivatives. By disregarding the leading coefficient of the Gaussian equation

given in Equation 2.1, the author of the paper compares the similarities of the second, third, and

fourth derivatives with respect to σ in relation to the derivatives with respect to x and y up to

the 8th degree for even orders, respectively. This allows the author to establish the relationships

between the higher-order scale-space derivatives and the spatial derivatives as such [5]:

∂ 2G
∂σ2 ≈ σ

2
∇

4G (2.5)

∂ 3G
∂σ3 ≈ σ

3
∇

6G (2.6)

∂ 4G
∂σ4 ≈ σ

4
∇

8G (2.7)

These equations demonstrate that the σ -normalised HLoG approximates the Higher Order Dif-

ference of Gaussians (HDoG) in the same way that Difference of Gaussians approximates the
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Laplacian of Gaussian, as it is well established in [5]:

∂G/∂σ ≈ σ∇
2G (2.8)

It is worth noting that the effectiveness of HDoG has already been experimentally validated,

which provides further confidence in the potential of HLoG for keypoint detection. One advantage

of the HLoG method is its ability to capture high-frequency signals more effectively as the order

increases. The filters employed in HLoG become more intricate, enabling better detection of

complex shapes and patterns. In contrast, HDoG suffers from a drawback in parallel processing

due to the sequential inter-scale subtraction operations required to obtain higher-order DoG spaces.

However, with HLoG, the filter kernels can be prepared and applied to the input image in parallel.

Consequently, higher-order HLoG spaces simultaneously can be obtained, significantly enhancing

the parallel processing capability. This parallel processing advantage sets HLoG apart from HDoG

and facilitates efficient and scalable keypoint detection in various applications.

In addition to the aforementioned methods, there exist other popular feature detection tech-

niques that are extensively employed in the field of machine vision. Among these methods, the

Scale Invariant Feature Transform (SIFT), Oriented FAST, and Rotated BRIEF (ORB) stand out as

widely recognised approaches for keypoint detection and descriptor construction. Over the years,

SIFT has established itself as a prominent technique, while ORB offers a compelling alternative

with its faster processing speed and comparable performance.

SIFT, proposed by David Lowe in 1999 [6], employs a scale-space representation and the DoG

operator for keypoint detection. The DoG pyramid detects local extrema, which are considered

as potential key points. The extrema are further refined using a 3D quadratic function to approx-

imate the interpolated locations. To eliminate key points with strong edge responses and ensure

sub-pixel localisation, SIFT employs a measurement function computed from the trace and de-

terminant of the Hessian matrix [7]. The key points detected by SIFT are characterised by their

descriptors, which encode information about the local gradient orientation and magnitude around

each key point. These descriptors enable image comparison based on the number of similar key

points between images, thus determining their similarity. The SIFT algorithm consists of four

stages: scale-space extrema detection, keypoint localisation, orientation assignment, and keypoint

descriptor computation. The extrema detection involves constructing an image pyramid using

Gaussian convolutions and subtracting adjacent Gaussian images to create a DoG pyramid. The

key points are then identified as local maxima and minima in the DoG pyramid by comparing

pixels to their neighbours at multiple scales. Orientation assignment assigns one or more orienta-

tions to each key point based on local gradient directions. Finally, the descriptors are computed by

calculating gradient magnitudes and orientations at sample points around the keypoint areas [8, 5].

Although deep learning-based methods are gaining popularity, traditional methods like SIFT

remain relevant and important to study [5]. SIFT has demonstrated its effectiveness in various

applications, including image stitching, where it is considered the most widely used feature de-

scriptor. The robustness of SIFT to lighting and viewpoint changes makes it reliable for feature
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extraction, and its feature matching capabilities contribute to its wide adoption [9, 8].

On the other hand, ORB [9] is a feature extraction technique developed in OpenCV. It utilises

the FAST keypoint detector and binary BRIEF descriptor. Compared to SIFT, ORB exhibits faster

computation and is less sensitive to noise while still providing good feature extraction results.

ORB first applies the FAST keypoint detector to identify a large number of key points and then

employs a Harris corner detector to select high-quality features among those key points. The

centroid of the image can be calculated using the patch moment in ORB, and the orientation of

corners is determined using the intensity centroid of image patches.

Convolutional Neural Networks

In recent years, deep learning techniques have revolutionised the field of machine vision, enabling

unprecedented performance in tasks such as object detection, image classification, and segmenta-

tion. Among the various deep learning architectures, Convolutional Neural Networks (CNN) have

emerged as the state-of-the-art for feature detection and extraction in images.

Neural Networks (NN) mimic the signals between neurons to simulate how a human brain

works. These neurons consist of input data, weights and a bias in order to calculate an output.

These outputs are then fed to another layer, where they serve as inputs for the next set of neurons.

The outputs described above are calculated through the use of activation functions, which add

a non-linear component to the neural network. This method requires training data to learn and

improve their accuracy over time. Since the objective of the training stage aims to minimise a loss

function, a method called back-propagation aims to fine-tune the weights of the neural network,

taking into account the error rate obtained in the precious epoch [10].

Unlike traditional NNs, which operate on fully connected layers, CNNs employ a hierarchical

approach that mimics the organization of the human visual cortex. By using convolutional and

pooling layers, CNNs are able to learn increasingly complex representations of the input data while

also reducing the dimensionality of the feature maps. This makes CNNs particularly effective for

tasks where local features and spatial relationships are important, such as image classification and

object detection.

CNNs are usually composed by three types of layers [10, 11]:

Convolutional Layers: where a CNN uses different kernels to convolve both the final feature

maps and the entire image, producing different feature maps.

Pooling Layers: are responsible for reducing the input spatial dimensions for the following

convolutional layer. In this layer, the operation performed can also be called subsampling or

downsampling, which causes a loss of information. However, this loss is advantageous for the

network since it reduces the computational burden on the incoming layers of the network and

prevents overfitting. The most often employed techniques are average pooling and maximum

pooling.
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Fully Connected Layers: These layers are used in the neural network’s high-level reasoning

after numerous convolutional and pooling layers. The 2D feature maps are subsequently trans-

formed into a 1D feature vector, where the generated vector could be used as a feature vector for

additional processing or placed into a set of categories for classification.

Loss Function: The output layer, which is the last layer of the CNN model, uses a few loss

functions to determine the predicted error produced over the training samples. The discrepancy

between the actual output and the projected one is shown by this error. It will then be improved

using CNN’s learning method.

Stitching images directly using deep learning is very difficult because it integrates the tasks

of feature detection, feature matching, homography estimation, image registration, and image

stitching into CNNs. Consequently, a pre-trained homography estimation network is crucial to

liberate CNNs from difficult tasks [12].

Figure 2.2: An example of CNN architecture for image classification. From [13].

2.1.2 Homography Estimation

Homography estimation is a technique used in image processing and machine vision to estimate

the transformation between two images that are related by a perspective transformation. A per-

spective transformation, commonly referred to as homography, keeps the image’s straight lines

while shifting the objects’ relative locations. It may be used to register or align two pictures, such

as registering an image taken at a different time or from a different perspective with a reference

image to identify changes. Additionally, it may be used to change an image’s coordinate system

or rectify distortion.

The Direct Linear Transform (DLT) [14] algorithm lies at the core of homography estimation

and is widely recognised as the most commonly used approach for this purpose. It is a straightfor-

ward and computationally efficient method that operates by solving a system of linear equations.

In the context of working with homogeneous coordinates, the relationship between two corre-

sponding points x and x0 can be expressed as follows [14]:
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c

 u

v

1

= H

 x

y

1

 (2.9)

In equation 2.9, c represents any non-zero constant,
(

u v 1
)T

denotes x′,
(

x y 1
)T

denotes x, and H =

 h1 h2 h3

h4 h5 h6

h7 h8 h9

.

Dividing the first and second rows of equation 2.9 by the third row results in the following two

equations [14]:

−h1x−h2y−h3 +(h7x+h8y+h9)u = 0 (2.10)

−h4x−h5y−h6 +(h7x+h8y+h9)u = 0 (2.11)

Equations 2.10 and 2.11 can be expressed in matrix form as [14]:

Aih = 0

here, Ai =

(
−x −y −1 0 0 0 ux uy u

0 0 0 −x −y −1 vx vy v

)
and h =

(
h1 h2 h3 h4 h5 h6 h7 h8 h9

)T
.

To determine the homography matrix H, having a set of 4-point correspondences is sufficient,

although more correspondences usually mean a more robust solution, as each correspondence pro-

vides two equations. However, it is important to note that no three points can be collinear; they

must be in a "general position". Stacking four 2× 9 Ai matrices (one per point correspondence)

can obtain a single 8×9 matrix A. The null space of A, which represents the solution space for h,

is one-dimensional [14]. Regardless of the number of point correspondences utilised, if all corre-

spondences are exact, matrix A will have a rank of 8, resulting in a single homogeneous solution.

However, in practice, an exact solution may not be achievable due to uncertainties and approxi-

mate points. In such situations, the objective is to find a vector h that minimises an appropriate

cost function [14]. Homography estimation is a very important stage of stitching an image, and

deep homography may be seen as a crucial stage in deep image stitching. This approach was

first suggested by DeTone in [15], where the network architecture employed is reminiscent of Ox-

ford’s VGG Net and operates by taking two grayscale images, stacking them together, and passing

them through 8 convolutional layers with subsequent max pooling. Following this, the processed

data flows into two fully connected layers, while dropout regularisation is implemented to miti-

gate overfitting. Within this architecture, the regression network serves to predict 8 real-valued

numbers directly, whereas the classification network utilises a quantisation scheme to generate
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confidence values for each corner prediction. This performed better than conventional methods in

scenarios with large overlap rates, which is the case in this dissertation.

Nie et al. [12], proposes a homography estimation network structure as is represented in Figure

2.3:

Figure 2.3: Network structure for homography estimation for the first method analysed. From
[12].
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This network has two input images that are converted to grayscale. Since the images concern-

ing this dissertation consist of point spread functions, they can be treated as grayscale images and

input, skipping this first stage. Following this, an extractor with shared weights is employed to

learn feature representations. This also reduces the dimension of the feature maps in the Feature

Extractor in Figure. 2.3. In this blue area, each small block includes two convolutional layers and

a max-pooling layer. After this stage, a normalisation is applied to the feature maps and followed

by a global correlation layer to learn to which features match between the two feature maps. These

feature-wise global similarities are give to us by [12], with F l
A and F l

B being the features and xl
A

and xl
B being the 2D spatial location of said features:

CV l (x1,x2) =
< F l

A (x1) ,F l
B (x2)>∣∣F l

A (x1)
∣∣ ∣∣F l

B (x2)
∣∣ , x1,x2 ∈ Z2 (2.12)

After processing CV, a regression network with three convolutional layers and two fully con-

nected layers is used to predict offsets that can match the homography exactly. Finally, using the

DLT approach, a convertion of expected offsets into the matching homography H in the tensor

is made. The estimated global homography gives global alignment data that the next stage of

structure stitching may use.

The second approach [16], proposes a multi-scale deep homography network that integrates

feature pyramid with feature correlation. The architecture of the network is as follows:

Figure 2.4: Network structure for homography estimation for the second method analysed. From
[16].

Images are initially processed by eight convolutional layers when they enter the network. Each

layer has 64, 64, 128, 128, 256, 256, 512, and 512 filters, respectively. A max-pooling layer is

adopted every two convolutional layers to represent multi-scale features as F , F1/2, F1/4 and F1/8,

the latter three are chosen in order to form a three-layer feature pyramid. The features acquired
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in each layer of the pyramid are used to estimate the homography, transmitting the estimated

homography of the upper layer to the lower layer to enhance the prediction accuracy progressively.

In addition, three of the four scales’ features will be employed in the subsequent homography

regression, greatly increasing the use of the features. Consistent with [12], a correlation layer is

proposed, being the correlation between the two feature maps given to us by the equation 2.12.

This layer objective is to strengthen feature matching, allowing for an increase in the receptive

fields of the network.

A regression network is then applied, incorporating three convolutional layers and two fully

connected layers, to predict eight vertices’ offsets of the target image that can uniquely determine

a homography. Every feature correlation in the pyramid is only calculated between the warped

target feature and the reference feature, allowing each layer in the pyramid only to learn to predict

the residual homography offsets instead of the complete offsets. This residual offsets, ∆i, i = 1,2,3

are given by:

∆i = H4pt

{
F1/24−i

A ,W

〈
F1/24−i

B ,DLT

(
i−1

∑
n=0

∆n

)〉}
(2.13)

where H4pt is the operation of estimating the residual offsets. W warps the target feature map

using the homography and DLT converts the offsets of the corresponding homography, with the

final predicted offset calculated by:

∆w×h = ∆1 +∆2 +∆3. (2.14)

After that, image registration can be implemented by solving the homography and warping the

input images.

2.1.3 Image Fusion

Image fusion is a crucial process in machine vision that involves generating an enhanced image

surpassing the quality of the original image. It leverages a specialised application that considers

multiple image features within the same scene, utilising redundant and complementary informa-

tion in the image data [17]. This technique aims to produce a fused image that integrates the

most salient and valuable details from each input image, thereby enhancing the overall perceptual

quality and extracting meaningful information. Pixel-based and pixel-domain image fusion meth-

ods have also been widely applied in the field of space image processing. These techniques have

proven valuable in enhancing space images’ quality and information content, enabling researchers

to extract more accurate and detailed insights from the vast amount of data collected by telescopes

and other space instruments.

Several techniques can be employed to fuse images with relatively straightforward approaches

[1]. One such method is the averaging strategy, which involves computing the average value of

corresponding pixels from input images to generate the final fused image. While this technique is

simple to implement, it often suffers from a blurring effect that adversely affects image contrast.
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Another commonly used method is the Select Maximum approach, where the pixel values with

the highest intensity are selected, thus emphasising the most distinguishing features of the image.

This method determines the optimal pixel values by comparing the corresponding pixels from each

input image and assigning the highest value to the output image. Similarly, the Select Minimum

method follows the same principle as the Select Maximum approach but with a minor distinction.

In this case, it considers pixel values with the least intensity, discarding all other values. This

strategy either fully incorporates the information from the source images or discards it completely

without striking a balance. Consequently, both the Select Minimum method and Select Maximum

methods, like the averaging, also suffer from blurring effects and reduced image contrast.

Due to the limitations of simpler techniques and in order to achieve superior fusion results,

more complex methods were developed. One such approach is the Pyramid Transformation

method [17], which utilises the Laplacian Pyramid. This method measures the activity level of

each component by the absolute value of its decomposition coefficient, and the fusion coefficient

is determined using the choose-max rule. The fusion efficiency of this method is high while retain-

ing sufficient original information. However, the choice of decomposition method and the number

of decomposition layers significantly impact the final fusion result, as a higher number of layers

may lead to blurred boundaries in the fused image. Another group proposed the use of a Gradi-

ent Pyramid model [18], which employed directional filtering and calculated the local energy of

a coefficient. An adaptive local similarity-based fusion rule was used, where a weighted average

rule was applied for high local similarity and the maximum selection rule for low similarity. This

fusion strategy gained widespread use in subsequent image fusion studies.

Wavelet transforms [17] is an alternative method that decomposes the original image into high

and low-frequency coefficients, including vertical, horizontal, and diagonal information. It gener-

ally achieves better fusion results compared to the pyramid transform. However, wavelet transform

is not displacement invariant, affecting fusion quality in poor image registration. To overcome this

limitation, several improved wavelet transform methods have been proposed. One of those is the

Multiscale Singular Value Decomposition method [17], which, while it can extract more accu-

rate feature information and yield better fusion results, often requires a significant computational

overhead due to the large amount of decomposition information involved.

In the context of space image fusion, pixel-based methods offer the advantage of obtaining

precise pixel-wise weight maps, which are crucial for combining multiple images captured by dif-

ferent instruments or at different wavelengths. By comparing focus values obtained from different

source images, these methods generate decision maps, enabling the classification of each pixel

as focused or defocused [17]. The fusion rules employed in these methods, such as maximum

selection and weighted average, facilitate the integration of information from multiple images,

resulting in a fused image that retains the important details from each source image [18]. Sim-

ilarly, pixel-domain methods play a significant role in space image fusion, particularly in cases

where accurate estimation of optimal weights for different pixels is essential. By calculating the

weighted average of corresponding pixels from input images, these methods effectively combine

the information contained in each pixel, enhancing the overall image quality [19]. In the domain
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of space engineering, this approach can be particularly useful for merging images obtained from

different telescopes or sensors, facilitating the analysis of celestial objects across various wave-

lengths and capturing a more comprehensive view of the universe. Pixel-based methods have their

advantages and challenges when applied to space images. The spatial context information and ac-

curate weight estimation provided by these methods can greatly enhance the visibility of celestial

objects, improve the detection of faint features, and enable more precise measurements. However,

as emphasised in the literature [19], the accurate estimation of optimal weights remains a critical

factor in ensuring the success of the fusion process in space applications.

The evaluation of image fusion performance can be carried out through subjective and objec-

tive measures. However, subjective evaluation has limitations due to the need for observers with

relevant expertise and the potential influence of environmental factors. It is also time-consuming

and labour-intensive to organise evaluation meetings for accuracy assessment. On the other hand,

objective evaluation involves the use of algorithms to calculate image quality, providing quan-

titative evaluation criteria. Researchers have employed various objective metrics to measure the

performance of image fusion. Two commonly used metrics are Root Mean Squared Error (RMSE)

and Peak Signal to Noise Ratio (PSNR) [1, 20].

RMSE is utilised to quantify the diversity between the reference and fused images. A lower

RMSE value indicates that the fused image closely resembles the reference images. The RMSE

calculation is defined by the following equation [1, 20]:

RMSE =

√√√√ 1
mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)−K(i, j)]2 (2.15)

where m and n represent the number of rows and columns in the image, respectively. The term

I(i, j) denotes the pixel value at position (i, j) in the reference image, while K(i, j) represents the

pixel value at position (i, j) in the fused image.

PSNR is another metric researchers use to measure image quality, considering image values

and properties. It quantifies the recognised errors in the fused image by comparing them to the

reference images. A higher PSNR value indicates a greater similarity between fused and reference

images. The calculation for PSNR is given as follows [1, 20]:

PSNR = 10× log10

(
f 2
max

MSE

)
(2.16)

where fmax corresponds to the maximum possible pixel value in the image. The Mean Squared

Error (MSE) measures the average squared difference between the pixels of the fused image and

the reference images [1, 20]. These objective metrics provide quantitative measures for assessing

the performance of image fusion algorithms, complementing the subjective evaluation process.

In recent years, deep learning methods have rapidly advanced with remarkable applications.

Deep learning models leverage the network’s learnability to extract features from multi-focus im-

ages and separate focused and defocused regions, ultimately generating full-focus fusion images

[17]. This approach has demonstrated promising results in image fusion tasks, leveraging the
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power of neural networks to effectively learn and represent complex patterns and relationships in

the data. As for the first proposed machine learning-based method in [12], it is composed by three

stages, which are respectively: homography estimation stage, structure stitching stage and content

revision stage. The latter two stages of the network are shown in Figure 2.5.

Figure 2.5: Network structure for image fusion and content revision, for the first method analysed.
From [12].

The objective of dividing these two stages is due to the troublesome task of training a stitching

network from scratch since it requires the cooperation of these stages to work simultaneously. A

Structure Stitching Layer is introduced to acquire the structure information of stitched images.

This layer first generates a grid, the same size as the stitching label, for each input image, with

each element representing a 2D spatial location (u,v). Following this, the original coordinates of

both images are calculated by:

 x

y

z

= H−1

 u

v

1

 (2.17)

where H is the projective transformation from the perspective IB to IA and (x,y,z) are the homo-

geneous coordinates of the original images. Afterwards, the smooth warped images are obtained

using the bilinear interpolation, passing through a final stage of fusion, where the pixel value of

an overlapping area results in the sum of the pixel of both images weighted by 0.5. To finalise, a

Content Revision stage that consists of an encoder-decoder network is required to remove artefacts

from overlapping regions while preventing severe distortion to the content of the non-overlapping

parts. The method suggested is applied to three-channel RGB images, which differs from our

one-channel data, meaning it’s not worth a deeper analysis.

Nie proposes in [16] the use of a two-branch network to fuse the image. Due to the single-

channel nature of our data, as previously mentioned, only the Edge Deformation Branch will be

analysed in this document. The edge map E for a grayscale image G is given to us by the difference

between adjacent pixels, as such:

Ei, j =
∣∣Gi, j −Gi−1, j

∣∣+ ∣∣Gi, j −Gi, j−1
∣∣ (2.18)
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After applying this formula, a convolutional layer with fixed kernels is used to extract edges,

finalising by clipping Ei, j between 0 and 1. This edge map serves as an input for the edge defor-

mation branch, which adopts an encoder-decoder architecture.

In this branch, the number of convolutional kernels is set to 64, 64, 128, 128, 256, 256, 512,

512, 256, 128, 128, 64, 64, and 1, respectively, with a maxpooling layer adopted every two con-

volutional layers. Except for the last convolutional layer, all of these convolutional layers’ kernel

sizes are set to 3x3 and their activation functions to ReLU. The activation function is set to Sigmoid

and the kernel size to 1x1 in the final layer to create the stitched edge. It’s also worth noting, and

consistent with the first method Content Review stage, skip connections were added between the

low-level and high-level features with the same resolution to avoid a gradient vanishing problem

and information imbalance in each layer.

2.1.4 Loss Functions

Deep homography networks are essentially regression tasks for the eight homography-related pa-

rameters. Homography must be anticipated first before computing the unsupervised loss function,

even in unsupervised estimating techniques. A simple but effective way to do this is minimising

the distance L2 between the predicted offsets, f̂ , and the ground truth f , as such [12]:

LH( f̂ , f ) =
1
N
∥ f̂ − f∥2

2, (2.19)

where N defines the number of components in offsets f̂ .

In both methods and in the context of image fusion, the same loss functions are applied with

different purposes, although the equations are the same.

For the stitching loss function, L1 loss is employed at corresponding positions between outputs

and labels to limit the structure of stitching images to resemble that of labels as closely as possible:

Ledge(Î, I) =
1

W ×H ×C
∥Î − I∥1, (2.20)

where W , H and C are, respectively, width, height and channel number of stitching result. In [12],

Î and I correspond to the stitching result and stitching label, being used in the Structure Stitching

stage, where in [16], C is always equal to 1 and Î and I are denoted as the ground truth edge and

edge labels from the Edge Deformation Branch.

Although the content revision from the first and second method was skipped in this document,

since the solutions proposed are for images with 3 or more channels, it’s still worth addressing

the content loss function, which can greatly minimise the drastic changes in image features due to

artefacts and image seams. The suggested approach is inspired in the VGG-19, with ψ j being the

feature map of the j-th convolutional layer:

Lcontent(Î, I) =
1

Wj ×H j ×C j

∥∥∥ψ j(Î)−ψ j(I)
∥∥∥2

2
, (2.21)

where Wj, H j and C j denote the feature map’s width, height, and channel number, respectively.
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While both LS and LC are used to constrain stitching results to be as close to the ground truth as

possible in [16], the use of the 9th convolutional layer of VGG-19 is specified, using both outputs

of the two loss functions described above to calculate an objective function:

LO = λeLedge +λcLcontent (2.22)

where λe and λc are the balance factors of edge loss and content loss, respectively.

Given the two analysed methods, the first one seems to be more effective in the context of

this dissertation since it achieved almost 100% of artefact elimination in overlapping areas and is

robust with reducing ghosting effects, focusing on data with a bigger overlap rate, which is the

case with our data. The second article on the other hand, discusses an approach to deep stitching

in low overlap rates while also preserving edges.

2.2 Super Resolution

In the realm of space engineering, our understanding of the universe is greatly enhanced by the

quality and clarity of the images captured by telescopes. However, when it comes to observing

deep-space objects, ground-based telescopes face numerous challenges that hinder their ability to

produce high-resolution images.

The importance of super-resolution in space imaging cannot be overstated. While offering the

advantage of large apertures and long exposure times, ground-based telescopes are significantly

impacted by atmospheric turbulence. This turbulence introduces distortions and blurring in the

captured images, resulting in reduced resolution and limited visibility of intricate details. Besides

this, other noises due to Charge-Coupled Devices’ (CCD) or Complementary Metal-Oxide Semi-

conductor (CMOS) limitations, reflections and transmission errors have to be handled [21]. Super

Resolution techniques aim to mitigate these effects and restore the true structure and clarity of the

observed objects.

2.2.1 Adaptive Optics

One of the most widely used techniques for correcting atmospheric turbulence is Adaptive Optics

[22] (AO). Adaptive Optics systems employ real-time measurements of atmospheric distortions

and make precise adjustments to the telescope’s optics. By dynamically correcting the distor-

tions, AO compensates for the blurring effects, thereby enhancing the resolution of the acquired

images. This technique has revolutionised ground-based astronomy, enabling observations with

unprecedented sharpness and clarity.

The Fried parameter (r0) indicates the size of the aperture with an average of one radian of

root mean square (rms) phase aberration. Achieving a moderate Strehl ratio, which is a measure

of the quality of optical image formation, in an AO system requires correction on spatial scales of

r0. Interestingly, r0 also corresponds to the aperture that produces a full-width at half-maximum

(FWHM) image resolution similar to that of a diffraction-limited aperture without turbulence. It
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Figure 2.6: Working principle of Adaptive Optics. From [22].

decreases with increasing zenith angle (γ) and refractive index variations, while it increases with

the wavelength raised to the power of 6/5. Typically, for visible wavelengths under 1-arcsec seeing

conditions, r0 is around 10 cm. The isoplanatic angle (θ0) describes the angular extent within

which optical path variations deviate by less than one-radian rms phase aberration. It represents

the maximum angular radius from a correction direction where reasonably good correction can be

achieved. The value of θ0 is usually a few arcseconds for visible wavelengths and strongly depends

on the distribution of turbulent layers’ heights. The coherence time (τ0) defines the time interval

during which optical path variations deviate by less than one-radian rms phase aberration. It

characterises the required temporal correction bandwidth for AO. The coherence time is typically a

few milliseconds for visible wavelengths and is inversely proportional to r0 divided by the average

wind speed (v).

Another important parameter is the outer scale (L0), which is typically a few tens of meters

but can be larger. A wavefront that has propagated through the atmosphere does not decorrelate

any further on size scales greater than L0. The outer scale directly influences the performance of

an AO system, especially when L0 is comparable to the size of the telescope aperture. Wavefront

sensing (WFS) is a critical component of AO systems as it accurately estimates the shape of

the wavefront. Commonly used WFSs include the Pyramid WFS, Shack-Hartmann WFS, and

Curvature WFS. Each WFS has its advantages and disadvantages in terms of sensitivity at different

spatial frequencies. Recent on-sky results support the Pyramid WFS as the preferred choice for

modern AO systems.
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Wavefront reconstruction calculates a correction vector based on WFS measurements. It in-

volves solving a linear system, typically using modal decomposition, filtering, and weighting

techniques. Advanced control methods, such as linear-quadratic-Gaussian or Kalman filter-based

methods, can further improve wavefront reconstruction and control. These methods can also in-

corporate telescope vibrations for efficient correction.

The deformable mirror (DM) plays a vital role in AO systems as it corrects for optical path dif-

ferences caused by atmospheric turbulence. DMs come in different technologies, such as adaptive

secondary mirrors, piezo DMs, and micro-optical-electrical-mechanical systems. Each technol-

ogy has its advantages and limitations. Choosing the appropriate DM parameters, such as stroke,

response time, spacing, and the number of actuators, is crucial to align with the Fried parameter

(r0) and the coherence time (τ0) requirements. Combining DMs with different stroke capabilities

can further optimise the correction performance.

To overcome the limitations of natural guide stars (NGS) in achieving reasonable correction

performance, laser guide stars (LGS) have been introduced. LGSs are artificial guide stars created

using lasers. They significantly increase the sky coverage of AO systems by providing brighter

guide stars within a certain angular distance of the target.

With AO techniques already implemented in telescopes and continuously evolving, their im-

pact on space observations cannot be overstated. However, as space engineers continually pursue

greater precision and accuracy in their observations, it becomes increasingly vital to incorporate

additional super-resolution methods into the imaging pipeline. These methods, which encompass

advanced image processing algorithms and computational techniques, work in synergy with AO

to further augment the quality of acquired images. By integrating a comprehensive suite of super-

resolution techniques, engineers can ensure that the results of their observations meet or exceed

the high standards required for scientific analysis, enabling breakthrough discoveries and a deeper

understanding of the cosmos.

2.2.2 Frequency-based approach

One of the pioneering SR algorithms in the frequency domain is the method proposed by Tsai and

Huang [23, 24]. This algorithm was designed to work with low-resolution (LR) images obtained

from the Landsat 4 satellite. The LR images are related to the high-resolution (HR) scene through

global translations, which are accounted for using the shifting property of the Fourier transform.

By transforming the LR images into the frequency domain, Tsai and Huang combined them based

on the relationship between the aliased discrete Fourier transform (DFT) coefficients of the ob-

served LR images and those of the unknown HR image. This approach allows for extrapolating

high-frequency information from the LR images to enhance the details in the HR reconstruction.

The discrete Fourier transform of the LR images, denoted as Gk(m,n), and their continuous Fourier

transform, denoted as Fgk(m,n), are related as follows [24]:
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, where Tm and Tn are the sampling periods along the dimensions of the LR image, and M and

N, are the maximum values of the LR image dimensions. This equation accounts for the discrete

sampling of the LR images from the continuous scene. The relationship between the LR images

in the frequency domain and the HR scene can be expressed as [24]:

G = ΦFf (2.24)

where G represents the discrete Fourier transform of the LR images, Ff represents the continuous

Fourier transform of the HR scene, and Φ is the transformation matrix that relates the two domains.

Tsai and Huang utilised a least squares algorithm to estimate the Fourier coefficients of the HR

scene. The least squares algorithm aims to minimise the error between the observed LR images and

the transformed HR image. Kim proposed an iterative algorithm to minimise this error, resulting

in the following equation [24]:

|E|2 = (G−ΦḞf )
†(G−ΦḞf ) (2.25)

where Ḟf is an approximation of Ff that minimises the calculated error, and † represents the conju-

gate transpose. This iterative approach allows for progressively refining the estimation of the HR

scene’s Fourier coefficients. Incorporating a priori knowledge about the LR observations into the

SR reconstruction can further improve the results. This can be achieved using a recursive weighted

least squares algorithm, where the LR images with higher signal-to-noise ratio are assigned greater

weights.

While the Fourier transform-based SR methods, including Tsai and Huang’s algorithm, pro-

vide an intuitive way to enhance the details of LR images and have low computational complexity,

they are limited in handling real-world applications that involve complex displacements and non-

linear blur [23, 24]. To address these challenges, researchers have explored the use of wavelet

transforms for SR [23]. Wavelet transform provides a powerful and efficient multi-scale represen-

tation of images, which is beneficial for recovering high-frequency information lost or degraded

during the image acquisition process . Wavelet-based SR approaches typically treat the observed

LR images as low-pass filtered subbands of the unknown wavelet-transformed HR image. The

HR image can be reconstructed by estimating the finer scale subband coefficients and applying the

inverse wavelet transform. Researchers have proposed various wavelet-based SR algorithms to

improve upon the limitations of the Fourier transform-based methods. Ei-Khamy [23] introduced

a wavelet SR approach that incorporates registration in the wavelet domain, followed by fusion

of the registered wavelet coefficients and interpolation to obtain a higher-resolution image. Ji and

Fermuller [23] proposed a robust wavelet SR approach that addresses errors in both registration

and blur identification computations. Chappalli and Bose [23] incorporated a denoising stage into

the wavelet-domain SR framework, developing a simultaneous denoising and SR reconstruction

approach. These advancements in wavelet-based SR techniques demonstrate the potential for han-

dling real-world challenges and improving the quality of HR image reconstructions. However, fur-

ther research is necessary to explore hybrid approaches and novel algorithms that can effectively
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address the complexities introduced by factors such as noise, blur, and non-linear distortions in

practical SR applications [23, 24].

2.2.3 Lucky Imaging

In the quest to obtain high-resolution images of space objects, researchers have explored vari-

ous techniques to mitigate the adverse effects of atmospheric turbulence. Lucky Imaging (LI) is

one such method that has gained considerable attention for its ability to enhance the resolution

of space images. By capitalising on brief moments of improved atmospheric conditions, lucky

imaging selectively combines frames to produce sharper and more detailed images. At its core,

LI involves carefully selecting and combining frames from a rapid sequence of captured images.

These frames are acquired using high-speed imaging cameras, which enable the capture of a large

number of frames in a short period. However, it is worth noting that (LI) is not limited to specific

camera types, as it can be implemented with any high-speed imaging camera, making it versatile

in practice [25].

The frame selection process in lucky imaging is critical for achieving superior results. Each

frame is assessed based on its image quality, with factors such as sharpness and fidelity taken into

account. One common metric used to quantify the quality of a frame is the fraction of light concen-

trated in the brightest pixel of the Point Spread Function (PSF) [26]. Frames with a higher fraction

of light in the brightest pixel indicate better image quality. The selection of frames is based on

their quality factors, with a fraction of frames chosen to optimise the trade-off between resolution

enhancement and the desired signal-to-noise ratio. The selected frames are then shifted and added,

aligning their brightest speckle positions. This alignment process eliminates the contribution of

tip-tilt errors caused by atmospheric turbulence or telescope pointing errors [25].

A reference star is selected as a guide for aligning the frames to exploit the turbulence-induced

blurring present in each frame. By sinc-resampling the guide star image in each frame, a sub-pixel

estimate of the position of the brightest speckle is obtained. This sub-pixel accuracy allows for

precise alignment of the frames, compensating for atmospheric distortions [26].

One intriguing aspect of lucky imaging is its ability to yield higher resolution even when only

a fraction of the frames are selected for the final image. The fortunate frames chosen possess the

sharpest PSFs, resulting in improved angular resolution. It is worth noting that lucky imaging’s

resolution enhancement capability can be particularly advantageous when dealing with objects that

exhibit slightly smeared images in one direction while maintaining full resolution in the orthogonal

direction [25]. Moreover, lucky imaging can be complemented with Fourier analysis to enhance

the resolution of space images further. By exploring the amplitude of complex elements in the

Fourier plane, frames are selected in Fourier space. This approach offers an alternative perspective,

considering the components of the image rather than the full image itself. The Fourier components

are combined to generate the final output image [25].

A recent development in Lucky imaging is given to us by Wang et al. [27], where a novel

approach is proposed that overcomes the limitations of conventional Lucky Imaging and Lucky
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Fourier (LF) algorithms, hybridising both methods. The LI algorithm operates in the spatial do-

main and selects good images based on a specific selection rate, typically those with a high Strehl

ratio, to enhance image quality. This approach consumes less memory but may not utilise avail-

able information effectively. In contrast, using a specific selection rate, the LF algorithm operates

in the frequency domain and selects good complex data at each spatial frequency. It combines

the selected complex data from multiple images based on Fourier image amplitudes to generate

a composite representation, effectively enhancing image quality. However, the LF algorithm re-

quires higher computational resources and memory consumption compared to the LI algorithm.

Both algorithms rely on selection rates to control data selection and superposition processes, which

directly influence the outcome of the lucky imaging technique. Different selection rates can lead

to variations in the effective information contained within the results.

The goal is to extract maximum effective high-resolution information from short-exposure

images and generate a resultant image with improved resolution. To achieve this, the proposed

algorithm combines the selection rates from the original one-dimensional point sets in both the

space domain and frequency domain into a two-dimensional point set on a plane. This integration

allows for the extraction of effective information using the frequency-domain lucky imaging rule.

The algorithm follows a specific implementation method consisting of several steps. Four

parameters define the initial value and increment of the space-domain and frequency-domain se-

lection rates. These parameters control the variation of the selection rates during the iterative

process. The process starts with the initial selection rates and continues until reaching a terminal

value of 1. Good images are selected based on the instantaneous Strehl ratio and transformed into

corresponding Fourier images using the Fast Fourier Transform (FFT) for each selection rate in the

space-domain. In the frequency domain, good complex data is selected and superposed according

to the index of maximum amplitude, known as the amplitude rule. This involves combining the

selected complex data from multiple images to create a composite representation. The algorithm

performs a second frequency-domain fusion from the Fourier images obtained by selecting the

complex data with the largest amplitude at each spatial frequency. This step effectively enhances

the utilisation of information from the original short-exposure images. Finally, the Inverse Fast

Fourier Transform (IFFT) is applied to the fused Fourier image to obtain the final high-resolution

reconstructed image.

The algorithm introduces novel image selection and storage schemes to reduce memory usage

while ensuring the best images and complex data selection. In the image selection and storage

scheme for the LI algorithm, the peak value of the current input image replaces the minimum

peak among the selected peaks found through comparison. Similarly, the current clipped image

replaces the clipped image corresponding to the minimum peak in the image storage area. This

approach ensures the selection of a specific number of images with the highest peaks at a given

space-domain selection rate. The new complex data selection and storage scheme replaces the

conventional comparison-based approach for the LF algorithm. The current Fourier amplitude

corresponding to each spatial frequency replaces the minimum amplitude found through com-

parison, and the current complex data is written to the complex data unit corresponding to the
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minimum amplitude. A hybrid lucky imaging algorithm is formed by incorporating these image

selection and storage schemes. The hybrid algorithm leverages the strengths of both algorithms

while providing flexibility in adaptation based on the specific selection rates chosen.

The proposed hybrid lucky imaging algorithm offers a versatile and powerful solution for ex-

tracting high-resolution information from short-exposure images. By seamlessly integrating the

space-domain and frequency-domain processing, optimising memory usage, and overcoming the

limitations of specific selection rates, the algorithm provides improved resolution and indepen-

dence from the selection rate.

2.2.4 Drizzle Algorithm

The Drizzle algorithm serves as the foundation for precise alignment and combination of multi-

ple images in the field of space engineering. This algorithm ensures that the resulting image is a

single, high-resolution composition by effectively mitigating noise and artefacts. Its remarkable

capabilities are achieved through the utilisation of a sophisticated sampling and weighting tech-

nique. Building upon the Drizzle algorithm, DrizzlePac emerges as a powerful software package

developed by the Space Telescope Science Institute (STScI). Originally designed for the Hubble

Space Telescope (HST) calibration pipeline, DrizzlePac has expanded its reach and is now widely

employed across ground-based and space-based observatories. Its primary objective is to enhance

the resolution and quality of space images, thus becoming an indispensable tool in the field.

This software package combines the Drizzle algorithm with a user-friendly interface and an

implementation in Python. It allows space engineers and researchers to interact with the soft-

ware through both interactive and command-line modes, further enhancing its accessibility and

usability.

The Drizzle algorithm, developed by Fruchter and Hook [28], is an improved method for

combining dithered images to enhance resolution and reduce correlated noise. It allows for the

creation of a higher-resolution output image by smoothly varying between interlacing and shift-

and-add techniques. Drizzle operates by mapping pixels from the original input images to the

subsampled output image, considering shifts, rotations, and camera distortions. However, to avoid

additional blurring caused by the convolution with the pixel shape, Drizzle introduces the param-

eter pixfrac. This parameter controls the shrinking of the pixel, or "drop," before it is averaged

into the output image. The drop size, defined as the ratio of the linear size of the drop to the input

pixel, is controlled by pixfrac.

To determine the values and weights of the output pixels, the Drizzle algorithm uses the fol-

lowing equations [28]:

W ′
xoyo

= axiyixoyowxiyi +Wxoyo (2.26)

I′xoyo
=

dxiyiaxiyixoyowxiyis
2 + IxoyoWxoyo

W ′
xoyo

(2.27)
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where W ′
xoyo

and I′xoyo
represent the resulting values and weights of the same pixel, and s is the

scale parameter controlling the degree of subsampling of the output. The iterative application of

the Drizzle algorithm to the input data, pixel-by-pixel, image-by-image, produces usable output

images and weights I and W after each input image is processed.

The final output images, obtained after processing all the input images, are given by [28]:

Wxoyo = axiyixoyowxiyi (2.28)

Ixoyo =
dxiyiaxiyixoyowxiyis

2

Wxoyo

(2.29)

where the Einstein convention is used for summation over repeated indices, and the input indices

xi and yi extend over all input images.

Figure 2.7: Representation of how drizzle maps input pixels onto the output image. From [28].

The behaviour of the Drizzle algorithm is influenced by the parameter pixfrac, which can be

set between 0 and 1. A value of 0 corresponds to pure interlacing, while higher values introduce

additional broadening of the output point spread function (PSF) by convolving the original PSF

with non-zero size pixels. Setting pixfrac to 1 is equivalent to shift-and-add, where the output

image PSF is smeared by convolution with the full size of the original input pixels [29]. The

degree to which the Drizzle algorithm departs from interlacing and moves towards shift-and-add

depends on how well the point spread function (PSF) is subsampled by the shifts in the input

images [29].

The Drizzle algorithm effectively recovers high spatial frequency information and enhances

image resolution by combining subpixel dithered images. It overcomes the limitations of simple

linear techniques like interlacing and shift-and-add, offering improved results in terms of resolu-

tion and correlated noise reduction [29].
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A more recent method developed is called DrizzlePac described in [29]. This Python pack-

age extends the capabilities of the Drizzle algorithm, providing additional tasks for image align-

ment, distortion corrections, and coordinate transformations. These enhancements improve the

alignment and combination of HST images, enabling more accurate and precise results for vari-

ous space applications. One of the key components of DrizzlePac is the TweakReg task, which is

specifically designed for precise image alignment. TweakReg employs advanced algorithms to de-

termine the necessary shifts and rotations required to achieve sub-pixel alignment of input images.

The alignment process begins by generating source catalogues that contain positional information

of detected objects within the images. Various techniques such as centroiding and model fitting

are utilised to accurately identify and extract sources from the images.

To calculate the optimal transformations for image alignment, TweakReg utilises different

alignment methods. These methods include centroid-based alignment, cross-correlation align-

ment, and pattern-matching algorithms. By comparing the detected sources with catalogued

sources, TweakReg obtains precise positional information and performs the necessary adjustments

to align the images. It also takes into account any geometric distortions present in the images and

applies calibration or correction procedures to mitigate these distortions during the alignment pro-

cess. DrizzlePac incorporates distortion corrections to improve the accuracy of image registration

and combination. The implementation of distortion corrections follows a step-by-step process

[29]:

1. Apply the detector pixel-grid irregularities (D2IMFILE) to correct the raw pixel values of

the image.

2. Apply the SIP (Simple Imaging Polynomial) coefficients to further correct the pixel values

after the detector correction.

3. Combine the filter-dependent part of the distortion using a look-up table correction (NPOLFILE)

in conjunction with the D2IMFILE and SIP-corrected pixel values.

4. Apply the World Coordinate System (WCS) transformation, represented by the CD matrix,

to obtain intermediate world coordinates.

5. Add the Right Ascension and Declination position at the reference pixel (CRVAL1 and

CRVAL2) to the transformed positions, yielding positions on the tangent plate.

6. Apply the inverse projection from the tangent plane to the celestial sphere, resulting in the

true world coordinates.

These distortion corrections improve the accuracy of image registration and alignment, provid-

ing more reliable coordinate transformations for subsequent analysis and processing. In addition

to image alignment and distortion corrections, DrizzlePac offers tasks for coordinate transforma-

tions. These tasks allow users to convert positions between different coordinate systems, facili-

tating accurate astrometric measurements and analysis. Coordinate transformations in DrizzlePac
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are performed using a combination of WCS information, CD matrix, distortion corrections, and

polynomial distortion models. The transformed positions on the celestial sphere are obtained by

applying the appropriate corrections and transformations to the intermediate world coordinates.

Overall, the Drizzle algorithm and DrizzlePac have significantly advanced the field of space

engineering and astronomy by providing researchers and astronomers with powerful tools for pre-

cise image alignment, combination, distortion correction, and coordinate transformations. These

advancements have led to improved resolution, reduced correlated noise, and more accurate and

reliable results, enabling enhanced precision and quality in various space applications.

2.2.5 Machine Learning Algorithms

Machine learning methods for super-resolution, such as the proposed multi-frame super-resolution

(MFSR) method, offer several advantages. They can leverage the additional signal information

present in multiple LR images to generate higher-quality outputs compared to single-image super-

resolution approaches [30]. In the case of MFSR, if the input images have sub-pixel shifts due

to camera motion, they provide different LR samplings of the scene, allowing for more accurate

reconstruction. In this subsection, two distinct methods for MFSR will be explored.

Bhat et al. [30] proposes a methodology aimed at introducing a novel technique for MFSR that

directly operates on noisy RAW bursts obtained from a handheld camera. The primary objective of

their approach is to generate an output consisting of a denoised, demosaicked, and super-resolved

image. In order to accomplish this, the authors have developed an innovative attention-based

fusion module that has the capability to selectively merge an arbitrary number of input frames, re-

sulting in a high-quality output. Unlike previous methods that are constrained to handling simple

motion patterns such as translation or homography, the authors employ the estimation of dense

pixel-wise optical flow. This optical flow estimation enables the alignment of deep feature encod-

ings for each input frame at a pixel level. As a result, the proposed alignment process facilitates

the adaptive selection of reliable and informative content from each image while simultaneously

discarding misaligned regions.

Figure 2.8: Overview of the architecture of the burst super-resolution network. From [30].
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The architecture of the burst super-resolution network is illustrated in Figure 2.8, and it con-

sists of three main modules: the encoder, alignment module, and fusion module, followed by the

decoder [30]:

1. Encoder Module: The encoder module maps each input burst image to a deep feature

representation. To achieve translational invariance, the raw Bayer pattern of each image is

first packed into a 4-channel image at half the initial resolution. This low-resolution image

is then processed by the encoder, which consists of an initial convolutional layer followed

by a series of residual blocks. The final output is a high-dimensional encoding that allows

effective fusion of multiple frames.

2. Alignment Module: To align the frames, dense pixel-wise optical flow is computed be-

tween each burst image and a reference image. The estimated flow vectors are used to warp

the feature maps of each frame to the reference frame. This alignment process ensures that

the deep feature encoding of each frame is properly aligned. While the author says that "any

state-of-the-art optical flow network can be employed as a flow estimator", Bhat specifies

the use of the PWC-Net [31] due to the ability to operate on RGB images, discarding one of

the two green channels in b̃i to generate input RGB images. Between every burst image b̃i

and the reference image b̃1, pixel-wise flow captures both global camera motion and object

motion in the scene. The estimated flow vectors fi are used to warp the feature maps ei to

the base frame using a bilinear kernel [30]:

ẽi = φ(ei, fi), fi = F(b̃i, b̃1) (2.30)

Here, φ represents the warping operation, F is the flow estimator, and ẽi is the resulting

warped feature map. The warped feature maps ẽN i = 1, as well as the computed flow vectors

f N
i , are then passed to the fusion module. Additionally, the flow vector f1 for the base frame

is set to 0.

3. Fusion Module: The fusion module adaptively merges the aligned feature maps using an

attention-based fusion approach. It predicts element-wise fusion weights using a weight

predictor network based on the aligned feature maps and flow vectors and enhances com-

putational efficiency by projecting the feature maps to a lower dimension and utilising flow

vectors for weight estimation. These fusion weights determine the contribution of each

frame to the merged feature map. The merged feature map ê is obtained through a weighted

sum of the aligned feature maps using the fusion weights:

ê =
N

∑
i=1

wi · ei, wi =
ew̄i

∑ j ew̄ j
, w̃i =W

(
ẽ1,ri, f̂i

)
(2.31)

Here, · denotes element-wise multiplication. The merged feature map ê is then passed to the

decoder module to generate the final output.
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4. Decoder Module: The decoder module takes the merged feature map as input and generates

the final output HR image. It consists of residual blocks and sub-pixel convolution layers.

The sub-pixel convolution is used to effectively decode the sub-pixel information encoded in

different feature channels, resulting in a higher-resolution feature map. Finally, the feature

map is processed by additional residual blocks and a convolutional layer to obtain the high-

resolution RGB image.

The second proposed method for MFSR is presented in [32], called HighRes-net, is a neural

network designed for multi-frame super-resolution. It operates on grayscale images within a single

spectral band. HighRes-net employs joint co-registration and fusion of multiple low-resolution

views in an end-to-end learning framework. It consists of an encoder-decoder architecture and is

trained using high-resolution ground truth images as supervision.

The methodology of HighRes-net can be divided into three main steps: encoding, fusion,

and decoding. In the encoding step, the network learns relevant features associated with each

low-resolution view. To overcome the redundant low-frequency information present in multiple

views, a reference image is computed as a shared representation for all views. This reference

image helps highlight differences across the views and allows the network to focus on difficult

high-frequency features during super-resolution. This mechanism is referred to as implicit co-

registration. HighRes-net’s embedding layer, shared across all views, consists of a convolutional

layer and two residual blocks with PReLu activation’s.

In the fusion step, the embedded hidden states from different views are recursively fused. The

number of low-resolution states is halved at each fusion step. The fusion process involves aligning

the representations and merging them using shared fusion and residual blocks. This fusion is

performed iteratively until the final low-resolution encoded state contains information from all

input views.

Figure 2.9: HighRes-net’s global fusion overview. From [32].

After the fusion step, the final low-resolution encoded state is upsampled using a deconvolu-

tional layer to a higher-resolution space. The hidden high-resolution encoded state is then con-

volved with a 1x12D kernel to produce the final super-resolved image.

Co-registration plays a crucial role in the fusion step. HighRes-net learns to implicitly co-

register the multiple low-resolution views and fuse them into a single super-resolved image. It

is important to note that the co-registration scheme does not assume that the differences in low-

resolution images are solely due to translation motion. The network can handle other types of

motion as well. To improve registration and super-resolution, HighRes-net is trained in cooper-

ation with ShiftNet-Lanczos, another neural network. ShiftNet-Lanczos predicts sub-pixel shifts
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between pairs of high-resolution images and applies them using Lanczos interpolation. The net-

works are trained together in an end-to-end manner, minimising a joint loss function.

The methodology of the proposed method was designed based on its performance in the ESA

competition, where the leaderboard ranking is based on the clear Peak Signal-to-Noise Ratio score.

The final joint objective function combines the reconstruction loss between the super-resolved im-

age and the ground truth high-resolution image, along with a regularisation term for the predicted

sub-pixel shifts.

In the context of deep space images, both methods provide valuable contributions. Bhat’s

approach is particularly well-suited for handling handheld camera bursts, addressing challenges

related to noise and motion, such as the effects caused by the atmosphere. Alternatively, Deudon’s

HighRes-net, with its focus on grayscale images and joint co-registration, offers a robust frame-

work for enhancing the quality of deep space images in a single spectral band, such is the case

with the dataset of this dissertation.

2.3 Critical analysis

In this chapter, a comprehensive analysis of various techniques has been conducted, encompassing

image stitching techniques, multi-frame super-resolution methodologies, and machine learning

algorithms.

The exploration began with a detailed examination of image stitching techniques, consider-

ing options such as feature detection, homography estimation, and image fusion methods. These

algorithms are applicable to both single and multi-telescope image stitching. A notable aspect

of feature detection is the iterative Laplacian of Gaussian (iLoG) method, which proves useful

in improving accuracy of blob type features, such as stars in space imagery. By employing the

iLoG, the performance of shift-and-add operations in matching the centroids of different stars is

expected to be significantly enhanced, thereby ensuring the proper alignment of various features

and increasing the robustness of the algorithms. Consequently, the selection of an appropriate fu-

sion method is crucial in achieving optimal results for both super-resolution techniques and multi-

telescope image stitching, where techniques such as the Laplacian Pyramid and Wavelet transform

are worth investigating further due to their ability to capture and represent image details at mul-

tiple scales, providing a multi-resolution analysis that allows for the selective fusion of specific

scales while preserving fine structures and textures, as well as extracting localised features based

on frequency content. Continuing the analysis, various super-resolution methodologies were in-

vestigated, with an allusion to adaptive optics and its importance in the field, followed by different

methodologies that can prove effective in the context of this dissertation. In light of this study, the

drizzle algorithm and lucky imaging methodologies emerge as promising techniques to employ,

offering effective solutions for fusing multiple frames into a single high-resolution image. These

methodologies have demonstrated their effectiveness in enhancing spatial resolution, minimising

distortions caused by optical aberrations and atmospheric turbulence, and improving the overall

quality and clarity of the final images.
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Moreover, the study considered the incorporation of machine learning algorithms in these

domains. In cases where both single and multi-telescope techniques fail to yield the desired

outcomes, machine learning-based methods offer potential solutions. These methodologies in-

corporate diverse elements and demonstrate promise for inspiring future research. By leveraging

machine learning algorithms, further advancements can be made to enhance the performance and

effectiveness of image stitching and super-resolution techniques in the field of deep-space images.

As it will be shown later in the thesis, classical approaches yielded very good results and therefore

there was no need to implement machine learning solutions in the research work.



Chapter 3

Dataset

3.1 Data Acquisition

3.1.1 GRAVITY

The dataset employed in this dissertation is acquired by a leading-edge instrument called GRAV-

ITY. The GRAVITY design aims to provide a largely self-contained instrument for precise narrow-

angle astrometry and phase-referenced imaging of faint targets in K-band (wavelength range of

2.0-2.4 µm) [33]. This instrument is a four-telescope beam combiner for the European Southern

Observatory Very Large Telescope Interferometer, able to achieve spatial resolutions equivalent

to that of a telescope of approximately 130 metres in diameter with an accuracy of a few ten-

microarcseconds. Additionally, GRAVITY features an interference fringe tracking system that

employs adaptive optics to account for atmospheric turbulence in order to resolve small and dim

celestial objects [34, 35].

The Sagittarius A* (Sgr A*) supermassive black hole at the heart of our galaxy serves as the

primary scientific driver for GRAVITY and provides answers to various important physics and

astrophysics-related questions. One of the stars with the closest known peri-centre distance to Sgr

A* is the phase reference star S2 (IRS16C), which orbits Sgr A* once every 16 years [33].

The SgrA* data acquired by GRAVITY can then be downloaded in the European Southern

Observatory Raw Data archive as files in the Flexible Image Transport System (FITS) format,

which in turn is useful to store separated but related astronomical sets of data into one single file.

The FITS file format also provides the storage of unlimited multidimensional arrays, allowing

each array to be stored in distinct extensions, meaning each array has its own header [36].

3.1.2 Imaging through turbulence

The acquisition camera images are collected by telescopes on the ground affected by atmospheric

turbulence. Here we shortly refer to the factors limiting the optical image quality of the camera.

The optical quality of an image from an optical system is described by the impulse function

of that system. In optics, this is called the point spread function (PSF). The PSF determines

33
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Figure 3.1: Overview and working principle of GRAVITY. From [33].

the resolution of the instrument, which is the smallest angular separation that the instrument can

distinguish between two sources 3.2. To perform flux measurements, the captured data is fitted to a

PSF template, allowing the extraction of parameters of the observed point-like sources accurately.

These PSFs comprise several points (pixels) with varying intensities in relation to the photons

detected by the detector during the exposure [38, 39]. However, the PSF of a telescope is further

degraded by two effects. The main in ground-based observations is atmospheric turbulence which

significantly degrades the PSF for telescopes larger than a few tens of cm. Another effect is

instrument noise and sampling. Hence, space engineers must carefully calibrate their instruments

to ensure that they obtain accurate measurements and high-resolution images. This calibration

process involves measuring the PSF and modelling its contribution to the overall system PSF,

allowing for more accurate measurements of the observed sources [37, 39].

Atmospheric Effects

As mentioned before, ground-based observatories have a major disadvantage compared to space-

based ones, this being the light diffraction caused by the Earth’s atmosphere. This turbulence has

a major impact on the quality of the images captured by these telescopes and can be seen by the

naked eye. An example of this is the twinkling of starlight, called scintillation.

What impact does the atmosphere have on the quality of the images? Since only a very small

portion of the spherical wave, radiated from a far-off, point-like source, gets intercepted by the
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Figure 3.2: The diffraction PSF from an unobstructed circular aperture is the Airy disk. From
[37].

Earth. These waves’ wavefronts are flat and parallel when they reach the Earth. Fluctuations in

density, which in turn result mostly from temperature variations in a developed turbulent atmo-

sphere, affect the refractive index of air molecules. These molecules, each with a slightly varying

index of refraction, randomly deform these planar wavefronts, acting like lenses, bending the in-

coming rays [22, 40]. As a result, the light rays that enter the telescope are no longer parallel,

and the wavefront is no longer flat. Consequently, the prerequisites for producing an image that

is simply restricted by diffraction are not met [38]. Therefore, due to the exposition required by

CCDs, the images acquired suffer from two major effects over time:

• The observed light sources appear to be hazed.

• The observed light sources appear to change positions.

Depending on whether long- or short-exposure images are taken into account, a large ground-

based telescope’s intensity point-spread function (PSF) can assume one of two distinct shapes.

In the long-exposure case, the intensity distribution is smooth as a result of the natural averaging

that takes place. For the short-exposure case, the intensity distribution takes the form of a random

speckle pattern. Although, through the use of a perfect drive mechanism, a long-exposure image

can be acquired by adding a series of short-exposed images, with both the ensemble-average short-

exposure PSF being almost identical to the long-exposure PSF, having a smooth distribution owing

to averaging [41, 42]

3.1.3 Acquisition Camera

The acquisition camera images have different optical functions. Of interest to this dissertation

is the imaging of the SgrA* field function. As previously mentioned, telescopes capture light in

order to produce an image, and once the light has been collected and corrected by the adaptive
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optics system, it then goes through an instrument to a detector. All space instruments have a

detector at their core that transforms electromagnetic radiation into an electrical signal. This small

device collects light over time to create a much clearer and brighter image. The two detector

types used most frequently nowadays are Complementary Metal–Oxide–Semiconductors (CMOS)

and charged coupled devices (CCD). The acquisition camera detector is a HAWAII 2RG CMOS

detector

Figure 3.3: The acquisition camera working principle and optical layout (only one beam case).
From [43].

The HAWAII 2RG detector, based on Complementary Metal-Oxide-Semiconductor (CMOS)

technology, offers numerous benefits, making it an exceptional imaging device in space engineer-

ing. This advanced detector demonstrates remarkable sensitivity across a wide range of wave-

lengths and provides excellent performance in handling light intensities with a linear response.

The accurate and reliable measurement of photon-generated signals is ensured by the CMOS tech-

nology. Furthermore, CMOS sensors are known for their low-power consumption, making them

energy-efficient devices. Due to its CMOS-based architecture, the HAWAII 2RG detector benefits

from reduced power requirements, enabling extended observation periods in astronomical appli-

cations. Additionally, the utilisation of silicon-based manufacturing processes in CMOS sensors

helps reduce production costs, making them more affordable and accessible to a wider range of

applications [44].

In comparison [44, 45] to CCDs, CMOS sensors, including the HAWAII 2RG, offer distinct

advantages. CMOS sensors often provide higher pixel counts within a single sensor, eliminating

the need for complex multi-CCD mosaics. This characteristic simplifies the design and packaging

of the imaging system. Functionally, CCDs operate similarly to CMOS sensors, where each pixel

in the sensor array absorbs incident photons, converting their energy into electrical charge. How-

ever, CMOS sensors employ an active pixel architecture, integrating individual amplifiers within

each pixel. This design enables faster readout rates and reduced electronic noise when compared

to CCDs. Another significant advantage of CMOS sensors is their faster charge transfer rate. This

attribute allows for shorter exposure times, even when dealing with faint astronomical sources.
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Unlike CCDs, CMOS sensors do not require total darkness during the charge removal phase, sig-

nificantly reducing the risk of smear caused by extraneous light. Leveraging this faster charge

transfer rate, the HAWAII 2RG detector efficiently captures high-resolution images of celestial

objects.

The acquisition camera of the GRAVITY telescope plays a critical role in compensating for

various distortions that can affect the quality of observations. The camera works in the H-band

(wavelength range of 1.4-1.8 µm) and analyses laser guiding beams to trace tip-tilt and pupil mo-

tion, which are then corrected using internal sensors and actuators [33, 35]. The camera provides

field and pupil images, a Shack-Hartmann wavefront sensor image, and a pupil tracker image for

all four telescopes. It measures high-frequency image motions caused by air turbulence in the

optical train of the VLTI, which are not detected by wavefront sensors located in the coudé rooms

of the telescopes. The pupil tracker measures both lateral and longitudinal pupil motion and sends

corresponding corrections to the instrument’s internal pupil actuator and the VLTI main delay line

variable curvature mirror [33].

The acquisition camera and the science spectrometer are equipped with a Teledyne 2048x2048

pixel, HAWAII2RG detectors controlled with the ESO New General detector Controller [33]. The

detectors are operated in non-destructive mode, using its 32 100 kHz analogue outputs. The quan-

tum efficiency at a wavelength of 2 µm, which represents the percentage of photons detected by a

detector at this specific wavelength, is around 80%

Figure 3.4: Overview of the beam combiner instrument including the acquisition camera. From
[35].

3.2 General Statistics of the Dataset

The background in deep space images can be a challenging issue in astronomical research, as

it can contain various noise sources and signals unrelated to the observed object. Other artefacts
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from characteristics inherent to imaging devices, including astronomical cameras, are the presence

of broken pixels and random reflections. These possess the peculiarity of being non-responsive to

incident light or exhibiting irregular behaviour, consequently resulting in localised image artefacts.

Understanding and mitigating these factors’ impact is paramount in ensuring accurate analysis and

interpretation of astronomical images.

The dataset of this dissertation includes 21 observations of the same cluster of stars, which

are characterised by two different orientations and a number of frames. It consists of sixteen

observations with 246 frames each, while the remaining five observations contain 94 frames. Irre-

spective of the observation, each frame has been exposed for an identical duration of 0.7 seconds.

This standardised exposure time ensures uniformity in the duration of light capture throughout the

dataset, minimising potential variations arising from exposure changes.

Table 3.1: File Information

File Date Number of Frames
GRAVI.2020-03-06T07_58_46.121 06/03/2020 94
GRAVI.2020-03-06T08_07_58.143 06/03/2020 94
GRAVI.2020-03-06T08_31_31.203 06/03/2020 246
GRAVI.2020-03-06T08_39_25.223 06/03/2020 246
GRAVI.2020-03-06T08_45_55.240 06/03/2020 246
GRAVI.2020-03-06T08_52_19.256 06/03/2020 246
GRAVI.2020-03-06T08_58_43.272 06/03/2020 246
GRAVI.2020-03-06T09_05_25.288 06/03/2020 246
GRAVI.2020-03-06T09_13_19.309 06/03/2020 246
GRAVI.2020-03-06T09_19_46.325 06/03/2020 246
GRAVI.2020-03-06T09_26_16.341 06/03/2020 246
GRAVI.2020-03-06T09_39_43.375 06/03/2020 246
GRAVI.2020-03-06T09_46_13.392 06/03/2020 246
GRAVI.2020-03-06T09_52_34.408 06/03/2020 246
GRAVI.2020-03-07T07_46_09.234 07/03/2020 94
GRAVI.2020-03-09T07_35_28.155 09/03/2020 246
GRAVI.2020-03-09T09_51_10.497 09/03/2020 246
GRAVI.2020-03-12T07_02_55.661 12/03/2020 94
GRAVI.2020-03-12T07_12_13.684 12/03/2020 94
GRAVI.2020-03-12T07_26_07.719 12/03/2020 246
GRAVI.2020-03-12T09_55_32.096 12/03/2020 246

The dataset’s statistical analysis focuses on several key parameters derived from the images.

These parameters include:

1. Centroid of the Star: The centroid represents the star’s centre of brightness position. Precise

determination of the centroid allows for accurate tracking and measurement of the star’s

position over time. In the context of space engineering, the centroid of a star can be used to

calculate the star’s location in relation to other celestial bodies.
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2. Maximum Amplitude: The maximum amplitude refers to the highest intensity value attained

by the star’s brightness within each image frame. This parameter provides insights into the

star’s intrinsic luminosity and potential variability through the frames.

3. Sigma: represents the standard deviation of pixel values within an image frame. It quantifies

the spread or dispersion of the star’s brightness distribution, providing an estimate of its

fluctuation through the frames.

4. Distance between the Two Brightest Stars: This parameter measures the spatial separation

between the two brightest stars present in each image frame. It offers insights into the

relative positions and potential interactions of these stars.

5. Distance between the two most distant stars: This parameter quantifies the spatial separation

between the two most distant stars visible within each image frame. It provides information

on the distribution and clustering of stars in the observed field.

Furthermore, the angles associated with the distances between the brightest stars and the most

distant stars are recorded. These angles provide supplementary geometric information, enabling a

comprehensive analysis of the dataset.

3.2.1 Analysis of atmospheric effects on the dataset

Centroid

Firstly, for observations with better quality, the centroid exhibits a relatively low variation of ap-

proximately <±1 pixel, while for lesser quality observations, it fluctuates more, reaching around

>±2 pixels. This indicates that the precision of the centroid estimation is more reliable in frames

with better quality. Furthermore, the variations in centroid positions appear to be random between

frames, lacking any discernible pattern caused by the atmospheric effects on the observations. Ad-

ditionally, when analysing the histogram of the centroid positions, it is observed that most obser-

vations follow a normal distribution. This implies that the distribution of centroid values conforms

to the expected behaviour, with a peak around the likely true centroid position. Moreover, the

fact that there are four telescopes in the observation setup introduces an interesting aspect. The

centroids of the main (reference) star differ across all telescopes but follow the same variation,

meaning the atmospheric distortion effect is somewhat equal between all telescopes.
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(a) Histogram distribution for Telescope 1 (b) Centroid position over time for Telescope 1

(c) Histogram distribution for Telescope 2 (d) Centroid position over time for Telescope 2

(e) Histogram distribution for Telescope 3 (f) Centroid position over time for Telescope 3

(g) Histogram distribution for Telescope 4 (h) Centroid position over time for Telescope 4

Figure 3.5: Centroid of the main star in x axis for observation 06T08_45_55.240
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(a) Histogram distribution for Telescope 1 (b) Centroid position over time for Telescope 1

(c) Histogram distribution for Telescope 2 (d) Centroid position over time for Telescope 2

(e) Histogram distribution for Telescope 3 (f) Centroid position over time for Telescope 3

(g) Histogram distribution for Telescope 4 (h) Centroid position over time for Telescope 4

Figure 3.6: Centroid of the main star in y axis for observation 06T08_45_55.240
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Maximum Amplitude and Sigma

The parameters of sigma and maximum amplitude provide valuable insights into the quality and

clarity of the observed star images. The analysis shows that as the maximum amplitude of the star’s

intensity profile increases, the corresponding sigma value decreases. This inverse relationship

indicates that frames with a larger amplitude tend to have a better-defined star, which can serve

as a quality metric for frame selection for multi-frame super-resolution methods. These findings

can be utilised to select suitable reference frames or differentiate between good and bad in various

image processing techniques. Furthermore, the sigma and maximum amplitude values vary across

the four telescopes. Among them, Telescope 1 emerges as a potential candidate to be the reference

telescope when fusing the observations from all four telescopes to generate a final image. This

selection is based on the lower sigma values and better-defined star profiles observed in Telescope

1. Additionally, sigma and maximum amplitude can be employed as metrics to calculate weights,

enabling an optimised fusion process.
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(a) Maximum Amplitude over time for Telescope 1 (b) Sigma over time for Telescope 1

(c) Maximum Amplitude over time for Telescope 2 (d) Sigma over time for Telescope 2

(e) Maximum Amplitude over time for Telescope 3 (f) Sigma over time for Telescope 3

(g) Maximum Amplitude over time for Telescope 4 (h) Sigma over time for Telescope 4

Figure 3.7: Maximum Amplitude and Sigma of the main star for observation 06T08_45_55.240
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Distances and Angles

Analysing the distances and angles between the two brightest stars in the observed frames pro-

vides valuable information regarding their relative positions and the atmospheric effects on the

whole image. Similar to the centroid analysis, the histogram of these measurements follows a

normal distribution, reinforcing the idea that the atmospheric effects are the same throughout the

entire image. Furthermore, the dataset exhibits a consistent mean for both distances and angles,

indicating a stable configuration of the two brightest stars across the observations. However, in a

subset of 94 frames, the orientation of the field of view differs, resulting in a change in the position

of the second brightest star. Consequently, this subset’s angle between the two brightest stars also

varies. Additionally, the third brightest star either becomes dimmer or may not be visible at all in

this altered orientation.

The distance between the second and third brightest stars shows greater variation between

observations compared to the distances between the two brightest stars, but the mean of the angle

is somewhat constant across the dataset. This increased variability can be attributed to the lower

quality or diminished visibility of the third brightest star. Furthermore, the distance distribution

between these stars varies more between observations, but the distances for each observation obey

a normal distribution.
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(a) Histogram distribution for Telescope 1 (b) Distance over time for Telescope 1

(c) Histogram distribution for Telescope 2 (d) Distance over time for Telescope 2

(e) Histogram distribution for Telescope 3 (f) Distance over time for Telescope 3

(g) Histogram distribution for Telescope 4 (h) Distance over time for Telescope 4

Figure 3.8: Distance between the two brightest stars for observation 06T08_45_55.240



46 Dataset

(a) Histogram distribution for Telescope 1 (b) Distance over time for Telescope 1

(c) Histogram distribution for Telescope 2 (d) Distance over time for Telescope 2

(e) Histogram distribution for Telescope 3 (f) Distance over time for Telescope 3

(g) Histogram distribution for Telescope 4 (h) Distance over time for Telescope 4

Figure 3.9: Distance between the 2nd and 3rd brightest stars for observation 06T08_45_55.240
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(a) Angle of the two brightest stars for Telescope 1 (b) Angle of the 2nd and 3rd brightest stars

(c) Angle of the two brightest stars (d) Angle of the 2nd and 3rd brightest stars

(e) Angle of the two brightest stars (f) Angle of the 2nd and 3rd brightest stars

(g) Angle of the two brightest stars (h) Angle of the 2nd and 3rd brightest stars

Figure 3.10: Angles acquired for observation 06T08_45_55.240
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3.2.2 Conclusions

In conclusion, the analysis of the centroid positions, histogram distributions, sigma values, max-

imum amplitudes, distances, and angles in the observed frames provides valuable insights into

the quality of the images and the atmospheric effects on the observations. The precision of the

centroid estimation is more reliable in frames with better quality, while lesser quality frames ex-

hibit greater fluctuations. The random variations in centroid positions suggest the influence of

atmospheric effects on the observations.

The histogram distributions of centroid positions follow a normal distribution, indicating that

the centroid values conform to the expected behaviour with a peak around the likely true centroid

position. The consistency in the variation of centroids across all telescopes suggests that the

atmospheric distortion effect is relatively equal between them.

The inverse relationship between the maximum amplitude and sigma values implies that frames

with larger amplitudes, likely due to a better exposition, tend to have better-defined stars, serving

as a quality metric for frame selection. Telescope 1 stands out as a potential reference telescope

for image fusion due to its lower sigma values and better-defined star profiles. The sigma and

maximum amplitude values can also be used as metrics to calculate weights, optimising the fusion

process.

Analysing the distances and angles between the two brightest stars reveals information about

their relative positions and the atmospheric effects on the image. The normal distribution observed

in the histogram reinforces the idea that atmospheric effects are consistent throughout the image.

The consistent mean in distances and angles indicates a stable configuration of the two brightest

stars, except in a subset of frames with altered orientations. The variability in the distance between

the second and third brightest stars can be attributed to the lower quality or diminished visibility

of the third brightest star.
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Methodology

This chapter outlines the methodology employed in this dissertation to conduct the analysis and

achieve the desired results. The chapter consists of three sections, each focusing on a specific step

in the research process.

Firstly, the background and foundation of the study are established by providing an overview

of the DAOPHOT source detection algorithm and the Levenberg-Marquardt algorithm for Gaus-

sian fitting. These algorithms are commonly used in the field of astronomy for the detection and

characterisation of point sources in images. Understanding the principles and capabilities of these

algorithms is essential for comprehending the subsequent methodology employed in this study.

Secondly, each telescope’s methodology for performing multi-frame image reconstruction is

presented. This process involves several key steps. To begin with, the calculation and application

of weights to individual frames is shown and explained. Subsequently, three distinct methods

and their respective variations are discussed for multi-frame image reconstruction. Each method

offers different techniques and approaches to enhance the quality and fidelity of the reconstructed

images. The variations in these methods allow for a comprehensive analysis of their advantages

and trade-offs.

Finally, the chapter delves into a method used to combine all the final images from multi-

ple telescopes into a single master image. Accurate image alignment is crucial for effectively

merging data from various telescopes and obtaining a comprehensive view of celestial objects.

This alignment method is presented in detail, outlining the necessary steps to align and register

the images. By employing this alignment technique, the study ensures that the resulting master

image faithfully represents the combined information from all the telescopes, facilitating a more

comprehensive analysis.

4.1 Object Feature Acquisition

This section will provide a brief background on the DAOPHOT source detection algorithm and

the Levenberg-Marquardt algorithm for gaussian fitting. Subsequently, the methodology used to

acquire the previously-analysed features of stars in Section 3.2.

49
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4.1.1 Star Detection

Developed by Peter Stetson in the 1980s, DAOPHOT [46, 47] is a powerful tool for accurately

detecting and measuring the brightness of stars in astronomical images. It has become invaluable

in studying various astrophysical phenomena such as variable stars, star clusters, and galaxies.

DAOPHOT combines techniques like point-spread function (PSF) fitting, aperture photometry,

and image subtraction to identify and measure star properties with high precision.

The author further delves into the functioning of DAOPHOT and breaks it down into four

primary tasks. Firstly, it involves identifying a list of possible locations for stars. Secondly, it

estimates the sky background. Thirdly, it develops a model of the point-spread function for the

frame. Lastly, it obtains photometry for all stars in the image by using least-squares profile fits.

The star detection process begins by analysing each pixel in the image. For every pixel, a

two-dimensional Gaussian approximation is used to model the point spread function created by a

star. If a star is present at the centre of the pixel, the Gaussian approximation accurately represents

it, and the height of the fitted curve indicates the star’s brightness. However, if the pixel is located

in an empty sky region or on the outskirts of another star, the height of the best-fitting Gaussian

will be close to zero or negative. Therefore, the likelihood of a star’s existence in a specific pixel

is determined by the relative height of the most suitable Gaussian profile.

To estimate the sky background, DAOPHOT analyses a nearby area unaffected by the star’s

light. It uses a circular annulus centred on the star’s location, with appropriate inner and outer

radii. The sky brightness per pixel is then estimated as the mode of the pixel values within that

region.

Accurate modelling of the point spread function (PSF) is essential for precise brightness and

position measurements. DAOPHOT derives an empirical PSF model from a set of bright, isolated

stars. The PSF image is created by averaging their images, and a bivariate Gaussian is fit to this

PSF image to represent the PSF variation across the image.

To address crowding issues caused by nearby stars, DAOPHOT utilises PSF fitting. It models

the PSF of each star in the image and subtracts the contributions of nearby stars, enabling accu-

rate measurements of individual star properties. Additionally, the algorithm employs neighbour-

subtracted photometry, which measures the brightness of each star twice: once with nearby star

contributions included and once with the contributions subtracted using PSF fitting. The differ-

ence between these measurements provides an estimate of the star’s brightness alone, improving

measurement accuracy.

In this dissertation, a class from the package photutils.detection [48] called DAOStarFinder,

which provides an implementation of the DAOFIND [46] algorithm is used for all feature detection

tasks. This class searches images for local density maxima with a peak amplitude greater than a

specified threshold and a size and shape similar to a defined 2D Gaussian kernel, generating a

catalogue encompassing the detected stars within the image.
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(a) All stars identified by DAOStarFinder

id xcentroid ycentroid peak flux mag
43 128.978 159.157 2951 129.839 -5.283
19 156.058 75.629 2127 105.391 -5.057
55 78.844 184.373 1869 87.010 -4.848
47 83.827 166.098 376 14.588 -2.910
30 196.229 101.367 325 13.962 -2.862
16 141.787 68.378 283 9.477 -2.441
17 105.556 71.143 226 8.973 -2.382
60 94.539 207.737 208 8.842 -2.366
25 142.171 90.159 216 7.557 -2.195
46 94.667 164.544 170 6.772 -2.076
37 142.501 128.363 178 6.617 -2.051
49 123.103 167.302 193 6.263 -1.992
50 184.616 170.699 163 6.202 -1.981
23 150.411 83.574 161 6.138 -1.970
54 70.268 184.030 163 4.889 -1.723

(b) Table of identified stars.

4.1.2 Gaussian Fitting

The Levenberg-Marquardt (LM) algorithm [49] is an optimisation method commonly used for

fitting mathematical models to data. It is particularly useful for nonlinear least squares problems,

where the goal is to find the best set of parameters that minimise the sum of squared residuals

between the model predictions and the observed data.

Using the LM algorithm, we start by defining the mathematical model that represents a Gaus-

sian function to fit Gaussian profiles to stars in astronomical images. A Gaussian function is

characterised by its amplitude (A), centre position (x0, y0), standard deviations (σx, σy) along the

x and y directions, and an orientation angle (θ ). The model function can be defined as follows:

f (x,y) = A · exp

(
−(x− x0)

2

2σ2
x

cosθ − (y− y0)
2

2σ2
y

sinθ

)
(4.1)

Given a set of observed data points (xi,yi), the goal is to find the optimal set of parameters (A,

x0, y0, σx, σy, θ ) that minimise the sum of squared residuals between the model predictions and

the observed data.

The LM algorithm iteratively updates the parameter estimates by solving a linearised least

squares problem. At each iteration, it computes the Jacobian matrix, J, which represents the

partial derivatives of the model function with respect to each parameter. The Jacobian matrix is

evaluated at the current parameter estimates.

Using the Jacobian matrix, the algorithm constructs a linearised approximation of the problem

and solves it to update the parameter estimates. The LM algorithm introduces a damping factor

(λ ) that balances between a Gauss-Newton-like step (more efficient but less stable) and a steepest

descent-like step (less efficient but more stable).

The algorithm proceeds as follows:

1. Initialise the parameter estimates (A, x0, y0, σx, σy, θ ) either with reasonable initial guesses

or based on prior knowledge.



52 Methodology

2. Compute the model predictions using the current parameter estimates.

3. Compute the residuals between the model predictions and the observed data.

4. Compute the Jacobian matrix, which represents the partial derivatives of the model function

with respect to each parameter, evaluated at the current parameter estimates.

5. Compute the approximation of the Hessian matrix, which is a square matrix of second-order

partial derivatives of the model function. The Hessian matrix is constructed by multiplying

the transpose of the Jacobian matrix with the Jacobian matrix.

6. Adjust the diagonal elements of the Hessian matrix by adding the damping factor (λ ) to

ensure stability.

7. Solve the linearised least squares problem using the damped Hessian and Jacobian matrix.

This step calculates the parameter update, that minimises the squared residuals.

8. Update the parameter estimates with the calculated update values.

9. Check the convergence criterion. If the parameter updates are sufficiently small or if the

maximum number of iterations is reached, stop. Otherwise, go back to step 2.

Once convergence is reached, the final parameter estimates represent the best-fit Gaussian

profiles to the stars in the astronomical image.

The LM algorithm is a widely used optimisation method because it handles nonlinear problems

efficiently. In the context of fitting Gaussian profiles to stars in astronomical images, it can provide

accurate estimates of the parameters that describe the shape and position of the star.

In this dissertation, the Gaussian fitting of stars is done as follows: Firstly, the star is iso-

lated by creating a box around its catalogued centroid. A median filter is then applied, replac-

ing the central pixel with the median of surrounding pixels, which works particularly well with

salt-and-pepper noise, which includes broken pixels and the dark area. This is followed by an

opening operation involving erosion and dilation using a specified kernel. The resulting mask en-

hances the star model’s robustness, facilitating more accurate fitting. Finally, a function from as-

tropy.modelling [50] called LevMarLSQFitter, which provides an implementation of the before-

mentioned Levenberg-Marquardt algorithm that outputs a modelled Gaussian, that should resem-

ble a higher quality image of the captured star, is used for all star fitting tasks.

One of the outputs of the fitting function used is a covariance matrix, which is modelled as

such:

cov_matrix =

 σ2
A cov(A,x) cov(A,y)

cov(A,x) σ2
x cov(x,y)

cov(A,y) cov(x,y) σ2
y

 (4.2)

where σA represents the maximum amplitude standard deviation, σx represents the standard devi-

ation in the x-axis, and σy represents the standard deviation in the y-axis.
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Figure 4.2: Example of a star and the respective fit.

4.1.3 Dataset Statistics Acquisition

Star Features

The approach used to acquire the features consists of several key steps to facilitate identifying and

analysing stars within the image. Firstly, the stars are identified with a mask to where the star to

be analysed is expected to be in the image to avoid miss-identifications. Secondly, the gaussian

fitting is done as aforementioned in the previous subsection. If the fit is deemed good, the new

centroid in the whole of the image can be calculated, and the sigma and maximum amplitude can

be directly acquired from the fit.

Distances and Angles Calculation

Finally, to calculate the distances and respective angles between stars, the Euclidean distance

formula is used, along with the formula for the angle between two points, which are, respectively:

d =
√
(x0 − x1)2 +(y0 − y1)2 (4.3)

α = arctan
(

y0 − y1

x0 − x1

)
(4.4)

where (x0,y0) and (x1,y1) are the newly calculated centroids from the two respective stars.
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Associated Uncertainties and Errors

Different observations are subjective to different conditions. Even for each observation, each

frame’s conditions vary. Due to this, the frame quality fluctuates, causing some stars not to be able

to be fitted or even detected.

In order to separate the unsuitable fits from the images, a set of conditions has been established.

When the resulting covariance matrix is determined to be equivalent to None, it indicates that the

function failed to achieve a satisfactory fit. Additionally, there are instances where the function

erroneously determines convergence, leading to false positives. A criterion is applied to mitigate

such occurrences and exclude these erroneous convergences from the analysed data. Specifically,

if the sigma or maximum amplitude is less than one, it is deemed that the fit is not suitable.

To ensure accurate data analysis, it is essential to identify and exclude any frames that can be

categorised as outliers. Following the acquisition of the desired observation data, the centroids of

all good fits are compared to the median centroid. Frames are considered outliers if the distance

along the x or y axis exceeds a certain threshold value, indicating a significant deviation from the

overall distribution of centroids. Additionally, specific conditions are applied to determine outliers

in various aspects of the data. When examining object features, frames are excluded if the sigma

value exceeds the expected FWHM or if the sigma error is greater than the sigma itself. Moreover,

concerning distances and angles, frames exhibiting substantial deviations from the median values,

both in terms of distance, angle and their respective errors, are considered outliers. Due to their

significant deviations, such frames are excluded from the data to maintain a more rigorous and

accurate analysis.

Calculating standard deviations and identifying propagation errors are critical steps in any

rigorous analysis. By calculating standard deviations, we gain insights into the variability and

dispersion of data, enabling us to understand the reliability and consistency of our findings. Pro-

gression errors, on the other hand, help us assess the accuracy and precision of measurements or

predictions made over time [51, 52]. In this dissertation, we have calculated standard deviations

and propagation errors as such:

Centroid To acquire the variance for the centroids of the dataset involved several steps. Firstly, a

histogram of the dataset was computed to obtain the standard deviation (sigma) that would

be used as a measure of variability for the centroids. The histogram values were then nor-

malised. Subsequently, a Gaussian curve was fitted to the histogram using the optimised

parameters, and the resulting plot visually demonstrated that the histogram followed a nor-

mal distribution. The optimised parameters, along with their associated uncertainties, were

printed to provide further insight into the fitted Gaussian curve. This methodology allowed

for the acquisition of the variance for the centroids, with the histogram analysis providing

an indication of the normal distribution.

Sigma As depicted in Equation 4.2, in the positions [1,1] and [2,2], we can obtain the variance

of both the x and y axis for the fitted Gaussian. From here, the standard deviation for the

sigma is easily obtained by calculating the square root of the mean between the two axis.
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Maximum Amplitude The standard deviation can be derived by calculating the square root of the

variance, which can be obtained in the position [0,0] of the previously mentioned covariance

matrix in 4.2.

Distance and Angles The formula for the propagation error is described at such [51, 52]:

σ
2
f =

(
∂ f
∂x0

)2

σx
2
0 +

(
∂ f
∂y0

)2

σy
2
0 +

(
∂ f
∂x1

)2

σx
2
1 +

(
∂ f
∂y1

)2

σy
2
1 (4.5)

where (x0,y0) and (x1,y1) are the new calculated centroids from two stars, and (σx
2
0,σy

2
0)

and (σx
2
1,σy

2
1) are the respective variances. For the Euclidean Distance (in 4.3), the error

can be calculated by:

σd =
(x0 − x1)

2
σ2

x0
+(x1 − x0)

2
σ2

x2
+(y1 − y2)

2
σy1 +(y2 − y1)

2
σy2

(x1 − x2)
2 +(y1 − y2)

2 (4.6)

and, for the angle, the resulting equation is:

σα =
2 · arctan

(
y2−y1
x2−x1

)
(y2 − y1)

2 +(x2 − x1)
2 · ((y2 − y1)(σx1 +σx2)+(x2 − x1)(σy1 +σy2)) (4.7)

4.2 Single Telescope Image Reconstruction

As previously mentioned in Subsection 3.1.2, averaging various short exposures of the same scene

wields results similar to a long exposure, making it an excellent candidate for a benchmark for the

other algorithms. For this, the images were stacked together, and the result of the sum was divided

by the number of frames of the observation.

4.2.1 Weighted Blending

When combining images, pixel weight refers to each pixel’s relative importance or contribution in

the final composition. It determines how much influence a particular pixel has on the resulting im-

age. Exposure fusion involves the computational generation of an optimised image by selectively

retaining the most desirable components within a series of multiple exposures. The procedure is

guided by a collection of quality metrics synthesised into a weight map expressed as a scalar value.

Perceiving the input sequence as a stack of individual images is conceptually beneficial. The ul-

timate image is then derived through the consolidation of the image stack via a process known

as weighted blending. For each pixel, the various quality measures are consolidated into a scalar

weight map by means of multiplication. The decision to employ a product operation as opposed

to a linear combination is rooted in the objective of simultaneously upholding all quality attributes

delineated by the measures [53].

In a paper by Mertens [53], three quality metrics are used to assess the weight of each pixel

in an image: contrast, saturation and well-exposedness. In the context of grayscale images, the
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metrics of contrast and well-exposedness are still relevant for calculating weights in the Exposition

Fusion method. However, since grayscale images lack colour information, the metric of saturation

does not apply. Contrast refers to the difference in brightness between different parts of an image.

It plays a crucial role in determining the visual impact and clarity of the image, regardless of

whether it is in colour or grayscale. On the other hand, well-exposedness, also known as exposure,

measures how evenly the brightness values are distributed across an image. It helps to ensure that

the image is neither too dark nor too bright, and important details are visible.

The weights are calculated and applied as such[53]:

Contrast

Calculated by applying a Laplacian filter to the whole image and computing the absolute response.

This yields a simple indicator C for contrast. It tends to assign a high weight to important elements

such as edges and texture.

The kernel’s size for both the laplacian filter and the median filter is chosen based on the

expected FWHM and the quality of the observation. In the context of the Laplacian filter, a larger

kernel size captures broader features, while smaller sizes focus on finer details. For the median

filter, a larger kernel size results in more aggressive smoothing or blurring, while a smaller size

preserves more details.

Well-exposedness

Raw intensities within a channel reflect pixel exposure quality. The aim is to retain intensities

away from zero (underexposed) and one (overexposed). Each intensity denoted as ’i,’ is weighted

based on its proximity to 0.5 using a Gaussian curve [53]:

e−
(i−0.5)2

2σ2

here, a higher value of σ results in a wider and smoother curve, while a lower value of sigma

produces a narrower and sharper curve.

Weight Calculation

Similar to the weighted terms of a linear combination, the influence of each measure can be con-

trolled using a power function [53]:

Wi j,k =
(
Ci j,k

)ωC ×
(
Si j,k

)ωS ×
(
Ei j,k

)ωE (4.8)

where C, S, and E represent contrast, saturation, and well-exposedness. The corresponding

"weighting" exponents are denoted as ωC, ωS, and ωE . The subscript i j,k refers to pixel (i, j) in

the k-th image. As previously mentioned, due to the absence of colour in the dataset, the saturation

component is not calculated, resulting in the following:
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Wi j,k =
(
Ci j,k

)ωC ×
(
Ei j,k

)ωE (4.9)

Weighted Fusion

To compute the weighted average along each pixel to fuse the N images, the weights computed

from the quality measures are used, and, to obtain a consistent result, the values of the N weight

maps are normalised such that they sum to one at each pixel (i, j) [53]:

Ŵi j,k =

[
N

∑
k′=1

Wi j,k′

]−1

Wi j,k (4.10)

The resulting image R can then be obtained by a weighted blending of the input images:

Ri j =
N

∑
k=1

Ŵi j,kIi j,k (4.11)

with Ik the k-th input image in the sequence.

4.2.2 Lucky Imaging

Lucky imaging consists of selecting the best images from observation and combining them to

produce an image with improved quality. Besides this, the image can be warped and then combined

in order for the centroid of the stars to match between frames. Firstly, all the frames must be

evaluated for their quality. This is done by identifying the reference star in the image (4.1.1),

fitting a Gaussian (4.1.2) and appending the index of the respective frame to a list. Following this,

the list of the indexes is reordered based on the amplitude, where the best frame is the one with the

highest maximum amplitude of the reference star. From here, the top 10% of frames are appended

to a new list. The percentage of frames used usually floats between 5% to 10% [54].

Having the best frames acquired, the next step consists of a shift-and-add operation for all the

frames, with the deemed best frame as a reference. This is done to counteract the atmosphere’s

distortions effects by correcting the star’s centroid position and overlapping both stars. Primarily,

the stars are detected in the reference and to-be-shifted frames. As it was previously studied in

Section 3.2, for good observations, the centroid exhibits a relatively low variation of approximately

<±1 pixel, while for lesser quality observations, it fluctuates more, reaching around >±2 pixels.

Since the broken pixels and other artifacts (such as extra reflections) are static between frames, the

only metric required to match stars is the coordinates themselves, so if the distance between two

stars is less than around 3 pixels, we can assume the two stars match.

Subsequently, the DLT algorithm (as detailed in Section 2.1.2) is implemented to calculate the

homography matrix between the centroids of the matched stars. This matrix is then utilised to

enforce a warping transformation on the image, thereby aligning the stars from both frames.
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Ultimately, the resulting images are blended together, yielding a final image specific to each

telescope. During this stage, both the median averaging and weighted fusion methods were evalu-

ated. The key disparity between these two approaches lies in calculating and applying weights to

the frames after the selection phase. The feature detection and matching steps are performed on

the original frames, while the warping and stacking phases are applied to the weighted frames.

4.2.3 Drizzle

In this dissertation, a python library [55] provided by the Space Telescope Science Institute (STScl)

and derived from the DrizzlePac is employed.

The algorithm uses the exposition time and the World Coordinate System (WCS) information,

which provides the necessary data to establish a mapping between the pixel coordinates in the

image and their corresponding celestial coordinates on the sky, to align the pixels, as illustrated

in Figure 2.7, providing customisation for flux blending with parameters like pixfrac and different

kernels.

To employ this library, the WCS and exposition time information has to be acquired from the

header of the original fits file containing the raw data and input in a Drizzle class. As for the

alignment of stars, the same algorithm is used as in the Lucky Imaging methodology. The first

step is to identify the stars in the image (4.1.1), match the centroids, and calculate and apply the

homography transformation to the frame. Finally, to execute the drizzle algorithm, the warped

frames are iteratively added to the Drizzle class, producing a final reconstructed image.

4.3 Multi Telescope Image Stitching

To combine the images from the four telescopes, a traditional image stitching algorithm is em-

ployed, which is similar to the shift and add operation.

Firstly, the features are acquired using the DAOPHOT implementation described in 4.1.1.

Following this, the stars must be matched between telescopes. Due to the nature of the telescopes,

all the telescopes exhibit discernible variations in image quality. This makes it so that we can’t

compare the other features when matching stars, having to rely only on the coordinates as the

features to be matched. This is done by organising both the tables containing the features detected

by photutils (similar to the one presented in 4.1.1) by flux, which is quantified by measuring the

intensity of light received from the star within a certain region or aperture on the image, meaning

the brightest the star in the image has a bigger flux. This is done because the order of stars between

telescopes and frames remains fairly consistent when ordered by flux.

Consequently, the star centroids are matched between the two frames based on the distance

between the two coordinates (if the distance is less than 5 pixels, then it is a match). When a

star is successfully matched, its coordinates are altered to a NaN (Not a Number) value to prevent

subsequent matches, assuring the same star has only one match across both telescopes’ images’.

Besides this, a limit of matches is implemented to prevent over-fitting in the homography estima-

tion step. In conjecture with the previously mentioned flux ordering technique, it allows for the
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brightest of stars (which we are the most robust in the image) to guarantee a solid match, prevent-

ing miss-matches and improving the results substantially. It’s worth noting that this feature is also

implemented in both lucky imaging methodologies, but it’s addressed here due to the paramount

difference it had in this step of the pipeline.

As previously mentioned in the analysis made of the dataset, Telescope 1 is an excellent can-

didate for being the reference frame due to the overall smaller sigmas in the frames captured by

it. Consequential to this, the homography, which translates the relation between the coordinates of

the stars between the two images, must be calculated for the remaining telescopes. This is done by

taking advantage of the DLT algorithm again, where the estimated matrix is used to transform the

image into one where the stars between telescopes are overlapping with respect to the reference

telescope.

Finally, the warped images are stacked with the reference image and an averaging, giving

equal weight to all four telescopes and allowing for an even distribution of the enhanced features,

wielding a master image where all the telescopes are combined.
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Chapter 5

Results and Discussion

This chapter presents the results obtained from the methods employed in this dissertation, which

encompasses two crucial aspects of this research: Single Telescope Super Resolution and Multiple

Telescope Image Stitching. The main objective of this chapter is to showcase the outcomes of

approaches and to analyse the implications of these results in the context of this dissertation. In

order to assess the quality and effectiveness of the images produced, it is important to employ

objective metrics as well as subjective evaluations. This Chapter focuses on the evaluation of final

images in the context of two key metrics: subjective evaluation and the acquired statistics for the

main star of the image.

5.1 Single Telescope Super Resolution

In this section, the goal is to visually inspect the quality of the images by analysing if there is

an enhancement in resolution and details in the observed objects while not introducing additional

noise, such as ghosting effects. Additionally, stars and image statistics are compared to the raw

data observation. Finally, for a fair representation of the acquired data, the displayed example file

is GRAVI.2020-03-06T08_45_55.240, in concurrence with the statistics displayed in Section 3.2.

5.1.1 Baseline Analysis

Upon conducting a visual examination of the images, it becomes evident that the final images ex-

hibit an enhancement in image quality when juxtaposed with the individual frames. Nevertheless,

a notable degree of blurriness persists in the vicinity of the stars, primarily attributable to the aver-

aging of diverse atmospheric disturbances that impinge upon the observations. Correspondingly,

the sigma value of the principal star has exhibited an increment in relation to the mean value de-

rived from all frames across the various telescopes employed. Furthermore, the centroid exhibits

a congruence with the histogram pertaining to the reference star’s x and y coordinates. Moreover,

the distances and angles exhibit a remarkable alignment with the mean values derived from the

unprocessed frames, as one would anticipate from the amalgamation of all frames captured during

an observation.

61
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Table 5.1: Brightest star statistics for the averaging method for all telescopes

Telescope Centroid (x) Centroid (y) Sigma Maximum Amplitude
1 128.864±0.174 159.104±0.159 1.532±0.167 2690.251±306.716
2 125.432±0.158 160.030±0.177 1.809±0.168 1041.622±97.245
3 125.988±0.201 161.099±0.206 1.783±0.204 1531.517±143.926
4 132.634±0.144 157.878±0.178 1.623±0.162 2089.625±214.095

Table 5.2: Image statistics for the averaging method for all telescopes

Telescope Dist (2 brightest) Ang (2 brightest) Dist (2nd and 3rd) Ang (2nd and 3rd)
1 56.649±0.277 −27.657±0.016 134.796±0.229 −54.847±0.015
2 55.859±0.289 −27.698±0.031 129.519±0.249 −54.288±0.006
3 56.342±0.330 −27.729±0.029 132.253±0.265 −54.853±0.005
4 54.102±0.382 −27.084±0.059 129.678±0.308 −55.324±0.013

Figure 5.1: Combined images using averaging
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5.1.2 Exposition Fusion

By employing the exposition fusion methodology, a noticeable refinement in the definition of stars

becomes apparent when compared to the individual frames. Initially, the centroid of the main star

of the produced image is coherent in both axis from what is to be expected to be the true positions

of the final star. Unfortunately, the calculated distances and angles don’t match the most likely

values, likely due to the degradation of the quality of mid-brightness stars (2nd and 3rd stars).

Notably, while the maximum amplitude remains consistent with the mean maximum ampli-

tude derived from all frames, a substantial decrease is observed in the sigma value. Initially, this

reduction may appear favourable; however, upon closer examination of the final images, it be-

comes evident that the resulting stars exhibit diminished Gaussian characteristics. Consequently,

two conclusions can be drawn. Firstly, the quality metrics and weight calculation employed have

proven effective in enhancing crucial features within the image. Secondly, owing to atmospheric

influences, the simple weight blending technique fails to mitigate distortions, resulting in stars that

are excessively luminous but lack accuracy in their shapes.

A potential solution to this issue involves correcting the centroids between frames. This cor-

rective measure ensures that the centres of the stars align, enabling the heavier features of the stars

to correspond with one another across frames.

Table 5.3: Brightest star statistics for the exposition fusion method for all telescopes

Telescope Centroid (x) Centroid (y) Sigma Maximum Amplitude
1 128.766±0.169 159.137±0.145 1.159±0.157 3944.889±555.158
2 125.589±0.164 160.421±0.204 1.651±0.185 1415.950±157.214
3 125.717±0.204 161.371±0.263 1.346±0.235 1839.318±369.190
4 132.594±0.152 157.727±0.219 1.113±0.189 2858.667±506.046

Table 5.4: Image statistics for the exposition fusion method for all telescopes

Telescope Dist (2 brightest) Ang (2 brightest) Dist (2nd and 3rd) Ang (2nd and 3rd)
1 56.489±0.574 −28.085±0.011 134.714±0.998 −54.922±0.171
2 56.069±0.648 −27.323±0.118 129.724±0.509 −54.394±0.015
3 55.429±0.643 −27.045±0.081 132.291±0.638 −54.738±0.123
4 54.370±1.089 −27.342±0.341 129.349±0.819 −54.888±0.194
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Figure 5.2: Combined images using exposition fusion

5.1.3 Lucky Imaging

Lucky imaging selects and combines only the sharpest frames, obtained during relatively stable

atmospheric conditions.

Shift-and-Add

Upon initial visual inspection of the image, a distinct enhancement in resolution becomes evident.

Compared to the baseline method of averaging, the previously observed blurring surrounding the

stars has noticeably diminished, while the stars have retained their relative shape. From a sta-

tistical standpoint, although there are slight discrepancies in the amplitude values, they can be

considered accurate in relative terms. Additionally, a discernible decrease in the sigma of the stars

is observable, indicating an improvement in the overall quality of the stars. Regarding the posi-

tions of the stars, it is worth noting that while the x-axis does not align well with the histograms

depicting the centroid positions, the y-axis exhibits a reasonable level of precision. Furthermore,

both the distances and angles deviate from their respective means in relation to this observation.

This can also be attributed to the shift-and-add operations, which use the frame with the deemed
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best exposure as reference, meaning that the resultant centroid-based statistics are influenced by

their initial coordinates within the chosen frame.

Table 5.5: Brightest star statistics for the simple lucky imaging method for all telescopes

Telescope Centroid (x) Centroid (y) Sigma Maximum Amplitude
1 129.627±0.115 159.914±0.109 1.297±0.112 184.746±16.132
2 125.137±0.094 160.586±0.107 1.475±0.101 77.880±5.358
3 126.236±0.150 161.833±0.171 1.498±0.161 112.618±12.471
4 132.919±0.103 157.428±0.106 1.373±0.105 134.123±10.356

Table 5.6: Image statistics for the simple lucky imaging method for all telescopes

Telescope Dist (2 brightest) Ang (2 brightest) Dist (2nd and 3rd) Ang (2nd and 3rd)
1 56.695±0.166 −26.543±0.006 134.952±0.193 −54.673±0.009
2 54.872±0.236 −27.264±0.015 130.249±0.175 −54.899±0.004
3 55.639±0.264 −26.621±0.023 132.569±0.192 −54.951±0.007
4 54.973±0.187 −27.350±0.011 129.943±0.158 −55.147±0.001

Figure 5.3: Combined images using simple Lucky Imaging
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Weighted

In comparison to the previously analysed method, the final image exhibits an evident increase in

resolution, resulting in reduced blurriness in the vicinity of the stars. When compared to alterna-

tive methodologies, a notable spike in the maximum amplitude is observed. This can be attributed

to the concentration of heavier elements in the weight map centred on the star’s centroid, which

consequently leads to a decrease in sigma. Again, the dissimilarity between centroid-based statis-

tics can be attributed, as addressed in the previous method, to the shift-and-add task, which uses a

specific frame as a reference.

Figure 5.4: Combined images using weighted Lucky Imaging
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Table 5.7: Brightest star statistics for the weighted lucky imaging method for all telescopes

Telescope Centroid (x) Centroid (y) Sigma Maximum Amplitude
1 129.792±0.153 159.842±0.142 1.149±0.148 9269.929±1199.837
2 125.247±0.153 160.703±0.173 1.420±0.174 3536.878±1199.837
3 126.322±0.154 161.852±0.161 1.367±0.158 5765.614±683.219
4 132.932±0.127 157.438±0.123 1.061±0.125 8523.556±1028.736

Table 5.8: Image statistics for the weighted lucky imaging method for all telescopes

Telescope Dist (2 brightest) Ang (2 brightest) Dist (2nd and 3rd) Ang (2nd and 3rd)
1 56.056±0.288 −26.544±0.012 133.856±0.286 −55.031±0.031
2 55.062±0.437 −26.995±0.058 130.221±0.408 −54.421±0.003
3 55.779±0.315 −26.681±0.021 133.163±0.249 −54.842±0.013
4 53.552±0.356 −27.310±0.037 130.213±0.271 −55.245±0.007

5.1.4 Drizzle

The implementation of the drizzle algorithm has yielded remarkable outcomes. Firstly, it has led

to a noticeable enhancement in resolution, resulting in well-defined stars and minimal haziness in

the vicinity of the main stars. Secondly, even the stars beyond the three brightest ones exhibit clear

definitions, revealing some that appeared to be blended with others due to the proximity. From a

statistical perspective, the sigma value of the stars has significantly decreased, further validating

the sharpness and clarity of the stars in the final image. In terms of centroids, distances, and

angles, the acquired values are fairly accurate to what is expected, although it uses the shift-and-

add operation with the first frame of the observation as a reference.

It is worth highlighting that the amplitude values obtained through the drizzle algorithm differ

considerably from other techniques employed in this dissertation. This disparity can be attributed

to the resampling and combination of multiple images, a characteristic feature of the drizzle al-

gorithm, which aims to augment the level of detail and sharpness. Consequently, such a process

causes significant fluctuations in pixel values. This scaling approach is employed to optimise the

visual representation of the image and strike a balance between detail and dynamic range.

Table 5.9: Brightest star statistics for the Drizzle method for all telescopes

Telescope Centroid (x) Centroid (y) Sigma Maximum Amplitude
1 128.975±0.135 159.138±0.113 1.248±0.124 18.035±1.923
2 125.743±0.171 159.530±0.206 1.533±0.189 5.234±0.660
3 126.022±0.189 161.976±0.178 1.443±0.183 11.978±1.705
4 132.938±0.163 157.256±0.148 1.155±0.156 14.941±2.022
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Table 5.10: Image statistics for the Drizzle method for all telescopes

Telescope Dist (2 brightest) Ang (2 brightest) Dist (2nd and 3rd) Ang (2nd and 3rd)
1 56.603±0.194 −27.217±0.005 134.043±0.169 −54.274±0.011
2 54.967±0.530 −26.631±0.155 128.146±0.361 −54.173±0.013
3 56.159±0.247 −27.494±0.016 132.388±0.207 −54.731±0.009
4 54.420±0.290 −27.344±0.016 128.883±0.252 −55.059±0.002

Figure 5.5: Combined images using the Drizzle algorithm
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5.1.5 Discussion

The analysis of the results obtained from the various image enhancement methodologies provides

valuable insights into their effectiveness and limitations in improving the resolution and quality

of astronomical images. Each method demonstrated unique characteristics and exhibited varying

degrees of success in mitigating atmospheric disturbances. The statistical analysis allows for a

direct comparison between the different image enhancement methodologies. The centroid mea-

surements provide insights into the accuracy of star alignment, while the sigma values reflect the

degree of blurriness or definition of the stars. Additionally, the analysis of distances and angles

offers information about the overall quality and fidelity of the enhanced images. The averag-

ing and exposition fusion methodologies demonstrate precise alignment in centroid accuracy, as

the centroids closely match the expected positions. However, the methodologies that employ the

shift-and-add operation show a slight deviation in centroid measurements, except for the drizzle

algorithm, which again achieves a high level of accuracy. This deviation from the other method-

ologies can be attributed to the choice of the reference frame for alignment. Regarding the sigma

values, all methodologies except for averaging exhibit a reduction, indicating an improvement in

star definition. The decrease in sigma suggests that the stars are better defined and exhibit less

blurring. However, the averaging technique shows an increase in sigma, which can be attributed

to the blurring observed in the resulting images. When considering the distances and angles be-

tween stars, both the drizzle and averaging methodologies align closely with the expected values.

This indicates that the stars in the enhanced images maintain their relative positions accurately.

However, both lucky imaging algorithms deviate slightly from the expected values, which again

can be attributed to the choice of the reference frame. In contrast, the methodology of exposition

fusion demonstrates a discernible disparity in relation to alternative methodologies in cases of de-

teriorated stars, such as the second and third stars, which exhibits diminished overall quality in

comparison to its counterparts. This discrepancy suggests a deficiency in the augmentation of the

second and third stars.

Finally, a subjective analysis was also done, starting with the baseline method of averaging

shows a slight improvement in resolution compared to individual frames. However, the resulting

images still suffer from blurriness, especially around the stars. Exposition fusion refines the defi-

nition of stars compared to individual frames but compromises the Gaussian characteristics. The

resulting stars appear excessively luminous and have inaccuracies in their shapes. Simple lucky

imaging demonstrates a notable enhancement in resolution and reduces blurring around the stars.

The overall accuracy and quality of the stars improve. Weighted lucky imaging further increases

resolution and reduces blurriness. By concentrating on heavier elements, the maximum amplitude

of the stars increases. The implementation of the drizzle algorithm yields remarkable outcomes

by enhancing resolution and producing well-defined stars with minimal haziness, with the overall

sharpness and clarity of the stars significantly improving. The algorithm’s approach to resampling

and combining multiple images strikes a balance between detail and dynamic range, resulting in

an optimised visual representation of the image.
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The statistical analysis provides a quantitative basis for comparing the different image en-

hancement methodologies. The centroid measurements highlight the accuracy of star alignment,

while the sigma values indicate the level of star definition. The analysis of distances and angles

offers insights into the overall fidelity of the enhanced images. Based on these comparisons, the

drizzle algorithm consistently demonstrates superior results in terms of centroid accuracy, sigma

reduction, and maintaining accurate distances and angles between stars. Furthermore, it is the

most effective in improving the resolution and quality of astronomical images. The other method-

ologies show certain enhancements but struggle to fully mitigate atmospheric disturbances and

achieve optimal results, as evidenced by increased sigma values and discrepancies in star posi-

tions.

Table 5.11: Comparison of the reference star statistics for the different methods (Telescope 1)

Method Centroid (x) Centroid (y) Sigma Maximum Amplitude
Averaging 128.864±0.174 159.104±0.159 1.532±0.167 2690.251±306.716

EF 128.766±0.169 159.137±0.145 1.159±0.157 3944.889±555.158
Simple LI 129.627±0.115 159.914±0.109 1.297±0.112 184.746±16.132

Weighted LI 129.792±0.153 159.842±0.142 1.149±0.148 9269.929±1199.837
Drizzle 128.975±0.135 159.138±0.113 1.248±0.124 18.035±1.923

Table 5.12: Comparison of image statistics for the different methods (Telescope 1)

Method Dist (2 brightest) Ang (2 brightest) Dist (2nd and 3rd) Ang (2nd and 3rd)
Averaging 56.649±0.277 −27.657±0.016 134.796±0.229 −54.847±0.015

EF 56.489±0.574 −28.085±0.011 134.714±0.998 −54.922±0.171
Simple LI 56.695±0.166 −26.543±0.006 134.952±0.193 −54.673±0.009

Weighted LI 56.056±0.288 −26.544±0.012 133.856±0.286 −55.031±0.031
Drizzle 56.603±0.194 −27.217±0.005 134.043±0.169 −54.274±0.011
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5.2 Multi Telescope Image Stitching

To conduct a comprehensive examination of the outcomes obtained from the ultimate image stitch-

ing procedure, like in the previous section, an examination of both the final image quality and

statistics is performed. Here, the goal is for the statistics throughout the dataset to remain as

consistent as possible with minimal variations between observations. Considering centroid-based

statistics, shifting the focus from an analysis encompassing the entire dataset to a targeted eval-

uation of specific files is necessary. This approach ensures that the analysis pertains solely to

observations conducted on the same day, with consistent orientation and a continuous sequence

of data. Therefore, this section will concentrate on the master images and associated statistics

obtained during the observation period spanning from 8:31 to 9:39 on the 6th of March, 2020.

Owing to the absence of a technique to eliminate defective pixels and other artefacts, such as

reflections, in the acquisition camera, the resultant master image inevitably contains a discernible

level of noise stemming from the combined noise of all the telescopes involved. Despite this in-

herent noise, image stitching remains feasible. Consequently, it becomes possible to enhance the

evaluation of the outcomes derived from the multi-frame super-resolution methods employed for

individual telescope images. This is primarily attributed to the pronounced disparities observed

among the master images originating from identical observations, thereby enabling a more com-

prehensive assessment.
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5.2.1 Baseline Analysis

Upon examining the final stitched image, it becomes evident that the quality of the composite

image exhibits enhancements compared to its constituent individual parts. The stars dispersed

throughout the image are clearly defined, and compared, thereby contributing to an overall im-

proved visual output. Nevertheless, an issue arises in the form of increased noise surrounding the

star region. This heightened noise is attributed to the amalgamation of blurring effects around the

vicinity of each star, as previously highlighted.

Figure 5.6: Master Image based on averaging
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5.2.2 Exposition Fusion

Consistent with the unsatisfactory outcomes arising from the multi-frame image reconstruction

phase, the master image does not show improvement. When it comes to high-quality observations,

there is an improvement in resolution due to the better-defined features of the image. But for

mid to low-quality observations, the results are inferior to the benchmark. Notably, the stars

that are typically regarded as inconspicuous appear poorly defined. Only the stars surrounding

the principal ones, which are usually overshadowed by their sheer brightness, exhibit improved

visibility. Unfortunately, the brightest stars exhibit distorted forms, resulting from the loss of

Gaussian features from the previous step.

Upon conducting a comprehensive analysis of the data, it becomes evident that the distribution

of centroid-based statistics in both axes is worse compared to the baseline. Additionally, while the

sigma shows a decrease, both the sigma and amplitudes seem more unstable throughout observa-

tions. Finally, in the case of the observations where the quality is subpar, these methods showed

even more underwhelming results.

Figure 5.7: Master image based on Exposition Fusion
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5.2.3 Lucky Imaging

Add-and-Shift

In contrast to the benchmark method of averaging, the add-and-shift lucky imaging technique

yielded a master image characterised by an improved definition of celestial objects and reduced

blurring. Notably, when considering the centroid of the reference star, the distribution in both axes

and the corresponding distances and angles show an improvement. Moreover, a reduction in both

the sigma and its distribution throughout the whole dataset is clear, indicating a level of progress

in combating the atmospheric effects in the images.

Figure 5.8: Master image based on simple lucky imaging
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Weighted

In comparison to the unweighted variant of the fortunate imaging technique, the weighted version

yields a master image that exhibits enhanced levels of definition of the brightest stars. Notably,

the presence of blur surrounding the stars is significantly diminished, thus showcasing increased

clarity and sharpness. In contrast to this, mid to low-brightness stars suffer from a reduction in

definition. Also, due to the many broken pixels and the weighted shift-and-add operation, more

noise is introduced with the warping of the pixels, reinforcing the necessity of a technique to

correct or mask the broken pixels in the image.

Regarding statistical analysis, this methodology shows impressive results. Both sigma and

centroid-based stats demonstrate a reduction in the distribution between observations compared to

other methods, namely in mid to high-quality observations. For observations that have worsened

quality, the results are inferior and not as consistent as other methods.

Figure 5.9: Master image based on weighted lucky imaging
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5.2.4 Drizzle

The drizzle algorithm has demonstrated remarkable advancements compared to alternative meth-

ods, as evidenced by the notable enhancements observed in the resulting master image. The

brightest stars are now clearly delineated, with the previously encountered haziness, caused by

their luminosity significantly diminished. Additionally, despite their limited visibility in the dis-

played image, the faintest stars remain discernible, exhibiting substantially reduced blurring and

thus showcasing improved resolution.

Furthermore, when examining the characteristics of both the image and the reference star, a

commendable equilibrium is observed in the distribution of centroid-based statistics, including

position, distances, and angles. These statistics are thoughtfully balanced with the sigma of the

brightest star, resulting in a well-distributed flux throughout the image without excessively over-

whelming the overall brightness.

Given its evident superiority among the various multi-frame image super-resolution tech-

niques, it comes as no surprise that the master images generated through the employment of

this method yield the most optimal and consistent outcomes based on the significant difference

in quality between observations.

Figure 5.10: Master image based on drizzle algorithm
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5.2.5 Discussion

After conducting a statistical analysis of the different methodologies employed in this dissertation,

it is evident that several algorithms showed improvements in centroid-based statistics compared

to the benchmark. Among them, the drizzle algorithm demonstrated the highest degree of consis-

tency, while the exposition fusion algorithm exhibited lower consistency across varying observa-

tion qualities. The lucky imaging algorithms also displayed clear enhancements, although there

was a decrease in performance for the poorest quality observations. Notably, the drizzle algorithm

demonstrated a balanced reduction in sigma and consistent results across observations, whereas

the exposition fusion algorithm exhibited the least consistency. Both weighted and unweighted

lucky imaging techniques yielded satisfactory and consistent results.

From a subjective standpoint, the various multi-frame super-resolution methods used in this

dissertation presented varying levels of success in enhancing the quality and definition of the final

stitched images. The Averaging (benchmark) technique improved the visual output, particularly in

star definition, but introduced increased noise due to blurring effects. Exposition Fusion enhanced

the resolution and visibility of stars yet caused distortion in the main stars and yielded worse

centroid-based statistics and sigma distribution compared to the baseline. Simple Lucky Imaging

provided improved definition and reduced blurring, showing progress in mitigating atmospheric

effects with better centroid-based statistics and decreased sigma. Weighted Lucky Imaging, com-

pared to the unweighted variant, further enhanced definition and reduced blur, particularly in mid

to better-quality observations, but displayed less consistency in lower-quality observations and

worsen the noise created by broken pixels. The Drizzle algorithm showcased remarkable ad-

vancements by reducing luminosity-induced haziness and improving resolution, exhibiting com-

mendable centroid-based statistics and sigma distribution throughout the image.

In conclusion, this dissertation’s multi-telescope stitching algorithm yielded good results in

most cases. However, it is important to mention that for images with the worst quality, the results

were subpar.
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(a) Centroid x axis (b) Centroid y axis

(c) Maximum Amplitude (d) Sigma

(e) Distance between the two brightest stars (f) Angle between the two brightest stars

(g) Distance between the 2nd and 3rd brightest stars (h) Angle between the 2nd and 3rd brightest stars

Figure 5.11: Stats for the master image using averaging
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(a) Centroid x axis (b) Centroid y axis

(c) Maximum Amplitude (d) Sigma

(e) Distance between the two brightest stars (f) Angle between the two brightest stars

(g) Distance between the 2nd and 3rd brightest stars (h) Angle between the 2nd and 3rd brightest stars

Figure 5.12: Stats for the master image using exposition fusion
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(a) Centroid x axis (b) Centroid y axis

(c) Maximum Amplitude (d) Sigma

(e) Distance between the two brightest stars (f) Angle between the two brightest stars

(g) Distance between the 2nd and 3rd brightest stars (h) Angle between the 2nd and 3rd brightest stars

Figure 5.13: Stats for the master image using simple lucky imaging
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(a) Centroid x axis (b) Centroid y axis

(c) Maximum Amplitude (d) Sigma

(e) Distance between the two brightest stars (f) Angle between the two brightest stars

(g) Distance between the 2nd and 3rd brightest stars (h) Angle between the 2nd and 3rd brightest stars

Figure 5.14: Stats for the master image using weighted lucky imaging
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(a) Centroid x axis (b) Centroid y axis

(c) Maximum Amplitude (d) Sigma

(e) Distance between the two brightest stars (f) Angle between the two brightest stars

(g) Distance between the 2nd and 3rd brightest stars (h) Angle between the 2nd and 3rd brightest stars

Figure 5.15: Stats for the master image using drizzle algorithm
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Conclusions and Future Work

6.1 Conclusion

The aim of this dissertation is to explore the application of machine vision techniques to en-

hance the quality of images affected by atmospheric effects. Specifically, the objective is to gen-

erate a master image with improved quality by mitigating the systematic effects caused by the

atmosphere. To achieve this aim, several key objectives were pursued throughout the research.

Firstly, various techniques for solutions for various complications were undertaken, considering

both single-telescope and multi-telescope scenarios. Next, a comprehensive investigation was

conducted to identify the systematic effects introduced by the atmosphere present in the dataset

acquired by GRAVITY. Following this, different machine vision-based approaches were intro-

duced and compared as possible solutions to the problem. Finally, the proposed methods were

rigorously evaluated in terms of their quality and performance. Through a comprehensive assess-

ment, the effectiveness of the developed techniques was analysed, providing insights into their

strengths and limitations.

In conclusion, we are able to achieve the pre-defined goals in this dissertation:

Identify the systematic effects of the atmosphere and other artefacts on the images
acquired by GRAVITY.

These effects are caused by the diffraction of light in different patches of molecules in the atmo-

sphere. The diffraction makes the photons change direction, not allowing them to hit their intended

spot. This causes for the observed light to appear to be hazed, forming a point spread function that

resembles a Gaussian function, making the star also appear to change position and intensity over

time. In addition, there is also the problem of broken pixels in the detector and other reflections

that can prove troublesome in the feature acquisition stage.

The analysis of various factors, including centroid positions, histogram distributions, sigma

values, maximum amplitudes, distances, and angles in the observed frames, provides valuable

insights into the image quality and the impact of atmospheric effects on the observations. The

precision of centroid estimation is more reliable in frames with better quality, while lower quality
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frames exhibit greater fluctuations, indicating the influence of atmospheric effects on the observa-

tions. The histogram distributions of centroid positions follow a normal distribution, suggesting

that the centroid values align with the expected behaviour, with a peak around the likely true

centroid position. The consistency in centroid variation across all telescopes suggests that the

atmospheric distortion effect is relatively uniform among them. An inverse relationship between

maximum amplitude and sigma values is observed, indicating that frames with larger amplitudes,

likely due to better exposure, tend to have better-defined stars. This relationship serves as a quality

metric for frame selection. Notably, Telescope 1 stands out as a potential reference telescope for

image fusion due to its lower sigma values and better-defined star profiles. The sigma and maxi-

mum amplitude values can also be utilised as metrics to calculate weights, optimising the fusion

process. Analysing the distances and angles between the two brightest stars provides information

about their relative positions and the influence of atmospheric effects on the image. The observed

normal distribution in the histogram reinforces the idea that atmospheric effects are consistent

throughout the image. The consistent mean in distances and angles indicates a stable configura-

tion of the two brightest stars, except in a subset of frames with altered orientations. The variability

in the distance between the second and third brightest stars can be attributed to the lower quality

or diminished visibility of the third brightest star.

Analysis of techniques for both the single-telescope and multi-telescope image stitch-
ing challenges.

Starting with the feature detection analysed techniques, the iLog method is capable of detecting

blobs of varying sizes and orientations and incorporates iterative filtering, which enhances the

accuracy and precision of blob detection, resulting in more reliable and consistent results and scale

determination is reliable and adaptive, as it finds the value of σ that yields the highest response

in scale-space. This makes it robust and adaptable to various scenarios. these are important

characteristics when identifying stars in images affected by atmospheric effects. Furthermore,

within the context of the state-of-the-art exploration, the Direct Linear Transform (DLT) algorithm

was addressed, which plays a crucial role in calculating the homography matrix between two

distinct frames or telescope images. The purpose of this algorithm is to facilitate the matching of

centroids during the process of image stitching. Moreover, the investigation has explored various

fusion methods available in the field of image fusion. The exploration of these diverse techniques

aims to provide a comprehensive understanding of the different approaches and inspire future

research endeavours.

The chapter is finalised by an analysis of different super-resolution methods. Firstly, an insight

into Adaptive Optics due to the relevance in correcting aberrations and enhancing image quality,

this is followed by a discussion on frequency-based super-resolution, lucky imaging and the drizzle

algorithms, which showed to be good candidates for a solution to perform single telescope super-

resolution. Here, the drizzle algorithm and lucky imaging methodologies emerge as promising

techniques which are employed in this dissertation.
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It’s also worth noting that, in the research of possible solutions for both single telescope super-

resolution and multi-telescope image fusion, machine learning-based methodologies were deliber-

ately integrated, incorporating diverse elements that exhibit potential for inspiring future research.

Compare machine vision-based approaches to stitch the different images into a mas-
ter image

This dissertation explores various methodologies for achieving single telescope super-resolution,

while also establishing a baseline for result comparison. The four methods investigated in this

study encompass exposition fusion, lucky imaging, and a hybrid approach combining elements

from both aforementioned techniques. Additionally, the utilisation of the drizzle technique was

also explored to enhance the resolution. The first methodology, exposition fusion, involves merg-

ing multiple exposures of the same target, each taken with slightly different settings, to produce

a composite image with improved resolution and clarity. By combining these exposures, this

method highlights the features of each individual frame, attributing different weights to pixels to

be combined to yield a final image. The second technique examined is lucky imaging, which

aims to exploit the moments of exceptional atmospheric stability to capture a sequence of rapidly

acquired short exposures. Through statistical analysis, the best-quality frames are identified and

subsequently aligned and combined to yield a high-resolution image. This method leverages the

fortuitous instances of minimal atmospheric turbulence to overcome the limitations posed by at-

mospheric conditions, ultimately yielding sharper and more detailed images. In pursuit of superior

results, a combination of the aforementioned methods was also explored. By integrating elements

from both exposition fusion and lucky imaging, this hybrid approach aims to extract the best fea-

tures of each technique, offering the potential for further enhancement in resolution and image

quality. Finally, the drizzle technique was investigated as a means to further enhance resolution.

Drizzle employs a pixel-reconstruction algorithm that redistributes the light gathered by each pixel

over multiple adjacent pixels, effectively increasing the overall resolution. This method harnesses

the potential of sub-pixel information, resulting in finer details and improved sharpness in the final

image.

Once the telescope images were obtained using these methodologies, a conventional image

stitching algorithm was subsequently employed to merge the images captured by the four tele-

scopes, ultimately generating a master image.

Evaluation of the quality and performance of the proposed methods.

In conclusion, the analysis of both single telescope super-resolution and multi-telescope image

stitching methodologies provides valuable insights into their effectiveness and limitations in im-

proving the resolution and quality of astronomical images.

In terms of single telescope super-resolution, the various methods showcased unique char-

acteristics and varying degrees of success in mitigating atmospheric disturbances. The baseline

method of averaging yielded an enhancement in resolution but still exhibited blurriness around
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the stars. Exposition fusion refined star definition but resulted in diminished Gaussian character-

istics. Simple lucky imaging showed improved resolution and reduced blurring, while weighted

lucky imaging further increased resolution and reduced blurriness. However, the most remarkable

outcomes were achieved with the implementation of the drizzle algorithm, which significantly

enhanced resolution, produced well-defined stars, and minimised haziness. Therefore, the driz-

zle algorithm emerges as the most effective method in improving the resolution and quality of

astronomical images among the analysed methodologies.

Regarding multi-telescope image stitching, the results showed varying degrees of success in

enhancing the quality and definition of the final stitched images. The averaging (benchmark)

technique improved star definition but introduced increased noise. Exposition fusion enhanced

resolution and visibility but caused distortion in the main stars. Simple lucky imaging reduced

blurring and mitigated atmospheric effects. Weighted lucky imaging provided enhanced definition

and reduced blur in mid to better-quality observations, although it was less consistent in lower-

quality observations and introduced more noise. The drizzle algorithm showcased remarkable

advancements, reducing haziness and improving resolution consistently. Based on the conclusive

master images and the analysed graphs, it is evident that the images with the poorest of qualities

have significantly decreased performances. This is due to the poorly defined features, whereas both

feature detection and matching tasks become less robust, which are employed in all shift-and-add

and multi-telescope image stitching operations.

In conclusion, the drizzle algorithm emerges as the most effective method in single telescope

super-resolution, producing remarkable outcomes in terms of resolution enhancement, star defini-

tion, and haziness reduction. In multi-telescope image stitching, while other techniques showed

improvements in certain aspects, the drizzle algorithm outperformed them in terms of image en-

hancement and consistency. However, it is important to consider that the performance of the

methods may vary depending on the quality of the observations.

6.2 Future Work

In the course of this dissertation, numerous ideas were thoroughly considered, although not all

of them were implemented or tested. Commencing with object identification, it is imperative to

emphasise the utmost significance of accurately aligning the centroid of the stars during the correc-

tion of atmospheric effects in images. To achieve this, a preliminary step of star identification and

centroid determination becomes indispensable. Attaining a more precise acquisition of centroids

will lead to improved image alignment, consequently resulting in more robust outcomes.

One point made when addressing the results in Chapter 5 is that "due to the absence of a

technique to eliminate defective pixels and other artefacts, such as reflections, in the acquisition

camera, the resultant master image inevitably contains a discernible level of noise stemming from

the combined noise of all the telescopes involved.". Based on the previous statement, another

future development to be done is the reduction of these artefacts. In the case of broken pixels, one

could acquire a mapping of broken pixels and other detector noise by performing an observation in
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total darkness for all telescopes and filtering this map in a pre-processing phase for each frame. As

for the random reflections, a more intricate solution is necessary and warrants further investigation.

Another prospective avenue for future development entails the exploration and evaluation of

diverse image fusion algorithms, such as the Laplacian Pyramid or the Wavelet transform. These

algorithms hold significant promise within the context of blending information from disparate

frames captured by the same telescope or images obtained from different telescopes. By lever-

aging these algorithms, the fusion process can effectively enhance the overall quality and com-

prehensiveness of the captured astronomical data, thereby offering valuable insights into celestial

phenomena.

Furthermore, as previously alluded to, in the event that these methodologies fail to yield the

desired results, the field of machine learning presents viable alternatives for both multi-frame

super-resolution and multi-telescope image stitching. The utilisation of machine learning tech-

niques proves advantageous due to their ability to leverage the inherent patterns and relationships

in astronomical data. By employing advanced algorithms and models, it becomes possible to re-

construct high-resolution images from low-resolution inputs and seamlessly stitch together images

captured by multiple telescopes. These approaches hold great potential for enhancing the overall

accuracy, resolution, and detail of astronomical imagery.
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Appendix A

Appendix

A.1 Links for Repositories

All the code and results are stored in GitHub:

• https://github.com/Francisco-Sengo/dissertation

A.2 Software and Python libraries employed

Software:

PyCharm : PyCharm is an Integrated Development Environment (IDE) specifically designed for

Python development. It was used for the development of the proposed methodologies.

Overleaf : Overleaf is an online collaborative Latex platform for writing and editing documents. It

was used for every document writing task.

GitHub : GitHub is a web-based platform that provides version control and collaboration tools for

software development. It provides a centralised platform for both student and advisor to

access the code, as well as version control for the developed code

Google Drive : Google Drive is a cloud-based storage and file-sharing platform offered by Google. It was

used to store meeting presentations, as well as other documents pertaining this dissertation.

Zoom : Zoom is a popular video conferencing and online meeting platform. All the meetings

between student and advisors took place using this software.
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Python Libraries:

NumPy : A powerful library for numerical computations in Python, providing efficient array opera-

tions and mathematical functions.

OpenCV : OpenCV is a popular open-source computer vision and image processing library.

Astropy : A versatile library for astronomy-related computations, providing tools for handling astro-

nomical data, units, coordinates, and more.

Matplotlib : A popular plotting library in Python, enabling the creation of various types of plots, charts,

and visualisations.

Photutils : An astropy-affiliated library that offers tools for detecting and analysing astronomical

sources in images.

Math : A built-in Python library that provides fundamental mathematical functions and opera-

tions.

os : A module that provides a way to interact with the operating system, allowing you to

perform tasks such as file and directory manipulation.

SciPy : A comprehensive scientific computing library in Python, offering a wide range of func-

tionality, including numerical integration, optimisation, signal processing, and more.

drizzle : A library for creating high-quality, distortion-corrected mosaics from multiple astronomi-

cal images, often used in the field of astrophotography.
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[48] Larry Bradley, Brigitta Sipőcz, Thomas Robitaille, Erik Tollerud, Zé Vinícius, Christoph
Deil, Kyle Barbary, Tom J Wilson, Ivo Busko, Axel Donath, Hans Moritz Günther, Mihai
Cara, P. L. Lim, Sebastian Meßlinger, Simon Conseil, Azalee Bostroem, Michael Droett-
boom, E. M. Bray, Lars Andersen Bratholm, Geert Barentsen, Matt Craig, Shivangee Rathi,
Sergio Pascual, Gabriel Perren, Iskren Y. Georgiev, Miguel de Val-Borro, Wolfgang Kerzen-
dorf, Yoonsoo P. Bach, Bruno Quint, and Harrison Souchereau. astropy/photutils: 1.5.0, July
2022.

[49] Manolis Lourakis. A brief description of the levenberg-marquardt algorithm implemened by
levmar, 01 2005.

[50] Astropy Collaboration, Adrian M. Price-Whelan, Pey Lian Lim, Nicholas Earl, Nathaniel
Starkman, Larry Bradley, David L. Shupe, Aarya A. Patil, Lia Corrales, C. E. Brasseur,
Maximilian Nöthe, Axel Donath, Erik Tollerud, Brett M. Morris, Adam Ginsburg, Eero
Vaher, Benjamin A. Weaver, James Tocknell, William Jamieson, Marten H. van Kerkwijk,
Thomas P. Robitaille, Bruce Merry, Matteo Bachetti, H. Moritz Günther, Thomas L. Ald-
croft, Jaime A. Alvarado-Montes, Anne M. Archibald, Attila Bódi, Shreyas Bapat, Geert
Barentsen, Juanjo Bazán, Manish Biswas, Médéric Boquien, D. J. Burke, Daria Cara, Mi-
hai Cara, Kyle E. Conroy, Simon Conseil, Matthew W. Craig, Robert M. Cross, Kelle L.
Cruz, Francesco D’Eugenio, Nadia Dencheva, Hadrien A. R. Devillepoix, Jörg P. Dietrich,
Arthur Davis Eigenbrot, Thomas Erben, Leonardo Ferreira, Daniel Foreman-Mackey, Ryan
Fox, Nabil Freij, Suyog Garg, Robel Geda, Lauren Glattly, Yash Gondhalekar, Karl D. Gor-
don, David Grant, Perry Greenfield, Austen M. Groener, Steve Guest, Sebastian Gurovich,
Rasmus Handberg, Akeem Hart, Zac Hatfield-Dodds, Derek Homeier, Griffin Hosseinzadeh,
Tim Jenness, Craig K. Jones, Prajwel Joseph, J. Bryce Kalmbach, Emir Karamehmetoglu,
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