423,526 research outputs found

    Intelligent agent for formal modelling of temporal multi-agent systems

    Get PDF
    Software systems are becoming complex and dynamic with the passage of time, and to provide better fault tolerance and resource management they need to have the ability of self-adaptation. Multi-agent systems paradigm is an active area of research for modeling real-time systems. In this research, we have proposed a new agent named SA-ARTIS-agent, which is designed to work in hard real-time temporal constraints with the ability of self-adaptation. This agent can be used for the formal modeling of any self-adaptive real-time multi-agent system. Our agent integrates the MAPE-K feedback loop with ARTIS agent for the provision of self-adaptation. For an unambiguous description, we formally specify our SA-ARTIS-agent using Time-Communicating Object-Z (TCOZ) language. The objective of this research is to provide an intelligent agent with self-adaptive abilities for the execution of tasks with temporal constraints. Previous works in this domain have used Z language which is not expressive to model the distributed communication process of agents. The novelty of our work is that we specified the non-terminating behavior of agents using active class concept of TCOZ and expressed the distributed communication among agents. For communication between active entities, channel communication mechanism of TCOZ is utilized. We demonstrate the effectiveness of the proposed agent using a real-time case study of traffic monitoring system

    EXT-TAURUM P2T: an Extended Secure CAN-FD Architecture for Road Vehicles

    Get PDF
    The automobile industry is no longer relying on pure mechanical systems; instead, it benefits from advanced Electronic Control Units (ECUs) in order to provide new and complex functionalities in the effort to move toward fully connected cars. However, connected cars provide a dangerous playground for hackers. Vehicles are becoming increasingly vulnerable to cyber attacks as they come equipped with more connected features and control systems. This situation may expose strategic assets in the automotive value chain. In this scenario, the Controller Area Network (CAN) is the most widely used communication protocol in the automotive domain. However, this protocol lacks encryption and authentication. Consequently, any malicious/hijacked node can cause catastrophic accidents and financial loss. Starting from the analysis of the vulnerability connected to the CAN communication protocol in the automotive domain, this paper proposes EXT-TAURUM P2T a new low-cost secure CAN-FD architecture for the automotive domain implementing secure communication among ECUs, a novel key provisioning strategy, intelligent throughput management, and hardware signature mechanisms. The proposed architecture has been implemented, resorting to a commercial Multi-Protocol Vehicle Interface module, and the obtained results experimentally demonstrate the approach’s feasibility

    S-Net for multi-memory multicores

    Get PDF
    Copyright ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming: http://doi.acm.org/10.1145/1708046.1708054S-Net is a declarative coordination language and component technology aimed at modern multi-core/many-core architectures and systems-on-chip. It builds on the concept of stream processing to structure dynamically evolving networks of communicating asynchronous components. Components themselves are implemented using a conventional language suitable for the application domain. This two-level software architecture maintains a familiar sequential development environment for large parts of an application and offers a high-level declarative approach to component coordination. In this paper we present a conservative language extension for the placement of components and component networks in a multi-memory environment, i.e. architectures that associate individual compute cores or groups thereof with private memories. We describe a novel distributed runtime system layer that complements our existing multithreaded runtime system for shared memory multicores. Particular emphasis is put on efficient management of data communication. Last not least, we present preliminary experimental data

    SECMACE: Scalable and Robust Identity and Credential Management Infrastructure in Vehicular Communication Systems

    Full text link
    Several years of academic and industrial research efforts have converged to a common understanding on fundamental security building blocks for the upcoming Vehicular Communication (VC) systems. There is a growing consensus towards deploying a special-purpose identity and credential management infrastructure, i.e., a Vehicular Public-Key Infrastructure (VPKI), enabling pseudonymous authentication, with standardization efforts towards that direction. In spite of the progress made by standardization bodies (IEEE 1609.2 and ETSI) and harmonization efforts (Car2Car Communication Consortium (C2C-CC)), significant questions remain unanswered towards deploying a VPKI. Deep understanding of the VPKI, a central building block of secure and privacy-preserving VC systems, is still lacking. This paper contributes to the closing of this gap. We present SECMACE, a VPKI system, which is compatible with the IEEE 1609.2 and ETSI standards specifications. We provide a detailed description of our state-of-the-art VPKI that improves upon existing proposals in terms of security and privacy protection, and efficiency. SECMACE facilitates multi-domain operations in the VC systems and enhances user privacy, notably preventing linking pseudonyms based on timing information and offering increased protection even against honest-but-curious VPKI entities. We propose multiple policies for the vehicle-VPKI interactions, based on which and two large-scale mobility trace datasets, we evaluate the full-blown implementation of SECMACE. With very little attention on the VPKI performance thus far, our results reveal that modest computing resources can support a large area of vehicles with very low delays and the most promising policy in terms of privacy protection can be supported with moderate overhead.Comment: 14 pages, 9 figures, 10 tables, IEEE Transactions on Intelligent Transportation System

    A Gossip Algorithm based Clock Synchronization Scheme for Smart Grid Applications

    Full text link
    The uprising interest in multi-agent based networked system, and the numerous number of applications in the distributed control of the smart grid leads us to address the problem of time synchronization in the smart grid. Utility companies look for new packet based time synchronization solutions with Global Positioning System (GPS) level accuracies beyond traditional packet methods such as Network Time Proto- col (NTP). However GPS based solutions have poor reception in indoor environments and dense urban canyons as well as GPS antenna installation might be costly. Some smart grid nodes such as Phasor Measurement Units (PMUs), fault detection, Wide Area Measurement Systems (WAMS) etc., requires synchronous accuracy as low as 1 ms. On the other hand, 1 sec accuracy is acceptable in management information domain. Acknowledging this, in this study, we introduce gossip algorithm based clock synchronization method among network entities from the decision control and communication point of view. Our method synchronizes clock within dense network with a bandwidth limited environment. Our technique has been tested in different kinds of network topologies- complete, star and random geometric network and demonstrated satisfactory performance

    Two Project on Information Systems Capabilities and Organizational Performance

    Get PDF
    Information systems (IS), as a multi-disciplinary research area, emphasizes the complementary relationship between people, organizations, and technology and has evolved dramatically over the years. IS and the underlying Information Technology (IT) application and research play a crucial role in transforming the business world and research within the management domain. Consistent with this evolution and transformation, I develop a two-project dissertation on Information systems capabilities and organizational outcomes. Project 1 examines the role of hospital operational effectiveness on the link between information systems capabilities and hospital performance. This project examines the cross-lagged effects on a sample of 217 hospitals measured over three years, to ascertain the effect of Hospital IS capability variants on Hospital performance in terms of quality of care and profitability, as mediated by hospital operational effectiveness. Hospital operational effectiveness was studied as process efficiency and service efficiency. The results of our study provide evidence for a considerable causal impact of hospital IS capabilities on hospital performance as mediated by hospital operational effectiveness. Project 2 investigates the impact of CEO’s communication styles on organizational performance using text-mining approach on CEOs tweets from social media. The contribution of our study is three-folded: 1) From a methodological standpoint, we present a model to establish a relationship between CEO communication styles on social media and firm performance. Additionally, we apply text mining to identify communication styles of CEOs. 2) From a performance management, we evaluate organizational performance in three types: Operational, Financial, and Reputational. 3) From a management practice and policy perspective, our study results will help organizations evaluate the CEO candidates from a communication style standpoint

    Teaching co-simulation basics through practice

    Get PDF
    International audienceCyber-physical system representation is one of the current challenges in Modeling and Simulation. In fact, multi-domain modeling requires new approaches to rigorously deal with it. Co-simulation, one of the approaches, lets modelers use several M&S tools in collaboration. The challenge is to find a way to enable co-simulation use for non-IT experts while being aware of assumptions and limitations involved. This paper deals with co-simulation basic principles teaching through practice. we propose an iterative and modular co-simulation process supported by a DSL-based environment for the MECSYCO co-simulation platform. Through a thermal use case, we are able to introduce co-simulation in a 4 hours tutorial destined to our students. Efficient energy management is one of this century challenges. The current trend to deal with it is to build cyber-physical system (CPS) [Kleissl and Agarwal, 2010]. CPS are physical systems monitored and supervised by one or several computers through a communication networks [Ra-jkumar et al., 2010]. Smart-grids are examples of CPS where the energy network is coupled with a communication network to enable remote monitoring and control. The Modeling and Simulation (M&S) of such systems is one of the current challenges in M&S due to the inter-disciplinary issues they raise. It requests the development of new methods which deal with multi-domain by integrating each expert point of view in the same rigorous and efficient M&S activity. Co-simulation [Gomes et al., 2018] is a way to achieve it

    Understand-Before-Talk (UBT): A Semantic Communication Approach to 6G Networks

    Full text link
    In Shannon theory, semantic aspects of communication were identified but considered irrelevant to the technical communication problems. Semantic communication (SC) techniques have recently attracted renewed research interests in (6G) wireless because they have the capability to support an efficient interpretation of the significance and meaning intended by a sender (or accomplishment of the goal) when dealing with multi-modal data such as videos, images, audio, text messages, and so on, which would be the case for various applications such as intelligent transportation systems where each autonomous vehicle needs to deal with real-time videos and data from a number of sensors including radars. A notable difficulty of existing SC frameworks lies in handling the discrete constraints imposed on the pursued semantic coding and its interaction with the independent knowledge base, which makes reliable semantic extraction extremely challenging. Therefore, we develop a new lightweight hashing-based semantic extraction approach to the SC framework, where our learning objective is to generate one-time signatures (hash codes) using supervised learning for low latency, secure and efficient management of the SC dynamics. We first evaluate the proposed semantic extraction framework over large image data sets, extend it with domain adaptive hashing and then demonstrate the effectiveness of "semantics signature" in bulk transmission and multi-modal data
    corecore