22 research outputs found

    Template-Instance Loss for Offline Handwritten Chinese Character Recognition

    Full text link
    The long-standing challenges for offline handwritten Chinese character recognition (HCCR) are twofold: Chinese characters can be very diverse and complicated while similarly looking, and cursive handwriting (due to increased writing speed and infrequent pen lifting) makes strokes and even characters connected together in a flowing manner. In this paper, we propose the template and instance loss functions for the relevant machine learning tasks in offline handwritten Chinese character recognition. First, the character template is designed to deal with the intrinsic similarities among Chinese characters. Second, the instance loss can reduce category variance according to classification difficulty, giving a large penalty to the outlier instance of handwritten Chinese character. Trained with the new loss functions using our deep network architecture HCCR14Layer model consisting of simple layers, our extensive experiments show that it yields state-of-the-art performance and beyond for offline HCCR.Comment: Accepted by ICDAR 201

    Unexpected Event Prediction in Wire Electrical Discharge Machining Using Deep Learning Techniques

    Get PDF
    Theoretical models of manufacturing processes provide a valuable insight into physical phenomena but their application to practical industrial situations is sometimes difficult. In the context of Industry 4.0, artificial intelligence techniques can provide efficient solutions to actual manufacturing problems when big data are available. Within the field of artificial intelligence, the use of deep learning is growing exponentially in solving many problems related to information and communication technologies (ICTs) but it still remains scarce or even rare in the field of manufacturing. In this work, deep learning is used to efficiently predict unexpected events in wire electrical discharge machining (WEDM), an advanced machining process largely used for aerospace components. The occurrence of an unexpected event, namely the change of thickness of the machined part, can be effectively predicted by recognizing hidden patterns from process signals. Based on WEDM experiments, different deep learning architectures were tested. By using a combination of a convolutional layer with gated recurrent units, thickness variation in the machined component could be predicted in 97.4% of cases, at least 2 mm in advance, which is extremely fast, acting before the process has degraded. New possibilities of deep learning for high-performance machine tools must be examined in the near future.The authors gratefully acknowledge the funding support received from the Spanish Ministry of Economy and Competitiveness and the FEDER operation program for funding the project "Scientific models and machine-tool advanced sensing techniques for efficient machining of precision components of Low Pressure Turbines" (DPI2017-82239-P) and UPV/EHU (UFI 11/29). The authors would also like to thank Euskampus and ONA-EDM for their support in this project

    An efficient convolutional neural network based classifier to predict Tamil writer

    Get PDF
    Identification of Tamil handwritten calligraphies at different levels such as character, word and paragraph is complicated when compared to other western language scripts. None of the existing methods provides efficient Tamil handwriting writer identification (THWI). Also offline Tamil handwritten identification at different levels still offers many motivating challenges to researchers. This paper employs a deep learning algorithm for handwriting image classification. Deep learning has its own dimensions to generate new features from a limited set of training dataset. Convolutional Neural Networks (CNNs) is one of deep, feed-forward artificial neural network is applied to THWI. The dataset collection and classification phase of CNN enables data access and automatic feature generation. Since the number of parameters is significantly reduced, training time to THWI is proportionally reduced. Understandably, the CNNs produced much higher identification rate compared with traditional ANN at different levels of handwriting
    corecore