17,639 research outputs found

    Multi-Attribute Networks and the Impact of Partial Information on Inference and Characterization

    Get PDF
    Our work is motivated by application of association networks in computa- tional biology, specifically in the context of gene/protein regulatory networks in human cancer cells. Association networks represent systems of interacting elements, where a link between two different elements indicates a sufficient level of similarity between element attributes. While in reality relational ties between elements can be expected to be based on similarity across multiple attributes, the vast majority of work to date on association networks involves ties defined with respect to only a single attribute. We propose an approach for the inference of multi-attribute association networks from measurements on continuous attribute variables, using canonical correlation and a hypothesis- testing strategy. Within this context, we then study the impact of partial infor- mation on multi-attribute network inference and characterization, when only a subset of attributes is available. We examine through a combination of ana- lytical and numerical techniques the implications of the choice and number of node attributes on the ability to detect network links and, more generally, to estimate higher-level network summary statistics, such as node degree, clus- tering coefficients, and measures of centrality. We consider in detail the case of two attributes and discuss generalization of our findings to more than two attributes

    Data Imputation through the Identification of Local Anomalies

    Get PDF
    We introduce a comprehensive and statistical framework in a model free setting for a complete treatment of localized data corruptions due to severe noise sources, e.g., an occluder in the case of a visual recording. Within this framework, we propose i) a novel algorithm to efficiently separate, i.e., detect and localize, possible corruptions from a given suspicious data instance and ii) a Maximum A Posteriori (MAP) estimator to impute the corrupted data. As a generalization to Euclidean distance, we also propose a novel distance measure, which is based on the ranked deviations among the data attributes and empirically shown to be superior in separating the corruptions. Our algorithm first splits the suspicious instance into parts through a binary partitioning tree in the space of data attributes and iteratively tests those parts to detect local anomalies using the nominal statistics extracted from an uncorrupted (clean) reference data set. Once each part is labeled as anomalous vs normal, the corresponding binary patterns over this tree that characterize corruptions are identified and the affected attributes are imputed. Under a certain conditional independency structure assumed for the binary patterns, we analytically show that the false alarm rate of the introduced algorithm in detecting the corruptions is independent of the data and can be directly set without any parameter tuning. The proposed framework is tested over several well-known machine learning data sets with synthetically generated corruptions; and experimentally shown to produce remarkable improvements in terms of classification purposes with strong corruption separation capabilities. Our experiments also indicate that the proposed algorithms outperform the typical approaches and are robust to varying training phase conditions

    Graph Estimation From Multi-attribute Data

    Full text link
    Many real world network problems often concern multivariate nodal attributes such as image, textual, and multi-view feature vectors on nodes, rather than simple univariate nodal attributes. The existing graph estimation methods built on Gaussian graphical models and covariance selection algorithms can not handle such data, neither can the theories developed around such methods be directly applied. In this paper, we propose a new principled framework for estimating graphs from multi-attribute data. Instead of estimating the partial correlation as in current literature, our method estimates the partial canonical correlations that naturally accommodate complex nodal features. Computationally, we provide an efficient algorithm which utilizes the multi-attribute structure. Theoretically, we provide sufficient conditions which guarantee consistent graph recovery. Extensive simulation studies demonstrate performance of our method under various conditions. Furthermore, we provide illustrative applications to uncovering gene regulatory networks from gene and protein profiles, and uncovering brain connectivity graph from functional magnetic resonance imaging data.Comment: Extended simulation study. Added an application to a new data se

    Reconstructing dynamical networks via feature ranking

    Full text link
    Empirical data on real complex systems are becoming increasingly available. Parallel to this is the need for new methods of reconstructing (inferring) the topology of networks from time-resolved observations of their node-dynamics. The methods based on physical insights often rely on strong assumptions about the properties and dynamics of the scrutinized network. Here, we use the insights from machine learning to design a new method of network reconstruction that essentially makes no such assumptions. Specifically, we interpret the available trajectories (data) as features, and use two independent feature ranking approaches -- Random forest and RReliefF -- to rank the importance of each node for predicting the value of each other node, which yields the reconstructed adjacency matrix. We show that our method is fairly robust to coupling strength, system size, trajectory length and noise. We also find that the reconstruction quality strongly depends on the dynamical regime
    corecore