20 research outputs found

    Human Motion Detection Based on Dual-Graph and Weighted Nuclear Norm Regularizations

    Full text link
    Motion detection has been widely used in many applications, such as surveillance and robotics. Due to the presence of the static background, a motion video can be decomposed into a low-rank background and a sparse foreground. Many regularization techniques that preserve low-rankness of matrices can therefore be imposed on the background. In the meanwhile, geometry-based regularizations, such as graph regularizations, can be imposed on the foreground. Recently, weighted regularization techniques including the weighted nuclear norm regularization have been proposed in the image processing community to promote adaptive sparsity while achieving efficient performance. In this paper, we propose a robust dual graph regularized moving object detection model based on a novel weighted nuclear norm regularization and spatiotemporal graph Laplacians. Numerical experiments on realistic human motion data sets have demonstrated the effectiveness and robustness of this approach in separating moving objects from background, and the enormous potential in robotic applications.Comment: arXiv admin note: substantial text overlap with arXiv:2204.1193

    VIDEO FOREGROUND LOCALIZATION FROM TRADITIONAL METHODS TO DEEP LEARNING

    Get PDF
    These days, detection of Visual Attention Regions (VAR), such as moving objects has become an integral part of many Computer Vision applications, viz. pattern recognition, object detection and classification, video surveillance, autonomous driving, human-machine interaction (HMI), and so forth. The moving object identification using bounding boxes has matured to the level of localizing the objects along their rigid borders and the process is called foreground localization (FGL). Over the decades, many image segmentation methodologies have been well studied, devised, and extended to suit the video FGL. Despite that, still, the problem of video foreground (FG) segmentation remains an intriguing task yet appealing due to its ill-posed nature and myriad of applications. Maintaining spatial and temporal coherence, particularly at object boundaries, persists challenging, and computationally burdensome. It even gets harder when the background possesses dynamic nature, like swaying tree branches or shimmering water body, and illumination variations, shadows cast by the moving objects, or when the video sequences have jittery frames caused by vibrating or unstable camera mounts on a surveillance post or moving robot. At the same time, in the analysis of traffic flow or human activity, the performance of an intelligent system substantially depends on its robustness of localizing the VAR, i.e., the FG. To this end, the natural question arises as what is the best way to deal with these challenges? Thus, the goal of this thesis is to investigate plausible real-time performant implementations from traditional approaches to modern-day deep learning (DL) models for FGL that can be applicable to many video content-aware applications (VCAA). It focuses mainly on improving existing methodologies through harnessing multimodal spatial and temporal cues for a delineated FGL. The first part of the dissertation is dedicated for enhancing conventional sample-based and Gaussian mixture model (GMM)-based video FGL using probability mass function (PMF), temporal median filtering, and fusing CIEDE2000 color similarity, color distortion, and illumination measures, and picking an appropriate adaptive threshold to extract the FG pixels. The subjective and objective evaluations are done to show the improvements over a number of similar conventional methods. The second part of the thesis focuses on exploiting and improving deep convolutional neural networks (DCNN) for the problem as mentioned earlier. Consequently, three models akin to encoder-decoder (EnDec) network are implemented with various innovative strategies to improve the quality of the FG segmentation. The strategies are not limited to double encoding - slow decoding feature learning, multi-view receptive field feature fusion, and incorporating spatiotemporal cues through long-shortterm memory (LSTM) units both in the subsampling and upsampling subnetworks. Experimental studies are carried out thoroughly on all conditions from baselines to challenging video sequences to prove the effectiveness of the proposed DCNNs. The analysis demonstrates that the architectural efficiency over other methods while quantitative and qualitative experiments show the competitive performance of the proposed models compared to the state-of-the-art

    MĂ©thodes de vision Ă  la motion et leurs applications

    Get PDF
    La détection de mouvement est une opération de base souvent utilisée en vision par ordinateur, que ce soit pour la détection de piétons, la détection d’anomalies, l’analyse de scènes vidéo ou le suivi d’objets en temps réel. Bien qu’un très grand nombre d’articles ait été publiés sur le sujet, plusieurs questions restent en suspens. Par exemple, il n’est toujours pas clair comment détecter des objets en mouvement dans des vidéos contenant des situations difficiles à gérer comme d'importants mouvements de fonds et des changements d’illumination. De plus, il n’y a pas de consensus sur comment quantifier les performances des méthodes de détection de mouvement. Aussi, il est souvent difficile d’incorporer de l’information de mouvement à des opérations de haut niveau comme par exemple la détection de piétons. Dans cette thèse, j’aborde quatre problèmes en lien avec la détection de mouvement: 1. Comment évaluer efficacement des méthodes de détection de mouvement? Pour répondre à cette question, nous avons mis sur pied une procédure d’évaluation de telles méthodes. Cela a mené à la création de la plus grosse base de données 100\% annotée au monde dédiée à la détection de mouvement et organisé une compétition internationale (CVPR 2014). J’ai également exploré différentes métriques d’évaluation ainsi que des stratégies de combinaison de méthodes de détection de mouvement. 2. L’annotation manuelle de chaque objet en mouvement dans un grand nombre de vidéos est un immense défi lors de la création d’une base de données d’analyse vidéo. Bien qu’il existe des méthodes de segmentation automatiques et semi-automatiques, ces dernières ne sont jamais assez précises pour produire des résultats de type “vérité terrain”. Pour résoudre ce problème, nous avons proposé une méthode interactive de segmentation d’objets en mouvement basée sur l’apprentissage profond. Les résultats obtenus sont aussi précis que ceux obtenus par un être humain tout en étant 40 fois plus rapide. 3. Les méthodes de détection de piétons sont très souvent utilisées en analyse de la vidéo. Malheureusement, elles souffrent parfois d’un grand nombre de faux positifs ou de faux négatifs tout dépendant de l’ajustement des paramètres de la méthode. Dans le but d’augmenter les performances des méthodes de détection de piétons, nous avons proposé un filtre non linéaire basée sur la détection de mouvement permettant de grandement réduire le nombre de faux positifs. 4. L’initialisation de fond ({\em background initialization}) est le processus par lequel on cherche à retrouver l’image de fond d’une vidéo sans les objets en mouvement. Bien qu’un grand nombre de méthodes ait été proposé, tout comme la détection de mouvement, il n’existe aucune base de donnée ni procédure d’évaluation pour de telles méthodes. Nous avons donc mis sur pied la plus grosse base de données au monde pour ce type d’applications et avons organisé une compétition internationale (ICPR 2016).Abstract : Motion detection is a basic video analytic operation on which many high-level computer vision tasks are built upon, e.g., pedestrian detection, anomaly detection, scene understanding and object tracking strategies. Even though a large number of motion detection methods have been proposed in the last decades, some important questions are still unanswered, including: (1) how to separate the foreground from the background accurately even under extremely challenging circumstances? (2) how to evaluate different motion detection methods? And (3) how to use motion information extracted by motion detection to help improving high-level computer vision tasks? In this thesis, we address four problems related to motion detection: 1. How can we benchmark (and on which videos) motion detection method? Current datasets are either too small with a limited number of scenarios, or only provide bounding box ground truth that indicates the rough location of foreground objects. As a solution, we built the largest and most objective motion detection dataset in the world with pixel accurate ground truth to evaluate and compare motion detection methods. We also explore various evaluation metrics as well as different combination strategies. 2. Providing pixel accurate ground truth is a huge challenge when building a motion detection dataset. While automatic labeling methods suffer from a too large false detection rate to be used as ground truth, manual labeling of hundreds of thousands of frames is extremely time consuming. To solve this problem, we proposed an interactive deep learning method for segmenting moving objects from videos. The proposed method can reach human-level accuracies while lowering the labeling time by a factor of 40. 3. Pedestrian detectors always suffer from either false positive detections or false negative detections all depending on the parameter tuning. Unfortunately, manual adjustment of parameters for a large number of videos is not feasible in practice. In order to make pedestrian detectors more robust on a large variety of videos, we combined motion detection with various state-of-the-art pedestrian detectors. This is done by a novel motion-based nonlinear filtering process which improves detectors by a significant margin. 4. Scene background initialization is the process by which a method tries to recover the RGB background image of a video without foreground objects in it. However, one of the reasons that background modeling is challenging is that there is no good dataset and benchmarking framework to estimate the performance of background modeling methods. To fix this problem, we proposed an extensive survey as well as a novel benchmarking framework for scene background initialization
    corecore