876 research outputs found

    RegBN: Batch Normalization of Multimodal Data with Regularization

    Full text link
    Recent years have witnessed a surge of interest in integrating high-dimensional data captured by multisource sensors, driven by the impressive success of neural networks in the integration of multimodal data. However, the integration of heterogeneous multimodal data poses a significant challenge, as confounding effects and dependencies among such heterogeneous data sources introduce unwanted variability and bias, leading to suboptimal performance of multimodal models. Therefore, it becomes crucial to normalize the low- or high-level features extracted from data modalities before their fusion takes place. This paper introduces a novel approach for the normalization of multimodal data, called RegBN, that incorporates regularization. RegBN uses the Frobenius norm as a regularizer term to address the side effects of confounders and underlying dependencies among different data sources. The proposed method generalizes well across multiple modalities and eliminates the need for learnable parameters, simplifying training and inference. We validate the effectiveness of RegBN on eight databases from five research areas, encompassing diverse modalities such as language, audio, image, video, depth, tabular, and 3D MRI. The proposed method demonstrates broad applicability across different architectures such as multilayer perceptrons, convolutional neural networks, and vision transformers, enabling effective normalization of both low- and high-level features in multimodal neural networks. RegBN is available at \url{https://github.com/mogvision/regbn}

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database

    Looking Beyond a Clever Narrative: Visual Context and Attention are Primary Drivers of Affect in Video Advertisements

    Full text link
    Emotion evoked by an advertisement plays a key role in influencing brand recall and eventual consumer choices. Automatic ad affect recognition has several useful applications. However, the use of content-based feature representations does not give insights into how affect is modulated by aspects such as the ad scene setting, salient object attributes and their interactions. Neither do such approaches inform us on how humans prioritize visual information for ad understanding. Our work addresses these lacunae by decomposing video content into detected objects, coarse scene structure, object statistics and actively attended objects identified via eye-gaze. We measure the importance of each of these information channels by systematically incorporating related information into ad affect prediction models. Contrary to the popular notion that ad affect hinges on the narrative and the clever use of linguistic and social cues, we find that actively attended objects and the coarse scene structure better encode affective information as compared to individual scene objects or conspicuous background elements.Comment: Accepted for publication in the Proceedings of 20th ACM International Conference on Multimodal Interaction, Boulder, CO, US

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Affect recognition & generation in-the-wild

    Get PDF
    Affect recognition based on a subject’s facial expressions has been a topic of major research in the attempt to generate machines that can understand the way subjects feel, act and react. In the past, due to the unavailability of large amounts of data captured in real-life situations, research has mainly focused on controlled environments. However, recently, social media and platforms have been widely used. Moreover, deep learning has emerged as a means to solve visual analysis and recognition problems. This Ph.D. Thesis exploits these advances and makes significant contributions for affect analysis and recognition in-the-wild. We tackle affect analysis and recognition as a dual knowledge generation problem: i) we create new, large and rich in-the-wild databases and ii) we design and train novel deep neural architectures that are able to analyse affect over these databases and to successfully generalise their performance on other datasets. At first, we present the creation of Aff-Wild database annotated according to valence-arousal and an end-to-end CNN-RNN architecture, AffWildNet. Then we use AffWildNet as a robust prior for dimensional and categorical affect recognition and extend it by extracting low-/mid-/high-level latent information and analysing this via multiple RNNs. Additionally, we propose a novel loss function for DNN-based categorical affect recognition. Next, we generate Aff-Wild2, the first database containing annotations for all main behavior tasks: estimate Valence-Arousal; classify into Basic Expressions; detect Action Units. We develop multi-task and multi-modal extensions of AffWildNet by fusing these tasks and propose a novel holistic approach that utilises all existing databases with non-overlapping annotations and couples them through co-annotation and distribution matching. Finally, we present an approach for valence-arousal, or basic expressions’ facial affect synthesis. We generate an image with a given affect, or a sequence of images with evolving affect, by annotating a 4-D database and utilising a 3-D morphable model.Open Acces
    corecore