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Abstract

Affect recognition based on a subject’s facial expressions has been a topic of major research in the

attempt to generate machines that can understand the way subjects feel, act and react. In the past,

due to the unavailability of large amounts of data captured in real-life situations, research has mainly

focused on controlled environments. However, recently, social media and platforms have been widely

used. Moreover, deep learning has emerged as a means to solve visual analysis and recognition

problems. This Ph.D. Thesis exploits these advances and makes significant contributions for affect

analysis and recognition in-the-wild.

We tackle affect analysis and recognition as a dual knowledge generation problem: i) we create new,

large and rich in-the-wild databases and ii) we design and train novel deep neural architectures that

are able to analyse affect over these databases and to successfully generalise their performance on

other datasets.

At first, we present the creation of Aff-Wild database annotated according to valence-arousal and

an end-to-end CNN-RNN architecture, AffWildNet. Then we use AffWildNet as a robust prior for

dimensional and categorical affect recognition and extend it by extracting low-/mid-/high-level latent

information and analysing this via multiple RNNs. Additionally, we propose a novel loss function for

DNN-based categorical affect recognition.

Next, we generate Aff-Wild2, the first database containing annotations for all main behavior tasks: es-

timate Valence-Arousal; classify into Basic Expressions; detect Action Units. We develop multi-task

and multi-modal extensions of AffWildNet by fusing these tasks and propose a novel holistic ap-

proach that utilises all existing databases with non-overlapping annotations and couples them through

co-annotation and distribution matching.

Finally, we present an approach for valence-arousal, or basic expressions’ facial affect synthesis. We

generate an image with a given affect, or a sequence of images with evolving affect, by annotating a

4-D database and utilising a 3-D morphable model.
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Chapter 1

Introduction

1.1 Motivation

In this Thesis we deal with the problem of affect analysis and recognition, which constitutes a key

issue in behavioural modelling, human machine interaction and affective computing. There are a

number of related applications spread across a variety of fields, such as medicine, health, or driver

fatigue, monitoring, e-learning, marketing, entertainment, lie detection and law. Some examples of

these application fields are referenced below:

• determining patients’ feeling and comfort level about treatment

• remote monitoring of elderly people’s health

• detecting facial expressions and determining fatigue of a car driver; alerting drivers if they look

sleepy or drowsy

• studying learners’ emotions and adjusting learning techniques according to learners’ reactions

• in call centers, determining anger and stress levels in the voice and prioritizing angry callers

• detecting positive or negative reactions of public in events

• detecting emotional state of candidates in interviews

1
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• detecting facial expressions while playing a videogame can be a good metric to understand if

the game is successful in making the experience enjoyable.

However, human facial expression and affect recognition constitutes a difficult problem, because emo-

tion patterns are complex, time varying, user and context dependent. Due to this fact, affect analysis

constitutes an open research problem, which has attracted great interest by researchers internationally.

Ekman [61] was the first to systematically study human facial expressions. His study categorizes

the prototypical facial expressions, apart from neutral expression, into six classes representing anger,

disgust, fear, happiness, sadness and surprise. This categorization is consistent across different ethnic-

ities and cultures. Furthermore, facial expressions are related to specific movements of facial muscles,

called Action Units (AUs). The Facial Action Coding System (FACS) was developed, in which facial

changes are described in terms of AUs [41].

Apart from the above categorical definition of facial expressions and related emotions, in the last few

years there has been great interest in dimensional emotion representations, which are of great interest

in human computer interaction and human behaviour analysis. Dimensional emotion representations

are used to tag emotional states in continuous mode, usually in terms of the arousal and valence

dimensions, i.e. in terms of how active or passive, positive or negative is the human behaviour under

analysis [67].

Moreover, differentiating between posed and spontaneous facial expressions is advantageous in many

areas of human-computer interaction, or public security. Many annotated facial databases exist, which

show human actors portraying facial expressions. A classification of these databases can be based

on whether the basic annotation refers to categorical emotion categories, or to dimensional emotion

representations, or to action units. However, existing databases have significant limitations: they

contain data recorded in laboratory or controlled environments; their diversity is limited due to the

small total number of subjects they contain, due to the limited variation in scene lighting, camera

view, image resolution, background, subjects’ head-pose and ethnicity, due to the lack of occlussions

and due to the fact that the total duration of their included videos is rather short. Generating large

databases showing spontaneous behaviours in real-life, uncontrolled, i.e., in-the-wild environments,

overcoming these limitations has been a strong motivation for our work.
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In addition, human emotion states in-the-wild do not have explicit temporal boundaries and their

patterns often vary across individuals and contexts. Hence, existing affect recognition systems lack

enough generality when used in uncontrolled human computer interaction. This makes necessary the

development of new effective affect recognition systems which are able to operate across different

real life environments. This has been another strong motivation for our work.

Major research has been given during the last few years to the development and use of deep learning

techniques and deep neural networks [74, 125] in various applications, including affect recognition

in-the-wild. The Emotion Recognition in the Wild Challenge (EmotiW), as well as the Challenges in

Representation Learning: Facial Expression Recognition Challenge (FER2013) organized since 2013

[53] have focused on categorical emotion recognition. The Audio/Visual Emotion Challenge (AVEC),

organized since 2011 [202] has focused on dimensional emotion representation, in two dimensions,

i.e., arousal and valence. The winning methods in most of the above Challenges have been based on

deep neural networks. However, no architecture has been shown able to analyse large amounts of

audio-visual data and generalise well its performance on different data sources.

Moreover, apart from affect analysis and recognition, generation of facial affect is of great signif-

icance, in many real life applications, such as for synthesis of affect on avatars that interact with

humans, in computer games, in augmented and virtual environments, in educational and learning

contexts.

Finally, we need to mention that the problem of affect analysis and recognition is more easily tackled

nowadays due to the advent of GPU technology. GPUs are optimized for training deep learning

models as they can process multiple computations simultaneously. They have a large number of

cores, which allows for better computation of multiple parallel processes. Computations in deep

learning for affect analysis and recognition need to handle huge amounts of data - this makes GPUs’

memory bandwidth most suitable.
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1.2 Aim and Objectives

The above-described motivation led us to tackle affect analysis and recognition as a dual knowledge

generation problem. Our aim is to: i) create new large rich databases in-the-wild and ii) design

and train novel deep neural architectures that are able to analyse affect over these databases and to

successfully generalise their performance on other datasets. We target to advance the state-of-the-art

in affect analysis and recognition and provide the research and industrial communities with both data

and trained deep neural architectures that they can effectively use in real life environments. This

duality is an underlying basis for our specific objectives that are presented below:

A first objective is the generation of a new, large scale, captured in-the-wild, video database that

includes annotations in terms of continuous, dimensional emotion representations. It will be able to

represent both abrupt and subtle affect in human behaviour; consequently, it can be used to model a

large variety of events in real life human machine interactions.

The dual objective is the design and training of a novel end-to-end neural architecture that is able to

learn over this database, in-the-wild. It will learn to capture subtle spatial and time variations of affect

on this video database and to generalise well in other relevant databases.

The second objective is to extend the generated, in-the-wild database, including annotations for all

major emotion representations, i.e., dimensional, categorical and facial action units. It will provide

the basis for developing unified affect analysis and recognition methodologies and frameworks.

The related dual objective is to design and train a new neural architecture that will be able to automat-

ically extract cues for all representations and analyse affect in-the-wild through a unified dimensional,

categorical and action unit recognition framework.

The third objective relates to generation of affect on faces, using the above-described emotion repre-

sentations, the dimensional and categorical ones. A large face database is also needed, annotated in

terms of facial affect, for the design of a system that learns to render affect on the faces. It should be

added that large experimental and ablation studies are required for illustrating that the approaches to

be developed meet the above objectives.
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1.3 Contributions

A major contribution of our research is related to the first, as well as its dual, objectives described

in the former subsection. It includes generation of Aff-Wild, a new in-the-wild database, annotated

according to the dimensional emotion representation, using the arousal and valence dimensions and

including a big variety of: emotional states; rapid emotional changes; ethnicities; head poses; illu-

mination conditions; occlusions. Aff-Wild was generated, by capitalizing on the abundance of data

available in video-sharing websites, such as YouTube and selecting videos that displayed the affec-

tive behavior of people, for example videos that displayed the behavior of people when watching a

trailer, a movie, a disturbing clip, or reactions to pranks. It contains 298 videos displaying reactions

of 200 subjects, with a total video duration of more than 30 hours. The database has been annotated

by 8 lay experts. Aff-Wild was first introduced in the Aff-Wild Challenge [109, 226], in conjunction

with International Conference on Computer Vision & Pattern Recognition (CVPR) 2017. Since then

Aff-Wild has been used by many researchers all around the world.

A novel end-to-end Deep Neural Architecture, AffWildNet, was then designed and trained on Aff-

Wild to provide on-line valence and arousal estimation, being able to capture the temporal dynamics

and the in-the-wild nature of Aff-Wild. It is a Convolutional and Recurrent Network (CNN-RNN)

that takes as input bpth subjects’ faces and extracted facial landmarks and is trained end-to-end to

minimize the Concordance Correlation Coefficient [124].

After achieving an excellent performance on Aff-Wild, transfer learning and domain adaptation prin-

ciples have been adopted to use AffWildNet as a robust prior for dimensional affect recognition

on other major databases, either controlled, or in-the-wild ones. State-of-the-art results have been

achieved as illustrated by large experimental studies. Moreover, for the first time, AffWildNet, which

was trained as a dimensional affect recognition model, was able to constitute a robust prior for cate-

gorical affect recognition, achieving state-of-the-art performance on the problem of seven basic facial

expression recognition in-the-wild.

Our research then focused on advancing the state-of-the-art related to the design of AffWildNet. In

more detail, we developed novel CNN plus multi-RNN architectures - multi-component extensions
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of AffWildNet -, in which low-, mid- and high-level latent variables were extracted and appropriately

fused. We participated in the OMG-Emotion Challenge [12] and ranked second in estimating valence

from visual cues. Another research contribution was to adapt and use, for the first time, the Arc-

Face Loss [45] when developing novel DNNs for affect recognition. Excellent results were acquired,

illustrating the effectiveness of additive angular margin in affect recognition.

Another major contribution of our research is related to the second objective, and its dual one, de-

scribed in the previous subsection. Aff-Wild has been first extended with new videos, creating Aff-

Wild2, containing 558 videos with a total duration of more than 43 hours, showing reactions of a large

number of 458 subjects. Aff-Wild2 has been the first database that contains annotations for all three

main behavior tasks: estimation of Valence and Arousal; classification in 7 Basic Expression Cate-

gories; detection of Facial Action Units; Aff-Wild2 is also the largest existing in-the-wild database

in each of these tasks. This provides researchers with the unique ability to perform all three affect

recognition tasks simultaneously, using the same audiovisual data. Aff-Wild2 is the main database

used in the Affective Behavior Analysis in-the-wild (ABAW) Competition [106], and a subsequent

workshop, that we organised in conjunction with IEEE International Conference on Face and Gesture

Recognition (FG) 2020.

In its dual problem, we exploited the multiple annotations of Aff-Wild2 so as to develop a novel multi-

task learning in-the-wild approach. We developed multi-task and multi-modal extensions of AffWild-

Net that provide affect recognition, by fusing the three behavior analysis tasks (MT-AffWildNet), or

also including the audio component (A/V-MT-AffWildNet), when annotations for all three tasks are

available – as in Aff-Wild2. We further proposed a novel holistic approach [107] for handling cases

with incomplete and missing annotations in the multi-task problem. Such cases include all other ex-

isting databases, which include annotation for only one or two of the tasks. We developed the holistic

(multi-task, multi-domain and multi-label) FaceBehaviorNet, in which the three studied tasks were

coupled by the developed co-annotation and distribution matching losses. We showed that FaceBe-

haviorNet has learned features that encapsulate all aspects of facial behaviour and can successfully

perform tasks, such as compound affect recognition, beyond the ones for which it has been trained, in

a zero- and few-shot learning setting.
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A third major contribution of our research refers to the final objective of synthesising facial affect,

either in terms of valence and arousal (which is performed for the first time), or in terms of the six

basic expressions. We generate either an image with a given affect, or a sequence of images with

evolving affect, in controlled, or in-the-wild environments. A novel approach is proposed, based on

annotation of a 4-D face database and utilisation of a 3-D morphable face model. We further used the

high-quality synthesized facial images for data augmentation in training of deep neural architectures,

over eight databases, annotated with either dimensional or categorical affect labels, achieving very

high performance and advancing the respective state-of-the-art.

Large experimental studies have been performed in the above developments, including comparison

with all respective state-of-the-art facial affect recognition and synthesis methods, over all existing

major relevant databases and illustrating the improvement obtained through the use of the approaches

developed in the Thesis.

As far as the ethical issues of affect analysis are concerned: i) the collection and generation of the Aff-

Wild and Aff-Wild2 databases has been conducted under the scrutiny and approval of the Imperial

College Ethical Committee (ICREC); additionally we have contacted the person who created the

videos -that we used- and asked for their approval to be used in this research; ii) while constructing

the two afore-mentioned databases in order to eliminate the bias in terms of ages, sexes and ethnicities,

we collected videos of subjects coming from all these categories, therefore the diversity of the inputs

and data points, makes the developed architectures and systems more fair and unbiased.

Chapter 2 presents the background and literature related to affect analysis and recognition. Chapter

3 presents the generation of Aff-Wild and Aff-Wild2, lists their attributes and compares them with

those of all existing major databases showing dimensional, or categorical affect, or facial action units.

Chapter 4 presents and analyses AffWildNet, its usage as a robust prior for dimensional and categori-

cal affect recognition in-the-wild, as well as the multi-component AffWildNet extensions and the use

of ArcFace Loss for training novel expression recognition networks. Chapter 5 focuses on multi-task

learning of DNNs for affect recognition in-the-wild, i.e., valence and arousal estimation, seven basic

expression classification and facial action unit detection. It presents multi-task extensions of AffWild-

Net, as well as development of the holistic FaceBehaviorNet that is able to successfully perform affect
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recognition on data with missing (task-specific) annotations. Chapter 6 presents a new approach for

synthesis of facial affect and for generation of faces that can be effectively used for affect analysis by

deep neural architectures. A summary of thesis achievements, conclusions and suggestions for further

work are provided in Chapter 7 of the Thesis.

1.4 Statement of Originality & Copyright Declaration

This thesis is entirely my own work, and, except where otherwise indicated, describes my own re-

search.

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are licensed

under a Creative Commons Attribution-Non Commercial 4.0 International Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format. You may

also create and distribute modified versions of the work. This is on the condition that: you credit the

author and do not use it, or any derivative works, for a commercial purpose. When reusing or sharing

this work, ensure you make the licence terms clear to others by naming the licence and linking to the
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Chapter 2

Background - Literature Review

2.1 Models of Affect

2.1.1 Categorical Affect

For the past twenty years research in automatic analysis of facial behaviour was mainly limited to

the recognition of the so-called six universal expressions (i.e., Anger, Disgust, Fear, Happy, Sad,

Surprise), plus the Neutral state, influenced by the seminal work of Ekman [61]. Ekman defined these

six basic emotions, shown in Figure 2.1, based on a cross-culture study [61], which indicated that

humans perceive certain basic emotions in the same way regardless of culture. However, recently,

advanced research on neuroscience and psychology argued that the model of six basic emotions are

culture-specific and not universal [92]. Additionally, the affect model based on basic emotions is

limited in the ability to represent the complexity and subtlety of our daily affective displays [140,178].

However, the categorical model that describes emotions in terms of discrete basic emotions is still

the most popular perspective for FER, due to its pioneering investigations along with the direct and

intuitive definition of facial expressions.

Besides ordinary facial expressions met in every day social communications, emotions can also man-

ifest themselves as micro-expressions (ME) under certain circumstances. A ME is defined as a very

brief, involuntary facial expression occurring in accordance with an experienced emotional state. Es-

11
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Figure 2.1: The six basic expressions

pecially in high-stake situations, humans are likely to display ME, despite their trying to conceal or

mask their true feelings, e.g., so as to gain an advantage or avoid some loss. In comparison to ordinary

facial expressions, a ME is very short (lasting 1
25 to 1

3 of a second, with the precise length varying in

literature). Furthermore, the intensities of related muscle movements can be extremely subtle. The

detection and interpretation of micro-expressions has been another area of current research.

Recently, research problems that focus on the recognition of spontaneous expressions including men-

tal states, have also attracted attention, such as the recognition of pain intensity [7] and compound

expressions [59].

2.1.2 Action Units

In this framework, detection of Facial Action Units has also attained much attention. The Facial Ac-

tion Coding System (FACS) [61] provides a standardised taxonomy of facial muscles’ movements and

has been widely adopted as a common standard towards systematically categorising physical manifes-

tation of complex facial expressions. Since any facial expression can be represented as a combination

of action units, they constitute a natural physiological basis for face analysis. The existence of such a

basis is a rare boon for a computer vision domain, as it allows focusing on the essential atoms of the

problem and, by virtue of their exponentially large possible combinations, opens the door for study-

ing a wide range of applications beyond prototypical emotion classification. Consequently, in the last

years, there has been a shift of the scientific community towards the detection of action units. The

expression of action units is typically brief and unconscious, and their detection requires analyzing

subtle appearance changes in the human face. Furthermore, action units do not appear in isolation,
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but as elemental units of facial expressions, and hence some AUs co-occur frequently while others

are mutually exclusive. Figure 2.2 shows the most common action units and the corresponding facial

action movement that defines them. A related problem that is recently gaining popularity relates to

the estimation of the intensity of a particular activated action unit.

Figure 2.2: Some facial Action Units
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2.1.3 Dimensional Affect

Finally, the dimensional model of affect, which is appropriate to represent not only extreme, but also

subtle emotions appearing in everyday human-computer interactions, has also attracted significant

attention over the last years. According to the dimensional approach [176] [214], affective behavior

is described by a number of latent continuous dimensions. The most commonly used dimensions

include valence (indicating how positive or negative an emotional state is) and arousal (measuring the

power of emotion activation). Valence and arousal relate readily to specific functions of regions of the

brain [90, 148, 198]; the parietal region of the right hemisphere appears to play a special role in the

mediation of arousal, whereas the frontal regions appear to play a special role in emotional valence.

A third dimension, tension, is also introduced but often excluded due to difficulties in consistently

identifying what the dimension describes: tension, control, or potency (dominance). Figure 2.3 shows

the 2D Valence-Arousal Space, introduced in [166], in which the horizontal axis is valence that ranges

from very positive to very negative and the vertical one is arousal that ranges from very active to very

passive.

2.2 Existing Datasets with Affect Annotation

Current research in automatic analysis of facial affect aims at developing systems, such as robots and

virtual humans, that will interact with humans in a naturalistic way under real-world settings. To

this end, such systems should automatically sense and interpret facial signals relevant to emotions,

appraisals and intentions. Moreover, since real-world settings entail uncontrolled conditions, where

subjects operate in a diversity of contexts and environments, systems that perform automatic analysis

of human behavior should be robust to video recording conditions, the diversity of contexts and the

timing of display. 1

For the past twenty years research in automatic analysis of facial behavior was mainly limited to

posed behavior which was captured in highly controlled recording conditions [135, 160, 197, 201].

1It is well known that the interpretation of a facial expression may depend on its dynamics, e.g. posed vs. spontaneous
expressions [229].
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Figure 2.3: The 2D Valence-Arousal Space
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Some representative datasets, which are still used in many recent works [94], are the Cohn-Kanade

database [135, 197], MMI database [160, 201], Multi-PIE database [78] and the BU-3D and BU-4D

databases [222, 223].

Nevertheless, it is now accepted by the community that facial expressions of naturalistic behaviors

can be radically different from the posed ones [34, 178, 229]. Hence, efforts have been made in order

to collect subjects displaying naturalistic behavior. Examples include the collected EmoPain [7] and

UNBC-McMaster [136] databases for analysis of pain, the RU-FACS database of subjects participat-

ing in a false opinion scenario [15] and the SEMAINE corpus [143] which contains recordings of

subjects interacting with a Sensitive Artificial Listener (SAL) in controlled conditions. All the above

databases have been captured in well-controlled recording conditions and mainly under a strictly de-

fined scenario eliciting pain.

However, with the development of large and diverse datasets in the field of computer vision (and

the accompanying performance gains), it has become apparent that the diversity of human partici-

pants and spontaneous expressions have to become the prerogatives in deployment of the affective

computing models in practice. Hence, it is now widely accepted, in both the computer vision and ma-

chine learning communities, that progress in a particular application domain is significantly catalysed

when a large number of datasets are collected in unconstrained conditions (also referred as "in-the-

wild" data). Therefore, facial analysis could not only focus on spontaneous behaviors, but also on

behaviours captured in unconstrained conditions.

Some datasets with in-the-wild settings have been recently collected to study: i) facial expression

analysis, such as the audiovisual AFEW [47], the static AffectNet [151] and the static RAF-DB [128];

ii) facial action units, such as the static EmotioNet [16]; and iii) continuous emotions of valence

and arousal in-the-wild, such as the audiovisual OMG-Emotion Dataset [12], the audiovisual SEWA

[172], the static AffectNet [151] and the static AFEW-VA [118]. Lets us note that the term ’static’

means that the dataset contains only (static) images, neither video nor audio.

Next, we describe some, either controlled, or in-the-wild, databases that exist in literature (and are

being utilised in our experiments in the next Sections) and are annotated in terms of either facial

expressions, or action units, or valence-arousal. The controlled databases are captured in highly and
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well controlled recording conditions, with good illumination, where subjects display posed affective

states under a strictly defined scenario in cluttered backgrounds; there exist no occlusions on the face

and not a big variety of head poses (mostly frontal ones exist). The in-the-wild databases are captured

under different illumination conditions in uncluttered backgrounds and contexts, in which people have

different head poses and there exist occlusions in the facial area.

The lack of in-the-wild databases and/or the fact that the existing ones are small in terms of size and

subjects and/or have not been annotated by many experts and/or contain noisy annotations led to the

creation of Aff-Wild and Aff-Wild2, as explained in the next Chapter.

2.2.1 Facial Expression Databases

1) BU-3DFE: The BU-3DFE database [223] is the first 3D facial expression database, which includes

2,500 expressive meshes from 100 subjects (56 females, 44 males) with age ranging from 18 to 70

years. The subjects are from various ethnic/racial ancestries. They recorded 6 articulated expressions

(happiness, disgust, fear, angry, surprise and sadness) with 4 intensities; also, there is a neutral 3D

scan per subject.

2) RaFD: The Radboud Faces Database [123] (RaFD) contains in total 5,880 portrait images of 49

models; 39 Caucasian Dutch adults and 10 Caucasian Dutch children. All models showed eight facial

expressions with three gaze directions. Photos were taken against a uniform white background from

five different camera angles simultaneously. Models wore black t-shirts, had no hair on the face and

wore no glasses, makeup or jewellery.

3) Face place: This database 4 contains photographs of many different individuals in various types

of disguises, such that, for each individual, there are multiple photographs in which hairstyle and/or

eyeglasses have been changed/added. It consists of 1,284 images of Asian, 937 images of African-

American, 3,362 images of Caucasian, 494 images of Hispanic and 497 images of multiracial people.

All images show posed expressions.

4Stimulus images courtesy of Michael J. Tarr, Center for the Neural Basis of Cognition and Department of Psychology,
Carnegie Mellon University, http://www.tarrlab.org/
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Table 2.1: Existing Databases annotated in terms of facial expressions, along with their properties;
’static’ means images, ’A/V’ means audiovisual sequences, i.e., videos; ’-’ indicates no value is
reported in the respective papers

DBs DB Type Model of Affect Condition DB Size # of Subjects Age Range

BU-3DFE [223] static
6 Basic, Neutral

+ 4 levels of intensity controlled 2,500
100

Male: 56
Female: 44

18-70

RaFD [123] static
6 Basic, Neutral

+ Contempt controlled 5,880
49

Male: 24
Female: 25

7-25

Face place2 static
6 Basic, Neutral

+ Confusion controlled 6,574
235

Male: 143
Female: 92

-

2D Face Sets3:
Pain

static
6 Basic, Neutral
+ 10 Pain Expr controlled 599

23
Male: 13

Female: 10
-

2D Face Sets:
Iranian static Neutral, Smile controlled 369

34
Male: 0

Female: 34
-

2D Face Sets:
Nottingham Scans static Neutral controlled 100

100
Male: 50

Female: 50
-

KF-ITW [19] static
Neutral, Happiness,

Surprise controlled 3,264 17 -

FEI [196] static Neutral, Smile controlled 2,800
200

Male: 100
Female: 100

19-40

MULTI-PIE [78] static
Neutral, Disgust, Smile

Surprise + Squint, Scream controlled 755,370
337

Male: 235
Female: 102

-

AFEW [51] A/V 6 Basic, Neutral in-the-wild
1809 videos

113,355 frames - -

FER2013 [76] static 6 Basic, Neutral in-the-wild 35,887 - -

RAF-DB [128] static
6 Basic, Neutral
+ 11 Compound in-the-wild

15,339
+ 3,954 - 0-70

AffectNet [151] static
6 Basic, Neutral

+ Contempt in-the-wild
291,651 manual,

400,000 automatic
annotations

- 0 to >50



2.2. Existing Datasets with Affect Annotation 19

4) 2D Face Sets: The 2D Face Sets 5 database consists of the below three different sets of images.

Iranian women: It consists of 369 color images (1200× 900) of 34 women. People display mostly

smile and neutral expression in each of five poses under controlled conditions.

Nottingham scans: It has 100 monochrome images (50 men, 50 women) in neutral and frontal pose,

under controlled settings. The image resolution varies from 358× 463 to 468× 536.

Pain expressions: It consists of 599 color images (720× 576) of 13 women and 10 men, under lab-

oratory recording conditions. They usually display two of the six basic emotions (anger, disgust,

fear, sad, happy, surprise) plus 10 pain expressions. Profile neutral and 45 degrees images are also

available.

5) Kinect Fusion ITW: The KF-ITW database [19] is the first Kinect 3D database captured under

relatively unconstrained conditions. This database consists of 17 different subjects performing some

expressions (neutral, happy, surprise) under various illumination conditions.

6) FEI: The FEI database [196] is a Brazilian face database that contains a set of face images taken in

controlled conditions. 200 individuals were recorded, and each one has 14 images, resulting in 2,800

images of resolution 640× 480. All images were color and taken against a white background in an

upright frontal position with profile rotation of up to 180◦. The subjects are mostly students and staff

at FEI,and between 19 and 40 years old with distinct appearance, hairstyle and adorns. The number

of male and female subjects are both 100.

7) Multi-PIE [78]: The CMU Multi-PIE face database contains 755, 370 images (3072× 2048) of

337 people recorded in up to four sessions under laboratory settings. Subjects were recorder under

15 view points and 19 illumination conditions while displaying a range of facial expressions. High

resolution frontal images were acquired as well.

8) AFEW: This database is a dynamic facial expressions corpus used in the series of EmotiW Chal-

lenges [47–53] that focus on audiovisual classification of each video clip into the 7 basic emotion

categories. It consists of 1,809 nearly real world scenes from movies and reality TV shows. There

are over 330 subjects aging from 1 to 77. The database is split into three sets: training (773 videos),
5http://pics.stir.ac.uk
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validation (383 videos) and test set (653 videos). It is a challenging database because both training

and validation sets are mainly from the movies, while 114 out of 653 test videos are from TV. Semi-

automatic annotations of neutral and 6 basic expressions are provided; the annotation is performed

per video and not per frame.

9) FER2013: The in-the-wild FER2013 [76] dataset was utilized in the Facial Expression Recogni-

tion Challenge and contains 28,709 training images, 3,589 validation images and 3,589 test images.

All images have resolution of 48× 48 and are greyscale. The images are annotated in terms of the six

basic expressions plus the neutral state. A curated version of FER2013, named FER+, was developed

in which some of the original images were relabeled, while other images, e.g. not containing faces,

were completely removed. The contempt class was added to the annotations of FER2013.

10) RAF-DB: The Real-world Affective Faces dataset [128] was prepared by collecting images from

various search engines and was annotated manually by 40 independent labelers. The dataset contains

15,339 images labeled with seven basic emotion categories of which 3068 are to be used for testing

and the rest 12,271 for training. It also contains 3,954 images annotated in terms of 11 coumpound

expressions.

11) AffectNet: The AffectNet [151] database contains 287,651 training images and 4,000 validation

images, which are manually annotated. The validation set contains 500 images for each of the 7 basic

expressions and another 500 for the contempt one. The test set is not publicly available. The database

also contains around 400,000 automatic annotations for the above expressions.

2.2.2 Action Unit Databases

1) CK+: The Extended Cohn-Kanade [135] (CK+) database is a laboratory-controlled one and con-

tains 593 video sequences from 123 participants. The sequences vary in duration from 10 to 60 frames

and show a shift from a neutral facial expression to the peak expression. Increases in AU intensity are

monotonic. Pose is frontal with relatively little head motion.

2) MMI: The MMI database [201] is a laboratory-controlled one and includes 1,280 video sequences

and over 250 images from 27 subjects. Many of the subjects wear accessories (e.g., glasses, mus-
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Table 2.2: Existing Databases annotated in terms of action units, along with their properties; ’static’
means images, ’dynamic’ means image sequences (video without audio), ’A/V’ means audiovisual
sequences, i.e., videos; ’-’ indicates no value is reported in the respective papers

DBs DB Type Model of Affect Condition DB Size # of Subjects Age Range

CK+ [135] static 30 action units controlled 593 sequences
123

Male: 38
Female: 85

18-50

MMI [201] static & A/V 12 action units controlled
1,280 videos

+ over 250 images

25
Male: 12

Female: 13
20-32

DISFA [142] dynamic 12 action units + intensities controlled
54 videos

261,630 frames

27
Male: 15

Female: 12
18-50

BP4DS [231] dynamic 27 action units + intensities controlled
1,640 videos

222,573 frames

41
Male: 23

Female: 18
18-29

BP4D+ [239] dynamic 34 action units + intensities controlled
5,463 videos

967,570 frames

140
Male: 58

Female: 82
18-66

EmotioNet [16] static 11 action units in-the-wild
50,000 manual,

950,000 automatic
annotations

- 0 to >40

tache). 205 video sequences are captured in frontal view. The sequences in MMI are onset-apex-

offset labeled, i.e., the sequence begins with a neutral expression and reaches peak near the middle

before returning to the neutral expression.

3) DISFA: The Denver Intensity of Spontaneous Facial Action [142] (DISFA) database is a lab con-

trolled database with spontaneous emotion expressions. It has been annotated for the presence, ab-

sence and intensity of 12 AUs: 1, 2, 4, 5, 6, 9, 12, 15, 17, 20, 25, 26. It consists of 27 subjects, each

recorded while watching a four minutes video clip by two cameras. It consists of 260K video frames

(130K frames from each camera).

4) BP4DS: The BP4D Spontaneous database [231] (in the rest of the paper we refer to it as BP4DS)

is a lab-controlled database with spontaneous expressionsa and is annotated for the occurence and

intensity of 27 AUs appearing in a diverse group of young adults. There are 21 subjects with 75.6K

images in the training, 20 subjects with 71.2K images in the development and 20 subjects with 75.7K

images in the test partition. These sets have been part of the corresponding sets of the FERA 2015

Challenge [203], in which only AUs 1,2,4,6,7,10,12,14,15,17,23 were used. From the participants,

11 were Asian, 6 were African-American, 4 were Hispanic, and 20 were Euro-American.

5) BP4D+: The BP4D+ database [235] is an extension of BP4DS described above by incorporating
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different modalities as well as more subjects (140). Ethnic/Racial Ancestries include Black, White,

Asian (including East-Asian and Middle-East-Asian), Hispanic/Latino, and others (e.g., Native Amer-

ican). BP4D+ is annotated for occurrence of 34 AUs and intensity for 5 of them. It has been used as

a part of the FERA 2017 Challenge [204]. Only AUs 1,4,6,7,10,12,14,15,17,23 have been used in the

Challenge.

5) EmotioNet: The Emotionet database [65] is a large-scale database with around 1M facial expres-

sion images collected from the Internet. It was released for the EmotioNet Challenge in 2017 [17] 6.

A total of 950K images were annotated by the model of [65], and the remaining 50K images were

manually annotated with 11 AUs, 1, 2, 4, 5, 6, 9, 12, 17, 20, 25, 26; around half of these constituted

the validation and the other half the test set of the Challenge.

2.2.3 Valence-Arousal Databases

1) MAHNOB-HCI: The MAHNOB-HCI [185] database is a lab-controlled multimodal database.

The peripheral physiological signals from 24 participants were recorded after eliciting their emotion

by 20 affective movies.

2) DEAP: The Database for Emotion Analysis using Physiological signals [101] (DEAP) is a lab

controlled database that contains the spontaneous bodily responses of 32 participants after inducing

their emotional states by watching selected music videos clips.

3) SEMAINE: The Sustained Emotionally coloured Machine-human Interaction using Nonverbal

Expression Dataset [143] (SEMAINE) presents richly annotated recordings of interactions in labora-

tory conditions between a human and a machine-like agent in three different Sensitive Active Listener

(SAL) scenarios. It features 150 participants, most of which come from Caucasian background. The

language of communication is predominantly English.

4) Belfast naturalistic: The Belfast Naturalistic Database contains 10 to 60 seconds–long audiovi-

sual videos taken from English television chat shows, current affairs programmes and interviews. It

features 125 subjects, of which 31 are male, and 94 are females.

6https://cbcsl.ece.ohio-state.edu/EmotionNetChallenge/index.html
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Table 2.3: Existing Databases annotated in terms of valence and arousal, along with their proper-
ties; ’static’ means images, ’dynamic’ means image sequences (video without audio), ’A/V’ means
audiovisual sequences, i.e., videos; ’-’ indicates no value is reported in the respective papers

DBs DB Type Model of Affect Condition DB Size # of Subjects

MAHNOB-HCI [185] A/V valence-arousal controlled 20 videos
27

Male: 11
Female: 16

DEAP [101] A/V valence-arousal controlled 40 videos 32
SAL [58] A/V valence-arousal controlled 24 videos 4

SEMAINE [143] A/V valence-arousal controlled 959 videos

150

Male: 57
Female: 93

Belfast naturalistic A/V valence-arousal controlled 298 videos
125

Male: 31
Female: 94

Belfast induced [183] A/V valence-arousal controlled 37 videos 37

RECOLA [173] A/V valence-arousal controlled
46 videos

345,000 frames
46

AFEW-VA [118] dynamic valence-arousal in-the-wild
600 videos

30,050 frames

240
Male: 120

Female: 120

AffectNet [151] static valence-arousal in-the-wild
325,000 manual,

460,300 automatic
annotations

-

SEWA [119] A/V valence-arousal in-the-wild 538 videos
<398

Male: <201
Female: <197

OMG-Emotion [12] A/V valence-arousal in-the-wild
495 videos

5,288 utterances
-
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5) Belfast Induced: To collect Belfast Induced Natural Emotion Database [183], English speaking

participants were asked to select set of tasks specifically designed to induce mild to moderately strong

emotionally coloured responses. Mean age of subjects is 24 years with 6 years of deviation. Contin-

uous values of valence and arousal were obtained for each clip by 6 to 258 raters using FeelTrace.

6) RECOLA: The REmote COLlaborative and Affective [173] (RECOLA) database contains natural

and spontaneous emotions in the continuous domain (arousal and valence). The corpus consists of 46

French speaking subjects being recorded for 9.5 h recordings in total. The recordings were annotated

for 5 minutes each by 6 French-speaking annotators (three male, three female). The dataset is divided

into three parts, namely, training (16 subjects), validation (15 subjects) and test (15 subjects), in such

a way that the gender, age and mother tongue are stratified (i.e., balanced).

7) AFEW-VA: A part of the AFEW database has been annotated -in September 2017- in terms of

Valence and Arousal, thus creating the in-the-wild AFEW-VA [118] database. It includes 600 video

clips selected from films with real-world conditions, i.e., occlusions, illumination and body move-

ments. The length of each video ranges from around 10 frames to over 120 frames. This database

consists of per-frame annotations of V-A. In total, more than 30,000 frames were annotated for di-

mensional affect prediction of V-A, using discrete values in the range of [−10,+10].

7) AffectNet: The AffectNet [151] database contains 320,500 training images and 4,500 validation

images, which are manually annotated. The test set is not publicly available. The database also

contains around 460,300 automatic annotations. This in-the-wild database was created -in August

2017- by querying emotion related keywords from three search engines. The manual annotations

were performed by 12 human labelers in total, but each image was annotated by one annotator.

7) SEWA: The SEWA [119] database consists of 538 short (10-30s) video-chat recording segments,

annotated in a semi-automatic way by 3 annotators. It contains in-the-wild audio-visual data of 398

people coming from six cultures, spanning the age range of 18 to 65 years. Subjects were recorded in

two different contexts: while watching adverts and while discussing adverts in a video chat.

7) OMG-Emotion: The One-Minute Gradual-Emotional Behavior [12] (OMG-Emotion) dataset con-

tains in-the-wild videos from Youtube where emotion expressions emerge and develop over time
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based on monologued scenarios. The dataset is split into training, validation and test sets. The train-

ing set consists of 231 videos composed of 2442 utterances, the validation set consists of 60 videos

composed of 617 utterances and the test set consists of 204 videos composed of 2229 utterances.

Each utterance has an average length of 8 seconds and each video has an average length of around 1

minute. Each utterance was given one specific valence and arousal value, based on the gold standard

of the five annotations. Valence annotations range in [−1, 1], whereas arousal ones range in [0, 1]

2.3 Existing Methodologies for Affect Recognition

In order to facilitate research on the three models of affect, many databases have been generated and

annotated, as discussed before, most of which are in well-controlled conditions. It has not been until

recently that the focus has turned into ”in-the-wild” data. In the beginning, data and annotations were

scarce, hence research relied on extracting highly engineered handcrafted features and designing ad-

hoc learning strategies [73,146,147,157,169]. Naturally, as the amount of data and annotations grew,

research has started to capitalise on data-intensive technologies, such as deep learning [26,28,98,130].

Regarding the pipeline of facial behavior analysis, the standard paradigm has been to: i) detect and/or

track the face in an image sequence, ii) detect and/or track facial landmarks, iii) extract handcrafted

features7, either around the landmarks, or on the face region as a whole, and iv) use the features and

the landmarks for classification/regression using affective labels. Recently this paradigm has shifted

from utilizing handcrafted features to utilizing features learned by deep Convolutional Neural Net-

works (CNNs) and/or Recurrent Neural Networks (RNNs). This shift was motivated by the striking

performance achieved when utilizing deep neural networks (DNNs) in a variety of emotion recogni-

tion tasks [56, 79, 154, 238].

In Facial Expression Recognition, there are mainly two roads of research. The one is pre-training

self-built networks from scratch by using auxiliary task-oriented data (so as to avoid overfitting when

relatively small facial expression datasets are used), or using well-known pre-trained models (e.g.,

VGG/VGG-FACE [161, 182], ResNet [82], DenseNet [89], ResNext [218], SE-ResNet [87]) and
7Examples of handcrafted features include Histogram of Oriented Gradients (HoGs), Scale Invariant Feature Trans-

form (SIFT), Local Binary Patterns (LBPs) and features from multiscale and multiorientation Gabor filterbanks
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fine-tuning them on FER datasets. In [95] and [96], it is indicated that the use of auxiliary data helps

to obtain models with high capacity without overfitting, consequently enhancing FER performance.

In [100], it is shown that pre-training on large face recognition data positively affects emotion recog-

nition accuracy and further fine-tuning with additional FER datasets boosts the performance even

more.

The second road of research involved the addition of well-designed auxiliary layers or blocks to

models (mainly CNN architectures) for enhancing the expression-related representation capability

of learned features. One such example is HoloNet [221]. In HoloNet’s middle layers, the authors

used a modified Concatenated Rectified Linear Unit (CReLU) -instead of the typical ReLU- which

they combined with residual block to maintain efficiency, increase network depth and obtain accuracy

gain. In upper layers, the authors developed a variant of inception-residual block that learned multi-

scale features so as to capture variations in expressions. Another example is the Supervised Scoring

Ensemble (SSE) model [88] that was introduced to enhance the supervision degree for FER. In SSE,

three types of supervised blocks were embedded in the early hidden layers of the mainstream CNN

for shallow, intermediate and deep supervision, respectively. To filter irrelevant features and empha-

size on correlated features according to learned feature maps of facial expression, a feature selection

network (FSN) [237] was used by embedding a feature selection mechanism inside the AlexNet.

When referring to dimensional affect recognition, one of the first deep learning architectures for va-

lence and arousal estimation was proposed in [98]. In this work, both frame-based CNN and CNN

plus RNN architectures were proposed and compared. The CNN consisted of 3 convolutional layers;

the first two layers were followed by max pooling layers and the third by a quadrant pooling layer. A

fully connected layer was then used, followed by the output layer. The CNN plus RNN architectures

consisted of the previously described CNN network (keeping its weights fixed) without the top regres-

sion layer, followed by a single RNN layer that gave the final estimates. This methodology achieved

very high valence and arousal correlations in a part of the RECOLA database [173].

The authors in [28] explored and fused different hand-crafted and deep learning features from all avail-

able modalities (acoustic, visual, textual). They also considered the interlocutor influence (a person’s

influence on the interacting partner’s behaviors) for the acoustic features. Specifically, the authors
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extracted: i) from the acoustic modality, hand-crafted features, such as MFCCs, loundness, F0, jitter,

shimmer and features learned from the SoundNet [9], ii) from the visual modality, features learned

from VGG-FACE [161] and DenseNet [89] that had been pre-trained on the FER+ [13] dataset, and

iii) from the textual modality, word vectors that were used as features. All those features were fused

and passed as input to a LSTM network that produced the estimates for valence, arousal and likability.

This approach was the winning of AVEC 2017 Challenge that utilized the SEWA database.

In summary, Table 2.4 provides a summary of the performance of the afore-mentioned methods for

valence & arousal estimation, in terms of the mean squared error (MSE), the Pearson correlation

coefficient (PCC) and the Concordance Correlation Coefficient (CCC). A higher CCC or PCC and a

lower MSE value indicate a better performance.

Table 2.4: State-of-the-art methods for valence-arousal estimation and their performance

Work Databases Used Methods Results

[98]
part of RECOLA

as used in the AVEC Challenge
CNN-RNN visual only:

(conv + max-pool) x2 + conv + quadrant-pool + RNN

Valence:
RMSE = 0.107
PCC = 0.554
CCC = 0.507

[28] SEWA

(1) audio: handcrafted + SoundNet features
(2) visual: VGG-FACE + DenseNet features

(3) text: word vectors - features
fusion of (1), (2), (3) + LSTM

Valence - Arousal:
RMSE = 0.081 - 0.086
PCC = 0.758 - 0.702
CCC = 0.756 - 0.672



Chapter 3

Aff-Wild Databases

3.1 The Aff-Wild Database

Back in 2017, there existed some databases for dimensional emotion recognition. However, they were

captured in laboratory settings and not in-the-wild (i.e., not in uncontrolled conditions). This urged

us to create the benchmark Aff-Wild database and organize the Aff-Wild Challenge that utilised this

database.

To tackle the aforementioned limitation, we collected the first, to the best of our knowledge, large

scale captured in-the-wild database and annotated it in terms of valence and arousal. To do so, we

capitalized on the abundance of data available in video-sharing websites, such as YouTube [224]1

and selected videos that display the affective behavior of people, for example videos that display the

behaviour of people when watching a trailer, a movie, a disturbing clip, or reactions to pranks.

To this end we have collected 298 videos displaying reactions of 200 subjects, with a total video

duration of more than 30 hours. This database has been annotated by 8 lay experts with regards

to two continuous emotion dimensions, i.e. valence and arousal. We then organised the Aff-Wild

Challenge based on the Aff-Wild database [226] [105], in conjunction with International Conference

1The collection has been conducted under the scrutiny and approval of the Imperial College Ethical Committee
(ICREC). The majority of the chosen videos were under Creative Commons License (CCL). For those videos that were
not under CCL, we have contacted the person who created them and asked for their approval to be used in this research.

28
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on Computer Vision & Pattern Recognition (CVPR) 2017.

3.1.1 Limitations of Databases & Contributions of Aff-Wild

Currently, four databases exist, are widely used and are annotated in terms of valence and arousal:

RECOLA, AFEW-VA, AffectNet and OMG-Emotion. Table 3.1 summarizes their limitations:

• the main limitations of the RECOLA dataset include the tightly controlled laboratory environ-

ment, as well as the small number of subjects (46). It should be noted that it contains a moderate

total number of frames.

• the main limitations of AFEW-VA include its small size (in terms of total number of frames),

the small number of annotators (only 2), the heavily imbalanced set in which mostly all anno-

tations are in the second quadrant of the 2D VA Space (where valence is negative and arousal

is positive), the fact that it contains only videoframes but no audio at all and finally the use of

discrete values for valence and arousal. It should be noted that the 2D VA Space (Figure 2.3)

is a continuous space. Therefore, using discrete only values for valence and arousal provides a

rather coarse approximation of the behavior of persons in their everyday interactions. On the

other hand, using continuous values can provide improved modelling of the expressiveness and

richness of emotional states met in everyday human behaviors.

• the main limitations of AffectNet include its very imbalanced training set, the very small total

number of images in the validation set (only 4,500 images), the small number of annotators

(each image was annotated by one annotator) and finally the fact that it contains only static

images (neither videoframes nor audio). The test set of this database is not released. It should

be noted that it contains a moderate total number of frames.

• the main limitations of OMG-Emotion include the fact that the set consists of videos split into

utterances, with their number being rather small (5,288) and that only one annotated valence-

arousal value is given to each utterance and not to each frame (each utterance consists of a big

number of frames; the annotation is per utterance and not per frame) and finally the annotated

values of arousal are in the range [0,1].
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Table 3.1 also provides the advantages of Aff-Wild over the previously described databases. When

Aff-Wild was developed, it was the first time that a large in-the-wild database - with a big variety

of: (1) emotional states, (2) rapid emotional changes, (3) ethnicities, (4) head poses, (5) illumination

conditions and (6) occlusions - has been generated and used for affect recognition. Furthermore, Aff-

Wild was the largest existing dimensionally annotated database consisting of 1,224,100 total number

of frames. Aff-Wild is an audiovisual database (meaning that it contains both videoframes and audio).

The annotation of Aff-Wild was performed by a large number of experts (8 lay experts), was done

per-frame and the annotated values were continuous and ranged in [-1,1] for both valence and arousal.

It should be mentioned that the total number of subjects in Aff-Wild is moderate (298).

Table 3.1: Current databases annotated in terms of valence and arousal, their disadvantages-
limitations and comparison to Aff-Wild

Database Year of Publication Comments

RECOLA 2013

- laboratory environment
- moderate total amount of frames (345,000);

120,000 frames in training set, 112,500 frames in validation
& 112,500 frames in test set

- small number of subjects (46)

AFEW-VA 09/2017

- very small total number of frames (30,050)
- discrete valence and arousal values

- heavily imbalanced set,
with most annotations in the second quadrant of 2D VA Space

- small number of annotators (2)
- contains only video frames and no audio

AffectNet 08/2017

- moderate total number of manual annotations (325,000)
- very imbalanced training set

- contains only static images, neither video frames nor audio
- test set is not released

- very small total number of images in the validation set (4,500)
- small number of annotators

(each image was annotated by one annotator)

OMG-Emotion 2018
- one annotated value was given to each utterance and not to each frame

- small number of utterances (5,288)
- arousal ranges in [0,1] and thus no negative values exist

Aff-Wild 07/2017

+ the first in-the-wild database annotated for valence-arousal
+ the largest in-the-wild database (1,224,100 frames)

+ audio-visual database
+ annotation per frame

+ every frame was annotated by 8 experts
+ continuous valence-arousal values in [-1,1]

- moderate number of subjects (298)
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3.1.2 Collected Database and its Properties

We created a database consisting of 298 videos, with a total length of more than 30 hours. The

aim was to collect spontaneous facial behaviors in arbitrary recording conditions. To this end, the

videos were collected using the Youtube video sharing web-site. The main keyword that was used

to retrieve the videos was "reaction". The database displays subjects reacting to a variety of stimuli,

e.g. viewing an unexpected plot twist of a movie or series, a trailer of a highly anticipated movie,

or tasting something hot or disgusting. The subjects display both positive or negative emotions (or

combinations of them). In other cases, subjects display emotions while performing an activity (e.g.,

riding a rolling coaster). In some videos, subjects react on a practical joke, or on positive surprises

(e.g., a gift). The videos contain subjects from different genders and ethnicities with high variations

in head pose and lightning.

Most of the videos are in YUV 4:2:0 format, with some of them being in AVI format. Eight subjects

have annotated the videos following a methodology similar to the one proposed in [37], in terms of

valence and arousal. An online annotation procedure was used, according to which annotators were

watching each video and provided their annotations through a joystick. Valence and arousal range

continuously in [−1, +1]. All subjects present in each video have been annotated. The total number

of subjects is 200, with 130 of them being male and 70 of them female. Table 3.2 shows the general

attributes of the Aff-Wild database. Figure 3.1 shows some frames from the Aff-Wild database,

with people from different ethnicities displaying various emotions, with different head poses and

illumination conditions, as well as occlusions in the facial area.

Table 3.2: Attributes of the Aff-Wild Database

Attribute Description
Length of videos 0.10− 14.47 min

Video format AVI , MP4
Average Image Resolution (AIR) 607× 359

Standard deviation of AIR 85× 11
Median Image Resolution 640× 360

Figure 3.2 shows an example of annotated valence and arousal values over a part of a video in the

Aff-Wild, together with corresponding frames. This illustrates the in-the-wild nature of our database,
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Figure 3.1: Frames from the Aff-Wild database which show subjects in different emotional states, of
different ethnicities, in a variety of head poses, illumination conditions and occlusions.
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Figure 3.2: Valence and arousal annotations over a part of a video, along with corresponding frames;
illustrating (i) the in-the-wild nature of Aff-Wild (different emotional states, rapid emotional changes,
occlusions) and (ii) the use of continuous values for valence and arousal

namely, including many different emotional states, rapid emotional changes and occlusions in the

facial areas. Figure 3.2 also shows the use of continuous values for valence and arousal annotation,

which gives the ability to effectively model all these different phenomena. Figure 3.3 provides a

histogram for the annotated values for valence and arousal in the generated database.

3.1.3 Partition Sets and Distributions

The Aff-Wild database was split into a training and a test set. The partitioning was performed in a

subject independent manner, in the sense that a person/subject can appear either in the training set

or in the testing set and not on both of them. As a consequence, the resulting training and test sets
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Figure 3.3: Histogram of valence and arousal annotations of the Aff-Wild database.

consist of 252 and 46 videos. Table 3.3 summarizes the specific attributes (numbers of males, females,

videos, frames) of the training and test sets of Aff-Wild.

Table 3.3: Attributes of Training and Test sets of Aff-Wild.

Set
no of
males

no of
females

no of
videos

total no of
frames

Training 106 48 252 1, 008, 650
Test 24 22 46 215, 450

3.1.4 Data Pre-processing and Annotation

The Aff-Wild database has been made public to the research community; Aff-Wild’s videos and

annotations along with face bounding boxes and landmarks are freely distributed. In this section we

describe the pre-processing process of the Aff-Wild videos so as to perform face and facial landmark

detection. Then we present the annotation procedure including:

(1) Creation of the annotation tool.

(2) Generation of guidelines for six experts to follow in order to perform the annotation.

(3) Post-processing annotation: the six annotators watched all videos again, checked their anno-

tations and performed any corrections; two new annotators watched all videos and selected

2-4 annotations that best described each video; final annotations are the mean of the selected

annotations by these two new annotators.

The detected faces and facial landmarks, as well as the generated annotations are publicly available

with the Aff-Wild database.
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Finally, we present a statistical analysis of the annotations created for each video, illustrating the

consistency of annotations achieved by using the above procedure.

Aff-Wild video pre-processing

VirtualDub [126] was used first so as to trim the raw YouTube videos, mainly at their beginning and

end-points, in order to remove useless content (e.g., advertisements). Then, we extracted a total of

1,224,100 video frames using the Menpo software [2]. In each frame, we detected the faces and

generated corresponding bounding boxes, using the method described in [141]. Next, we extracted

facial landmarks in all frames using the best performing method as indicated in [33].

During this process, we removed frames in which the bounding box or landmark detection failed.

Failures occurred when either the bounding boxes, or landmarks, were wrongly detected, or were

not detected at all. The former case was semi-automatically discovered by: (i) detecting significant

shifts in the bounding box and landmark positions between consecutive frames and (ii) having the

annotators verify the wrong detection in the frames.

Annotation tool

For data annotation, we developed our own application that builds on other existing ones, like Feel-

trace [37] and Gtrace [38]. A time-continuous annotation is performed for each affective dimension,

with the annotation process being as follows:

(a) the user logs in to the application using an identifier (e.g. his/her name) and selects an appro-

priate joystick;

(b) a scrolling list of all videos appears and the user selects a video to annotate;

(c) a screen appears that shows the selected video and a slider of valence or arousal values ranging

in [−1, 1];

(d) the user annotates the video by moving the joystick either up or down;
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(e) finally, a file is created including the annotation values and the corresponding time instances

that the annotations are generated.

It should be mentioned that the time instances generated in the above step (e), did not generally match

the video frame rate. To tackle this problem, we modified/re-sampled the annotation time instances

using nearest neighbor interpolation.

Figure 3.4 shows the graphical interface of our tool when annotating valence (the interface for arousal

is similar); this corresponds to step (c) of the above described annotation process.

Figure 3.4: The GUI of the annotation tool when annotating valence (the GUI for
arousal is exactly the same).

It should also be added that the annotation tool has also the ability to show the inserted valence and

arousal annotation while displaying a respective video. This is used for annotation verification in a

post-processing step.
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Annotation guidelines

Six experts were chosen to perform the annotation task (including the author of this thesis). Each

annotator was instructed orally and through a multi-page document on the procedure to follow for

the task. This document included a list of some well identified emotional cues for both arousal and

valence, providing a common basis for the annotation task. On top of that the experts used their own

appraisal of the subject’s emotional state for creating the annotations.2 Before starting the annotation

of each video, the experts watched the whole video so as to know what to expect regarding the

emotions being displayed in the video.

Annotation Post-processing

A post-processing annotation verification step was also performed. Every expert-annotator watched

all videos for a second time in order to verify that the recorded annotations were in accordance with the

shown emotions in the videos or change the annotations accordingly. In this way, a further validation

of annotations was achieved.

After the annotations have been validated by the annotators, a final annotation selection step followed.

Two new experts watched all videos and, for every video, selected the annotations (between two and

four) which best described the displayed emotions. The mean of these selected annotations constitute

the final Aff-Wild labels.

This step is significant for obtaining highly correlated annotations, as shown by the statistical analysis

presented next.

Statistical Analysis of Annotations

In the following we provide a quantitative and rich statistical analysis of the achieved Aff-Wild label-

ing. At first, for each video, and independently for valence and arousal, we computed:

2All annotators were computer scientists who were working on face analysis problems and all had a working under-
standing of facial expressions.
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Figure 3.5: The four selected annotations in a video segment for (a) valence and (b) arousal. In both
cases, the value of MAC-S (mean of average correlations between these four annotations) is 0.70.
This value is similar to the mean MAC-S obtained over all Aff-Wild.

(i) the inter-annotator correlations, i.e., the correlations of each one of the six annotators with all

other annotators, which resulted in five correlation values per annotator;

(ii) for each annotator, his/her average inter-annotator correlations, resulting in one value per an-

notator; the mean of those six average inter-annotator correlations value is denoted next as

MAC-A;

(iii) the average inter-annotator correlations, across only the selected annotators, as described in

the previous subsection, resulting in one value per selected annotator; the mean of those 2-4

average inter-selected-annotator correlations values is denoted next as MAC-S.
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Figure 3.6: The cumulative distribution of MAC-S (mean of average inter-selected-annotator correla-
tions) and MAC-A (mean of average inter-annotator correlations) values over all Aff-Wild videos for
valence (Figure 3.6a) and arousal (Figure 3.6b). The Figure shows the percentage of videos with a
MAC-S/MAC-A value greater or equal to the values shown in the horizontal axis. The mean MAC-S
value, corresponding to a value of 0.5 in the vertical axis, is 0.71 for valence and 0.70 for arousal.

We then computed over all videos and independently for valence and arousal, the mean of MAC-A

and the mean of MAC-S computed in (ii) and (iii) above. The mean MAC-A is 0.47 for valence and

0.46 for arousal, whilst the mean MAC-S for valence is 0.71 and for arousal 0.70. An example set of

annotations is shown in Figure 3.5, in an effort to further clarify the obtained MAC-S values. It shows

the four selected annotations in a video segment for valence and arousal, respectively, with MAC-S

value of 0.70 (similar to the mean MAC-S value obtained over all Aff-Wild).

In addition, Figure 3.6 shows the cumulative distribution of MAC-S and MAC-A values over all Aff-

Wild videos for valence (Figure 3.6a) and arousal (Figure 3.6b). In each case, two curves are shown.
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Figure 3.7: The cumulative distribution of the correlation between landmarks and the average of (i)
all or (ii) selected annotations over all Aff-Wild videos for valence (Figure 3.7a) and arousal (Figure
3.7b). The Figure shows the percentage of videos with a correlation value greater or equal to the
values shown in the horizontal axis.

Every point (x, y) on these curves has a y value showing the percentage of videos with a (i) MAC-

S (red curve) or (ii) MAC-A (blue curve) value greater or equal to x; the latter denotes an average

correlation in [0, 1]. It can be observed that the mean MAC-S value, corresponding to a value of 0.5

in the vertical axis, is 0.71 for valence and 0.70 for arousal. These plots also illustrate that the MAC-S

values are much higher than the corresponding MAC-A values in both valence and arousal annotation,

verifying the effectiveness of the annotation post-processing procedure.

Next, we conducted similar experiments for the valence/ arousal average annotations and the facial

landmarks in each video, in order to evaluate the correlation of annotations to landmarks. To this end,
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we utilized Canonical Correlation Analysis (CCA) [81]. In particular, for each video and indepen-

dently for valence and arousal, we computed the correlation between landmarks and the average of

(i) all or (ii) selected annotations.

Figure 3.7 shows the cumulative distribution of these correlations over all Aff-Wild videos for valence

(Figure 3.7a) and arousal (Figure 3.7b), similarly to Figure 3.6. Results of this analysis verify that the

annotator-landmark correlation is much higher in the case of selected annotations than in the case of

all annotations.

3.2 The Aff-Wild2 database

Up to the present, there was no database that contains annotations for all main behavior tasks (valence-

arousal estimation, action unit detection, expression classification). Most of the existing databases

contain annotations for only one task (AffectNet is the exception, that contains annotations for two

tasks). Also the existing corpora have a number of other limitations; just to name a few: the not in-the-

wild nature, the total number of annotations that is small (making it impossible to train deep neural

networks and generalise to other databases), the automatic or semi-automatic annotation (which is

error prone and makes the annotations noisy), or the small number of expert annotators (making the

annotations biased).

These urged and led us to create the Aff-Wild2 database; the first and only database annotated in terms

of valence and arousal (VA), action units (AUs) and expressions (Exprs). Aff-Wild2 is a significant

extension of Aff-Wild, augmenting it with 260 more YouTube videos, which had a total duration of 13

hours and 5 minutes. In total, Aff-Wild2 consists of 558 videos of 58 subjects, with around 2,800,000

frames, showing both subtle and extreme human behaviours in real-world settings. Let us mention

that we additionally organised the Affective Behavior Analysis in-the-wild (ABAW) Competition that

utilised the Aff-Wild2 database, in conjunction with IEEE International Conference on Automatic

Face and Gesture Recognition (FG) 2020.

Aff-Wild2 [111, 113, 116] is described next. At first we present the existing databases’ limitations

and compare them with Aff-Wild2. Then, we present the new collected dataset and its properties, the
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Table 3.4: Current databases used for affect recognition, their disadvantages-limitations and compar-
ison to Aff-Wild2

Database Comments

AFEW

- only seven basic expressions annotation
- heavily imbalanced classes

- small total number of frames (113,355)
- semi-automatic annotation

- small number of annotators (3)
- one annotated value was given to the whole video and not to each frame

FER2013

- only seven basic expressions annotation
- annotations are noisy/have mistakes

- very small total number of images (35,887)
- contains only static images
- heavily imbalanced classes

RAF-DB

- only seven basic and 11 compound expressions annotation
- very small total number of images (15,339)

- validation set does not exist (only training and test set)
- contains only static images
- heavily imbalanced classes

AffectNet

- only 7 basic expressions plus contempt & valence-arousal annotations
- moderate total number of manually annotated images

- very imbalanced training set
- contains only static images, neither video frames nor audio

- test set is not released
- very small total number of images in the validation set (4,500)

- small number of annotators (each image was annotated by one annotator)

Aff-Wild
- only valence-arousal annotations

- moderate number of subjects (298)

DISFA

- only action unit annotations
- controlled conditions

- small number of subjects (27)
- dynamic video sequences, no audio exists
- small total number of frames (130,815)

BP4DS

- only action unit annotations
- controlled conditions

- small number of subjects (41)
- dynamic video sequences, no audio exists

- moderate total number of frames (222,573)

BP4D+

- only action unit annotations
- controlled conditions

- small number of subjects (140)
- dynamic video sequences, no audio exists

EmotioNet

- action unit annotations and 7 basic and 11 compound expressions
- very small number of action unit manually annotated images (50,000)

- very small number of expression annotated images (3,000)
- very imbalanced expression categories (around 1,500 of the 3,000 images are happy)

- no manually annotated training set (only validation and test sets)
- contains only static images, neither dynamic video sequences nor audio

Aff-Wild2

+ first that contains annotations for: valence-arousal, expressions, action units
+ first action unit annotated with audio
+ first A/V in-the-wild for action units

+ first A/V in-the-wild for expressions with per frame annotation
+ largest in-the-wild database for valence-arousal

+ largest in-the-wild for expressions
+ largest in-the-wild for action units with manual annotations

+ contains only manual annotations
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generated partition sets, their distributions and the annotation procedure.

3.2.1 Limitations of Databases & Contributions of Aff-Wild2

Table 3.4 shows the existing databases along with their limitations. The limitations of the AFEW

dataset include its restriction to only seven expression categories, which are heavily imbalanced (the

fear, disgust and surprise classes include a small number of samples), its small size (in terms of total

number of frames which is 113,355), its annotations that are semi-automatic (with a small number

of annotators, just 3) and also are per video and not per videoframe. The limitations of FER2013

include its restriction to only seven expression categories, which are heavily imbalanced, its small

size (the database contains only 35,887 static images) and its annotations that are noisy (meaning that

they contain mistakes). The limitations of RAF-DB include its restriction to only seven and eleven

compound expression categories, all of which are heavily imbalanced, its very small size (it contains

only 15,339 static images) and finally the fact that it does not contain a validation set (it contains only

training and test sets).

The limitations of DISFA include its restriction to action unit annotations, its controlled environment,

its small number of subjects (only 27) and its small total number of frames (130,815 videoframes;

no audio exists). The limitations of BP4DS include its restriction to action unit annotations, its con-

trolled environment, its small number of subjects (only 41) and its moderate total number of frames

(222,573 videoframes; no audio exists). The limitations of BP4D+ include its restriction to action

unit annotations, its controlled environment, its small number of subjects (140) and the fact that it

contains dynamic video sequences and no audio. The limitations of EmotioNet include its restriction

to action unit and basic and compound expression annotations, its very small number of manually an-

notated, with action units, static images (only 50,000), its very small number of basic and compound

expression annotated images (only 3,000 static images; it doesn’t contain video and/or audio), which

are heavily imbalanced (around 1,500 image are annotated with the happy expression) and finally its

not manually annotated training set (only the validation and test sets are).

All these urged and led us to create the Aff-Wild2 database; the first and only database annotated
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Figure 3.8: Frames of Aff-Wild2, showing subjects of different ethnicities, age groups, emotional
states, head poses, illumination conditions and occlusions

in terms of valence and arousal (VA), action units (AUs) and expressions (Exprs). Aff-Wild2 is a

significant extension of Aff-Wild, augmenting it with more videos and annotations. Additionally Aff-

Wild2 is: i) the first action unit annotated database with audio, ii) the first A/V in-the-wild database

annotated with action units, iii) the first A/V in-the-wild database annotated with expressions with per

frame annotation, iv) the largest in-the-wild database for valence-arousal, v) the largest in-the-wild

database for expressions, vi) the largest in-the-wild database for action units with manual annota-

tions, vii) contains only manual annotations. The above contributions of Aff-Wild2 (over the existing

databases) are summarized in Table 3.4.

3.2.2 Collected Database and Properties

We extend the Aff-Wild database [109, 226], by collecting a new dataset consisting of 260 YouTube

videos, with 1,413,000 frames and a total length of 13 hours and 5 minutes. The videos have been

collected using the Youtube video sharing website. All of the collected videos are in MP4 format,

with a frame rate of 30, provided under the CC licence. Keywords for retrieving the videos were

selected from the 2D VA Space, shown in Figure 2.3.

The new videos have wide range in subjects’: age (from babies to elderly people); ethnicity (cau-

casian/hispanic/latino/asian/black/african american); profession (e.g. actors, athletes, politicians,

journalists); head pose; illumination conditions; occlussions; emotions. Figure 3.8 shows frames

from these new videos, verifying the above described ranges. These videos show subjects who: re-

act on a surprise, on something that brings them happiness or fulfillment, on flirting or rejection, on

important political issues, on funny or mean tweets; are stand-up comedians; give a really interesting
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speech in ceremonies; are taking an oral exam; are giving lectures on depression, or other serious

disorders; are performing passive, boring, apathetic, intense activities, etc.

Figure 3.9: Valence and arousal annotations over a part of a video, along with corresponding frames,
illustrating the in-the-wild nature of Aff-Wild2 (different emotional states, rapid emotional changes,
occlusions)

Four experts annotated the new dataset in terms of valence and arousal, as in the case of Aff-Wild.

Figure 3.9 shows an example of annotated valence and arousal values over a part of a video in the

additional data, together with some corresponding frames. This illustrates the in-the-wild nature of the

database, namely, including many different emotional states, rapid emotional changes and occlusions

in the facial areas.

We then concatenated the Aff-Wild database with the new dataset, forming Aff-Wild2. In total,

Aff-Wild2 consists of 558 videos with 2,786,201 frames, showing both subtle and extreme human

behaviours in real-world settings. The total number of subjects is 458; 279 of which are males and

179 females.

Two more tasks were implemented, in which we annotated parts of Aff-Wild2 with AUs and Exprs.

In the first, three very experienced annotators annotated 63 videos, with 398,835 frames and a total

length of 3 hours and 41 mins, in terms of AUs 1,2,4,6,12,15,20,25 - described in Figure 3.10. These

videos contain 32 male and 31 female subjects. In the second, seven experts annotated 539 videos

consisting of 2,595,572 frames, with a total length of 25 hours and 45 mins, in terms of the 7 basic
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expressions. The videos show 431 subjects, 265 of which are male and 166 female.

Consequently, Aff-Wild2 contains 3 datasets (VA, AU, Expr); each contains annotations for a respec-

tive behavior task. Table 3.6 summarizes the attributes and properties of the three annotated sets of

Aff-Wild2. Table 3.5 shows some images with their corresponding VA, AU and Expr annotations.

Table 3.5: Images with their corresponding VA, AU and Expr annotations

Annotation Images

Valence -0.69 -0.54 0.38 -0.30
Arousal 0.92 0.52 0.35 0.51

AU 1 x
AU 2
AU 4 x x
AU 6 x

AU 12 x
AU 15 x
AU 20
AU 25 x x

Expression Fear Sadness Happiness -

Figure 3.10: The AUs annotated in Aff-Wild2, along with their corresponding facial actions

3.2.3 Partition Sets and Distributions

Each set (VA, AU, Expr) is split into three subsets: training, validation and test. Partitioning is done

in a subject independent manner, in the sense that a person can appear only in one of those three
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Table 3.6: General Attributes of Aff-Wild2; in the VA set, top row refers to the new dataset, while
bottom row refers to Aff-Wild

Aff-Wild2 # frames # videos # annotators Video Length Mean Resolution

VA set
1, 413, 000
1, 373, 201

260
298

4
8

0.03− 26.22 mins
0.10− 14.47 mins

1450× 900
607× 359

AU set 398, 835 63 3 0.03− 26.22 mins 1500× 900
Expr set 2, 595, 572 539 7 0.03− 26.22 mins 1000× 700

subsets. In the VA set, the resulting training, validation and test subsets consist of 349, 68 and 131

videos respectively. In the AU set, the respective subsets consist of 42, 7 and 14 videos respectively.

In the Expr set, the corresponding subsets consist of 250, 69 and 220 videos respectively.

Figure 3.11 shows the 2D VA histogram of Aff-Wild2. Figure 3.12 shows the distribution of the seven

emotion categories in Aff-Wild2. Table 3.7 shows the distribution of the activated AUs.

Figure 3.11: 2D Valence-Arousal Histogram of Aff-Wild2

Table 3.7: Distribution of AU annotations in Aff-Wild2

Action Unit # Total Number of Activated AUs Percentages of AUs
AU 1 86,677 43.9%
AU 2 4,166 2.1%
AU 4 56,327 28.5%
AU 6 25,226 12.8%

AU 12 35,675 18.1%
AU 15 3,340 1.7%
AU 20 5,695 2.9%
AU 25 9,048 4.6%



3.2. The Aff-Wild2 database 47

Figure 3.12: Histogram of the seven basic expressions in Aff-Wild2

3.2.4 Annotation

Four experts (including the author of this thesis) annotated Aff-Wild2 with respect to valence and

arousal, using the method proposed in [37]. The annotators watched each video and provided their

(frame-by-frame) annotations through a joystick. A time-continuous annotation was generated for

each affective dimension. Valence and arousal values range continuously in [-1,1]. The final label

values were the mean of those four annotations. The mean inter-annotation correlation is 0.63 for

valence and 0.60 for arousal. An example set of annotations is shown in Figure 3.13. It shows

the four annotations in a video segment for valence, with mean inter-annotation correlation of 0.64

(similar to the 0.63 mean inter-annotation correlation obtained over all Aff-Wild2).

Three experts performed the annotation of Aff-Wild2 for the occurrence of eight action units in a

frame-by-frame basis; a platform-tool was developed in order to split each video into frames and let

the experts annotate each videoframe. The annotation platform-tool is shown on Figure 3.14 and

enabled the experts to annotate each Action Unit independently and frame-by-frame for each video.

The agreement between the annotators has not always been 100%. Therefore, we decided to keep the

annotations, on which all three experts agreed.

Seven experts performed the annotation of Aff-Wild2 for the seven basic expressions in a frame-
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Figure 3.13: All four valence annotations in a video segment. The value of MAIC (mean of average
inter annotation correlation) is 0.64 which is similar to the mean MAIC obtained over all additional
data.

by-frame basis; a platform-tool (similar to the one used for annotating the eight action units) was

developed in order to split each video into frames and let the experts annotate each videoframe.

Let us mention that in this platform-tool, an expert could score a videoframe as having either one

of the seven basic expressions or none (since there are affective states other than the seven basic

expressions). Due to subjectivity of annotators and wide ranging levels of images’ difficulty, there

were some disagreements among annotators. We decided to keep only the annotations on which at

least five (out of seven) experts agreed.
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Figure 3.14: The GUI for the Action Unit annotation software. The GUI for the basic expression
software was exactly the same; their difference being the titles in the annotation tabs



Chapter 4

Dimensional Affect Analysis in-the-wild

In the past, most of the traditional methods used handcrafted features or shallow learning (e.g., Local

Binary Patterns (LBP) [180], LBP on Three Orthogonal Planes (LBP-TOP) [236], Histogram of Ori-

ented Gradients (HoGs) [39], Scale Invariant Feature Transform (SIFT) [187], Multi-scale and Multi-

orientation Gabor Filterbanks [132], Non-Negative Matrix Factorization (NMF) [240] and Sparse

Learning [241]) for affect analysis and recognition.

However, since 2013, relatively sufficient datasets from real-world settings and scenarios have been

collected and used in emotion recognition challenges such as Facial Expression Recognition (FER,

2013) [76] and Emotion Recognition in the Wild (EmotiW) [47–53]; as a consequence, FER was

transitioned from lab-controlled to in-the-wild settings.

In the meanwhile, studies in various fields have shifted from utilizing handcrafted features to utilizing

deep learning methods, such as features learned by Convolutional Neural Networks and/or Recurrent

Neural Networks. This shift was motivated by the striking performance achieved when utilizing these

in a variety of computer vision, speech and natural language processing tasks. Likewise, the avail-

ability of large amounts of data for facial expressions, increased the use of deep learning techniques

for affect recognition in-the-wild.

50
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4.1 Related Work

4.1.1 Baseline Model on Aff-Wild

In 2017, we organised the First Affect-in-the-wild Challenge, using the Aff-Wild database, for dimen-

sional affect recognition. The baseline architecture for the challenge was based on the CNN-M [27]

network, as a simple model that could be used to initiate the procedure. In particular, this architec-

ture included the convolutional and pooling parts of CNN-M, having been trained on the FaceValue

dataset [3]. On top of that we added a 4096-fully connected layer and a 2-fully connected layer that

provided the valence and arousal predictions.

The exact structure of the network is shown in Table 4.1. In total, it consists of 5 convolutional,

batch normalization and pooling layers and 2 fully connected (FC) ones. For each convolutional layer

the parameters are the filter and the stride, in the form of (filter height, filter width, input channels

, output channels/feature maps) and (1, stride height, stride width , 1), respectively, and for the max

pooling layer the parameters are the ksize and stride, in the form of (pooling height, pooling width,

input channels, output channels) and (1, stride height, stride width , 1), respectively. We follow

the TensorFlow’s platform notation for the values of all those parameters. Note that the activation

function in the convolutional and batch normalization layers is the ReLU one; this is also the case in

the first FC layer. The activation function of the second FC layer, which is the output layer, is a linear

one.

Table 4.1: Baseline architecture based on CNN-M, showing the values of the parameters of the con-
volutional and pooling layers and the number of hidden units in the fully connected layers. We follow
the TensorFlow’s platform notation for the values of all those parameters.

Layer filter ksize stride padding no of units
conv 1 [7, 7, 3, 96] [1, 2, 2, 1] ’VALID’

batch norm
max pooling [1, 3, 3, 1] [1, 2, 2, 1] ’VALID’

conv 2 [5, 5, 96, 256] [1, 2, 2, 1] ’SAME’
batch norm

max pooling [1, 3, 3, 1] [1, 2, 2, 1] ’SAME’
conv 3 [3, 3, 256, 512] [1, 1, 1, 1] ’SAME’

batch norm
conv 4 [3, 3, 512, 512] [1, 1, 1, 1] ’SAME’

batch norm
conv 5 [3, 3, 512, 512] [1, 1, 1, 1] ’SAME’

batch norm
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ’SAME’

fully connected 1 4096
fully connected 2 2
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4.1.2 Dimensional Affect Recognition Algorithms on Aff-Wild

The three networks that were top-rated in the First Affect-in-the-wild challenge are briefly reported

below, while Table 4.2 compares the acquired results (in terms of CCC and MSE) by these methods

and by the baseline network. As one can see, FATAUVA-Net [26] provided the best results in terms

of the mean CCC and mean MSE for valence and arousal.

Table 4.2: Concordance Correlation Coefficient (CCC) and Mean Squared Error (MSE) of valence &
arousal predictions provided by the methods of the three participating teams and the baseline archi-
tecture. A higher CCC and a lower MSE value indicate a better performance.

Methods CCC
Valence Arousal Mean Value

MM-Net 0.196 0.214 0.205
FATAUVA-Net 0.396 0.282 0.339

DRC-Net 0.042 0.291 0.167
Baseline 0.150 0.100 0.125

Methods MSE
Valence Arousal Mean Value

MM-Net 0.134 0.088 0.111
FATAUVA-Net 0.123 0.095 0.109

DRC-Net 0.161 0.094 0.128
Baseline 0.130 0.140 0.135

In the MM-Net method [127], a variation of a deep convolutional residual neural network (ResNet)

[82] was first used for affective level estimation of facial expressions. Then, multiple memory net-

works were used to model temporal relations between the video frames. Finally, ensemble models

were used to combine the predictions of the multiple memory networks, showing that the latter steps

improved the initially obtained performance, as far as MSE was concerned, by more than 10%.

In the FATAUVA-Net method [26], a deep learning framework was presented, in which a core layer,

an attribute layer, an action unit (AU) layer and a valence-arousal layer were sequentially trained. The

core layer was a series of convolutional layers, followed by the attribute layer which extracted facial

features. These layers were applied for learning of AUs. Finally, AUs were employed as mid-level

representations to estimate the intensity of valence and arousal.

In the DRC-Net method [138], three neural network-based methods which were based on Inception-

ResNet [190] modules, redesigned specifically for the task of facial affect estimation, were pre-
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sented and compared. These methods were: Shallow Inception-ResNet, Deep Inception-ResNet, and

Inception-ResNet with Long Short Term Memory [84]. Facial features were extracted in different

scales and both, the valence and arousal, were simultaneously estimated in each frame. Best results

were obtained by the Deep Inception-ResNet method.

4.1.3 Transfer Learning & Domain Adaptation

Conventional machine learning methodologies assume that the training and test data are taken from

the same domain, such that the input feature space and data distribution characteristics are the same.

Under this assumption, transfer learning [192] has been the main approach to train Deep Neural Net-

works with small amounts of annotated data. Transfer learning uses networks previously trained with

large datasets (even of generic patterns) and fine-tunes the whole, or parts of them, using the small

training datasets. However, this is not the case in many real-world machine learning scenarios. Due

to many factors (e.g., illumination, pose, and image quality), there is always a distribution change or

domain shift between two domains that can degrade the performance of the methodologies. Addition-

ally, collecting and annotating datasets for every new task and domain are extremely expensive and

time-consuming processes, so that sufficient training data are not always available.

Fortunately, the big data era makes a large amount of data available in other domains and tasks. Mim-

icking the human vision system, domain adaptation [207] utilises labeled data in one or more relevant

source domains to execute new tasks in a target domain. Deep domain adaptation has emerged as a

new learning technique to address the lack of massive amounts of labeled data. Compared to tradi-

tional methods that learn shared feature subspaces, or reuse important source instances with shallow

representations, deep domain adaptation methods leverage deep networks to learn more transferable

representations, by embedding domain adaptation in the pipeline of deep learning.

We can draw from real-world non-technical experiences to understand why domain adaptation is

possible. Consider an example of two people who want to learn to play the piano. One person has

no previous experience playing music, and the other person has extensive music knowledge through

playing the guitar. The person with an extensive music background will be able to learn the piano in
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a more efficient manner by transferring previously learned music knowledge to the task of learning to

play the piano. One person is able to take information from a previously learned task and use it in a

beneficial way to learn a related task.

4.1.4 The OMG-Emotion Challenge

The OMG-Emotion Challenge was organised in conjunction with WCCI/IJCNN in 2018, based on

the the One-Minute Gradual-Emotional Behavior dataset, targeting single, or multimodal dimensional

affect (in terms of valence and arousal) recognition. Some relevant approaches are listed below.

The authors of [163] developed the VNet and ANet models. VNet is a SphereFace [133] network,

followed by a BLSTM, followed by a temporal pooling and the output layer. ANet is a VGG16

network with average pooling and accepts as input STFT maps extracted from the audio. In their

fusion, the features extracted from VNet’s temporal pooling and ANet’s average pooling layers, were

concatenated and passed to the output layer.

The authors of [199] developed two models. In the first model, denoted as openSMILE + LSTMs,

features extracted from audio using openSMILE [64] were passed through six 2-layer LSTMs, each

predicting valence, arousal or both; the final prediction was their average. In the second model,

denoted as VGG-FACE-BLSTM, the visual modality was used; frames from the utterances were

passed through a fixed and pre-trained VGG-FACE followed by a 2-layer BLSTM that gave the final

valence prediction.

The authors of [239] developed both single and ensemble networks, consisting of three models. In

the first model, denoted as Single Multi-Modal, acoustic features were extracted using openSmile;

visual features were extracted from a fixed and pre-trained VGG16 followed by 1-layer LSTM with

attention mechanism; visual and acoustic features were passed into an SVM that performed the final

predictions. The second model was similar to the first and extracted similar visual and acoustic

features, but it also extracted acoustic features from SoundNet. All these features were passed to an

SVM that performed the predictions. The late fusion of the two afore-mentioned models, is denoted

as Ensemble I; the final predictions were a weighted sum of the models’ predictions. The third model
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was an end-to-end trained VGG16 followed by 1-layer LSTM with attention mechanism that takes

as input only visual data. The late fusion of the three developed models, is denoted as Ensemble II;

again the final predictions were a weighted sum of the models’ predictions.

4.2 The AffWildNet for Dimensional Affect Recognition

By utilising the Aff-Wild database, we built a novel network that could capture the dynamics and

the in-the-wild nature of the database. In the following, we present the developed AffWildNet and

evaluate its performance in a large variety of contexts.

At first, AffWildNet is a CNN-RNN network. The CNN part is based on the VGG-Face or ResNet-50

network’s convolutional and pooling layers. Low- and middle-level facial features are common and

important in both face recognition and facial affect recognition. Therefore we used the VGG-Face

network that has been pre-trained with a large dataset for face recognition and therefore many human

faces have been used in its construction.

This CNN part is followed by a single FC layer. The inputs of this layer are: a) the outputs of the

last pooling layer of the CNN part; b) the facial landmarks, which are directly passed as inputs to

this FC layer. As a consequence, this layer has the role to map its two types of inputs to the same

feature space, before forwarding them to the RNN part. The facial landmarks, which are provided

as additional input to the network, in this way, contribute to boosting the performance of our model.

Feeding the landmarks to the network in this way has been a new development for dimensional affect

analysis. The output of the fully connected layer is then passed to the RNN part.

The RNN is used in order to model the contextual information in the data, taking into account temporal

variations. The RNN is composed of 2-layers, with GRU units in each layer; the first layer processes

the FC layer outputs; the second layer is followed by the output layer that gives the final estimates for

valence and arousal. GRU units have been chosen instead of LSTM ones as they are less complex,

more efficient and as shown in the experimental evaluation provided the best results.

Table 4.3 shows the configuration of the AffWildNet, including the respective number of units for the
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Figure 4.1: The AffWildNet: it consists of convolutional and pooling layers of either VGG-Face or
ResNet-50 structures (denoted as CNN), followed by a fully connected layer (denoted as FC1) and
two RNN layers with GRU units (V and A stand for valence and arousal respectively).

GRU and the fully connected layers. Additionally, Figure 4.1 illustrates AffWildNet.

Table 4.3: The AffWildNet architecture: the fully connected 1 layer has 4096, or 1500 hidden units,
depending on whether VGG-Face or ResNet-50 is used.

block 1
VGG-Face or ResNet-50

conv & pooling parts
block 2 fully connected 1 4096 or 1500

dropout
block 3 GRU layer 1 128

dropout
block 4 GRU layer 2 128
block 5 fully connected 2 2

Furthermore, defining the loss function used for network training was of great significance as well.

The selected loss function was based on the Concordance Correlation Coefficient (CCC) [124], as this

was the main evaluation criterion of the Aff-Wild database and Challenge; state-of-the-art research

works used to utilize the Mean Squared Error (MSE) as the loss function. CCC is widely used in

measuring the performance of dimensional emotion recognition methods, e.g., in the series of AVEC

challenges. CCC evaluates the agreement between two time series (e.g., all video annotations and

predictions) by scaling their correlation coefficient with their mean square difference. In this way,

predictions that are well correlated with the annotations but shifted in value are penalised in proportion
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to the deviation. CCC takes values in the range [−1, 1], where +1 indicates perfect concordance

and −1 denotes perfect discordance. The highest the value of the CCC the better the fit between

annotations and predictions, and therefore high values are desired. CCC is defined as follows:

ρc =
2sxy

s2
x + s2

y + (x̄− ȳ)2 =
2sxsyρxy

s2
x + s2

y + (x̄− ȳ)2 , (4.1)

where ρxy is the Pearson Correlation Coefficient (Pearson CC), sx and sy are the variances of all video

valence/arousal annotations and predicted values, respectively and sxy is the corresponding covariance

value.

Consequently, the defined loss function was:

Ltotal = 1− ρa + ρv

2
, (4.2)

where ρa and ρv is the CCC for arousal and valence, respectively.

Finally, as far as network training is concerned, AffWildNet has been trained as an end-to-end archi-

tecture, by jointly training its CNN and RNN parts; previous works used to either train separately the

CNN and the RNN parts, or use fixed pre-trained weights for the CNN and train only the RNN part.

4.2.1 Pre-Processing and Network Training Details

Data pre-processing consists of all processing steps that are required for starting the extraction of

meaningful features from the data. The usual steps are face detection, face alignment, image resizing

and image normalization. At first, we extracted a total of 1,224,100 video frames using the Menpo

software [2]. Then we generated face bounding boxes in all video frames. In order to do so, we

used the Deformable Part Model (DPM) detector ffld2 [141] that has proven to be highly efficient and

accurate for face detection in-the-wild.

For face alignment, we extracted facial landmarks and implemented the Generalized Procrustes Anal-

ysis [77]. Facial landmarks are defined as distinctive face locations, such as the corners of the eyes,
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centre of the bottom lip, or the tip of the nose. If they are aggregated in sufficient numbers, they

can effectively describe the face shape. In our implementations, we used the facial landmark detector

inside the dlib library [97] to locate 68 facial landmarks in all frames.

We used as reference and rigid points, 5 anchor points that corresponded to the location of the left

eye, right eye, nose and mouth in a prototypical frontal face. For every frame, we used its 5 facial

landmarks corresponding to the location of the same facial components; we performed Procrustes

transformation, which eliminates in-plane rotation, isotropic scaling and translation, on the coordi-

nates of these 5 landmarks and the coordinates of the 5 landmarks of the frontal face; we imposed this

transformation to the whole new frame to perform the alignment.

All cropped and aligned images were then resized to 96× 96× 3 pixel resolution and their intensity

values were normalized to the range [−1, 1]. The input to AffWildNet were the facial images resized

to resolution of 96× 96× 3 and the facial landmarks. We normalized the facial images’ pixel inten-

sities to the range [−1, 1]. In order to train the network, we utilized the Adam optimizer algorithm;

the batch size was set to 4 and the sequence length to 80; the initial learning rate was set to 0.0001

and was decaying exponentially after 10 epochs; the dropout probability value has been set to 0.5.

Training was performed on a single GeForce GTX TITAN X GPU and the training time was about

2-3 days. The platform used for this implementation was Tensorflow.

4.2.2 AffWildNet Performance Evaluation and Ablation Study

Next, we evaluated the performance of AffWildNet, also comparing it to the performance of other

CNN and standard CNN-RNN architectures.

For the CNN architectures, we considered the ResNet-50 and VGG-16 networks, pre-trained on the

ImageNet [44] dataset that has been broadly used for state-of-the-art object detection. We also con-

sidered the VGG-Face network, pre-trained for face recognition on the VGG-Face dataset [161].

The first architecture we utilized was the deep residual network (ResNet) of 50 layers [82], on top of

which we stacked a 2-layer fully connected (FC) network. For the first FC layer, best results have
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Figure 4.2: The CNN-only architecture for valence and arousal estimation, based on ResNet-50 struc-
ture and including two fully connected layers (V and A stand for valence and arousal respectively).
Each convolutional layer is in the format: filter height × filter width, number of input feature maps,
number of output feature maps.

been obtained when using 1500 units. For the second FC layer, 256 units provided the best results.

An output layer with two linear units followed providing the valence and arousal predictions.

Residual learning was adopted in these models by stacking multiple blocks of the form:

ok = B(xk, {Wk}) + h(xk), (4.3)

where xk, Wk and ok indicate the input, the weights, and the output of layer k, respectively, B indicates

the residual function that is learnt and h is the identity mapping between the residual function and the

input. The h identity mapping is a projection of xk to match the dimensions of B(xk, {Wk}) (done

by 1× 1 convolutions), as in [82].

The first layer of the ResNet-50 model is comprised of a 7× 7 convolutional layer with 64 feature

maps, followed by a max pooling layer of size 3× 3. Next, there are 4-bottleneck blocks, where a

shortcut connection is added after each block. Each of these blocks is comprised of 3 convolutional

layers of sizes 1× 1, 3× 3, and 1× 1 with different number of feature maps.

The architecture of the network is depicted in Figure 4.2. Each convolutional layer is in the format:

filter height × filter width, number of input feature maps, number of output feature maps.

The other architecture that we used was based on the convolutional and pooling layers of VGG-Face

or VGG-16 networks, on top of which we stacked a 2-layer FC network. For the first and second FC

layers, best results have been obtained when using 4096 units. An output layer followed, including

two linear units, providing the valence and arousal predictions.
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Table 4.4 shows the configuration of the CNN architecture based on VGG-Face or VGG-16. In total,

it is composed of thirteen convolutional and pooling layers and three fully connected ones. For all

those layers the form of the parameters is the same, as described above in the baseline architecture.

We follow the TensorFlow’s platform notation for the values of all those parameters. The output

number of units is also shown in the Table.

A linear activation function was used in the last FC layer, providing the final estimates. All units in

the remaining FC layers used the ReLU activation function. Dropout has been added after the first FC

layer, in order to avoid over-fitting. The architecture of the network is depicted in Figure 4.3.

Table 4.4: CNN architecture based on VGG-Face/VGG-16, showing the values of the parameters of
the convolutional and pooling layers and the number of hidden units in the fully connected layers. We
follow the TensorFlow’s platform notation for the values of all those parameters.

Layer filter ksize stride padding no of units
conv 1 [3, 3, 3, 64] [1, 1, 1, 1] ’SAME’
conv 2 [3, 3, 64, 64] [1, 1, 1, 1] ’SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ’SAME’
conv 3 [3, 3, 64, 128] [1, 1, 1, 1] ’SAME’
conv 4 [3, 3, 128, 128] [1, 1, 1, 1] ’SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ’SAME’
conv 5 [3, 3, 128, 256] [1, 1, 1, 1] ’SAME’
conv 6 [3, 3, 256, 256] [1, 1, 1, 1] ’SAME’
conv 7 [3, 3, 256, 256] [1, 1, 1, 1] ’SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ’SAME’
conv 8 [3, 3, 256, 512] [1, 1, 1, 1] ’SAME’
conv 9 [3, 3, 512, 512] [1, 1, 1, 1] ’SAME’

conv 10 [3, 3, 512, 512] [1, 1, 1, 1] ’SAME’
max pooling [1, 2, 2, 1] [1, 2, 2, 1] ’SAME’

conv 11 [3, 3, 512, 512] [1, 1, 1, 1] ’SAME’
conv 12 [3, 3, 512, 512] [1, 1, 1, 1] ’SAME’
conv 13 [3, 3, 512, 512] [1, 1, 1, 1] ’SAME’

max pooling [1, 2, 2, 1] [1, 2, 2, 1] ’SAME’
fully connected 1 4096

dropout
fully connected 2 4096
fully connected 3 2

In order to consider the contextual information in the data, we developed a CNN-RNN architecture,

in which the RNN part was fed with the outputs of either the first, or the second fully connected layer

of the respective CNN networks.

The structure of the RNN, which we examined, consisted of one or two hidden layers, with 100− 150

units, following the LSTM neuron model with peephole connections. Using one fully connected layer
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Figure 4.3: The CNN-only architecture for valence and arousal estimation, based on VGG-Face struc-
ture (V and A stand for valence and arousal respectively).

in the CNN part and two hidden layers in the RNN part has been found to provide the best results. An

output layer followed, including two linear units, providing the valence and arousal predictions.

Table 4.5 summarizes the CCC and MSE values obtained when applying all the above architectures,

to the Aff-Wild test set (Table 3.3 shows the total number of frames in the training and testing sets of

Aff-Wild). It shows the improvement in the CCC and MSE values obtained when using the AffWild-

Net compared to all other developed architectures. This improvement clearly indicates the ability of

the AffWildNet to better capture the dynamics in Aff-Wild. Table 4.5 also compares the performance

of AffWildNet to that of the FATAUVA-NET, which was the winner of the Aff-Wild Challenge. Af-

fWildNet outperformed this network, as well.

Table 4.5: CCC and MSE based evaluation of valence & arousal predictions provided by: 1) the CNN
architecture when using three different pre-trained networks for initialization (VGG-16, ResNet-50,
VGG-Face), 2) the winner of Aff-Wild Challenge, FATAUVA-NET and 3) the VGG-Face-LSTM and
AffWildNet architectures (2 RNN layers with 128 units each). A higher CCC and a lower MSE value
indicate a better performance.

CCC
Valence Arousal Mean Value

FATAUVA-Net 0.40 0.28 0.34
VGG-16 0.40 0.30 0.35

ResNet-50 0.43 0.30 0.37
VGG-Face 0.51 0.33 0.42

VGG-Face-LSTM 0.52 0.38 0.45
AffWildNet 0.57 0.43 0.50

Next, we performed an ablation study on the use of various numbers of hidden layers and hidden

units per layer when training and testing the AffWildNet. Some characteristic selections and their
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MSE
Valence Arousal Mean Value

FATAUVA-Net 0.12 0.10 0.11
VGG-16 0.13 0.11 0.12

ResNet-50 0.11 0.11 0.11
VGG-Face 0.10 0.08 0.09

VGG-Face-LSTM 0.10 0.09 0.10
AffWildNet 0.08 0.06 0.07

corresponding performances are shown in Table 4.6. It can be seen that the best results have been

obtained when the RNN part of the network consisted of 2 layers, each of 128 hidden units.

Table 4.6: Obtained CCC values for valence & arousal estimation, when changing the number of
hidden units & hidden layers in the VGG-Face-GRU architecture. A higher CCC value indicates a
better performance.

CCC 1 Hidden Layer 2 Hidden Layers
Hidden Units Valence Arousal Valence Arousal

100 0.44 0.36 0.50 0.41
128 0.53 0.40 0.57 0.43
150 0.46 0.39 0.51 0.41

Next, we performed an ablation study on the use of the 68 2-D landmarks as additional input to our

developed network. The results are summarized in Table 4.7, which shows that there is a notable

improvement in the performance, when we also used the 68 2-D landmark positions as input data.

Table 4.7: CCC and MSE based evaluation of valence & arousal predictions provided by the
AffWildNet when landmarks were or were not given as input to the network. A higher CCC and a
lower MSE value indicate a better performance.

AffWilldNet
With

Landmarks
Without

Landmarks
Valence Arousal Valence Arousal

CCC 0.57 0.43 0.50 0.41
MSE 0.08 0.06 0.10 0.09

In Figures 4.4(a) and 4.4(b), we qualitatively illustrate some of the obtained results by comparing a

segment of the obtained valence/arousal predictions to the ground truth values, in 10000 consecutive

frames of test data.

Moreover, in Figures 4.5(a) and 4.5(b), we illustrate, in the 2-D valence & arousal space, the his-

tograms of the ground truth labels of the test set and the corresponding predictions of AffWildNet.
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Figure 4.4: Predictions vs Labels for (a) valence and (b) arousal over a video segment of the Aff-Wild.

The results shown in Table 4.5 and in the above Figures verify the excellent performance of AffWild-

Net. They also show that it greatly outperformed all methods submitted to the Aff-Wild Challenge.

4.3 Robust Prior for Dimensional & Categorical Affect Analysis

In this Section, we focus on the use of domain adaptation in the context of both dimensional affect

recognition and FER. In the past, there did not exist a lot of FER databases and from the existing

ones there was no in-the-wild. Therefore, FER approaches that were using DNNs were pre-training
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(a) annotations (b) predictions

Figure 4.5: Histogram in the 2-D valence & arousal space of: (a) annotations and (b) predictions of
AffWildNet, on the test set of the Aff-Wild Challenge.

the networks on large but diverse and generic datasets, such as ImageNet [44]. In 2013, the first

in-the-wild FER database was developed (Facial Expression Recognition 2013, FER-2013) and FER

approaches started using this database. However FER2013 proved to contain noisy labels [13]. What

is more, FER2013 is a very small database, containing around 38, 000 samples and thus training of

deep networks on this database is prone to overfitting. To mitigate this problem, works exploited

the development of large-scale in-the-wild face recognition datasets, e.g., Celebrity Face in the Wild

(CFW) [232], FaceScrub dataset [155] and VGG-FACE [161]. It was shown in [100] that pre-training

on larger face recognition data positively affects the emotion recognition accuracy, and further fine-

tuning with additional FER datasets can help improve the performance of DNNs.

With the development of the first and largest in-the-wild database with dimensional emotion annota-

tion, i.e., Aff-Wild, and the corresponding development of AffWildNet, we were the first to perform

domain adaptation experiments from the in-the-wild dimensional affect recognition domain (using

AffWildNet trained on the dimensionally annotated Aff-Wild) to other, either in-the-wild or lab-

controlled, dimensional affect recognition domains (utilizing the RECOLA and AFEW-VA datasets).

Additionally, to the best of our knowledge, we were the first to perform domain adaptation experi-

ments from in-the-wild dimensional affect recognition domain (again using AffWildNet) to the cate-

gorical emotion recognition domain (utilizing the AFEW database as used in the EmotiW Challenge).

It is shown that the AffWildNet has been capable of generalising its knowledge to other emotion

recognition datasets and contexts. By learning complex and emotionally rich features of the AffWild,
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the AffWildNet constitutes a robust prior for both dimensional and categorical emotion recognition.

It is the first time that state-of-the-art performance has been achieved in this way.

4.3.1 AffWildNet as Prior for Valence and Arousal Prediction

Experimental Results on the RECOLA database

In this subsection, we fine-tuned AffWildNet on RECOLA and for comparison purposes, we also

trained on RECOLA an architecture comprising a ResNet-50 and a 2-layer GRU stacked on top

(let us call it ResNet-GRU network). Table 4.8 shows the results, according to CCC score, as our

minimization loss was depending on this metric. It is clear that the performance on both arousal and

valence of the fine-tuned AffWildNet model was much higher than the performance of the ResNet-

GRU model.

Table 4.8: CCC based evaluation of valence & arousal predictions provided by the fine-tuned Af-
fWildNet and the ResNet-GRU on the RECOLA test set. A higher CCC value indicates a better
performance.

CCC
Valence Arousal

Fine-tuned AffWildNet 0.526 0.273
ResNet-GRU 0.462 0.209

To further demonstrate the benefits of using AffWildNet to predict valence and arousal, we demon-

strate a histogram in the 2-D valence & arousal space of the annotations (Fig. 4.6(a)) and predictions

of the fine-tuned AffWildNet (Fig. 4.6(b)) for the whole test set of RECOLA.

Finally, we also illustrate in Figs. 4.7(a) and 4.7(b) the network prediction and ground truth for one

test video of RECOLA, for the valence and arousal dimensions, respectively.

Experimental Results on the AFEW-VA database

In this subsection, we focus on recognition of affect in the AFEW-VA database; these annotation

is somewhat different from the annotation of the Aff-Wild database. In particular, the labels of the
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(a)

(b)

Figure 4.6: Histogram in the 2-D valence & arousal space of (a) annotations and (b) predictions for
the test set of the RECOLA database.

AFEW-VA database are in the range [−10, +10], while the labels of the Aff-Wild database are in the

range [−1, +1]. To tackle this problem, we scaled the range of the AFEW-VA labels to [−1, +1].

Moreover, differences were observed, due to the fact that the labels of the AFEW-VA are discrete,

while the labels of the Aff-Wild are continuous. Figure 4.8(a) shows the discrete valence and arousal

values of the annotations in AFEW-VA database, whereas Figure 4.8(b) shows the corresponding

histogram in the 2-D valence & arousal space.

We then performed fine-tuning of the AffWildNet to the AFEW-VA database and tested the perfor-

mance of the generated network. Similarly to [118], we used a 5-fold person-independent cross-

validation strategy. Table 4.9 shows a comparison of the performance of the fine-tuned AffWildNet

with the best results reported in [118]. Those results are in terms of the Pearson CC. It can be easily

seen that the fine-tuned AffWildNet greatly outperformed the best method reported in [118].
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Figure 4.7: Fine-tuned AffWildNet’s Predictions vs Labels for (a) valence and (b) arousal for a single
test video of the RECOLA database.

For comparison purposes, we also trained a CNN network on the AFEW-VA database. This network’s

architecture was based on the convolution and pooling layers of VGG-Face followed by 2 fully con-

nected layers with 4096 and 2048 hidden units, respectively. As shown in Table 4.10, the performance

of the fine-tuned AffWildNet, in terms of CCC, greatly outperformed this network as well.

All these verify that AffWildNet can be used as a pre-trained network to yield excellent results across

different dimensional databases.
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(a) (b)

Figure 4.8: AFEW-VA database’s: (a) discrete values of annotations and (b) histogram of annotations
in the 2-D valence & arousal space.

Table 4.9: Pearson Correlation Coefficient (Pearson CC) based evaluation of valence & arousal pre-
dictions provided by the best architecture in [118] vs our AffWildNet fine-tuned on the AFEW-VA. A
higher Pearson CC value indicates a better performance.

Group Pearson CC
Valence Arousal

best of [118] 0.407 0.45
Fine-tuned AffWildNet 0.514 0.575

4.3.2 AffWildNet as Prior for Facial Expression Recognition

To further show the strength of AffWildNet, we used AffWildNet - which is trained for dimensional

emotion recognition task - in a very different problem, i.e., categorical in-the-wild emotion recogni-

tion, focusing on the EmotiW 2017 Grand Challenge. To tackle categorical emotion recognition, we

modified the AffWildNet’s output layer to include 7 neurons (one for each basic emotion category)

and performed fine-tuning on the AFEW 5.0 dataset.

In this study, we compared the fine-tuned AffWildNet’s performance with that of other state-of-the-

Table 4.10: CCC based evaluation of valence & arousal predictions provided by the CNN architecture
based on VGG-Face and the fine-tuned AffWildNet on the AFEW-VA training set. A higher CCC
value indicate a better performance.

CCC AFEW-VA
Valence Arousal

only CNN 0.44 0.474
Fine-tuned AffWildNet 0.515 0.556
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art CNN and CNN-RNN networks; the CNN part of which was based on the ResNet 50, VGG-16

and VGG-Face architectures, trained on the same AFEW 5.0 dataset. The accuracy achieved by

all networks on the validation set of the EmotiW 2017 Grand Challenge are shown in Table 4.11.

A higher accuracy value indicates better performance for the model. We can easily see that the

AffWildNet outperformed all those other networks in terms of total accuracy.

Table 4.11: Accuracies on the EmotiW validation set obtained by different CNN and CNN-RNN
architectures vs the fine-tuned AffWildNet. A higher accuracy value indicates better performance.

Architectures Accuracy
Neutral Anger Disgust Fear Happy Sad Surprise Total

VGG-16 0.327 0.424 0.102 0.093 0.476 0.138 0.133 0.263
VGG-16 + RNN 0.431 0.559 0.026 0.07 0.444 0.259 0.044 0.293

ResNet 0.31 0.153 0.077 0.023 0.534 0.207 0.067 0.211
ResNet + RNN 0.431 0.237 0.077 0.07 0.587 0.155 0.089 0.261

VGG-Face + RNN 0.552 0.593 0.026 0.047 0.794 0.259 0.111 0.384
fine-tuned AffWildNet 0.569 0.627 0.051 0.023 0.746 0.709 0.111 0.454

We should note that:

(i) the AffWildNet was trained to classify only video frames (and not audio) and then video clas-

sification based on frame aggregation was performed;

(ii) the cropped faces provided by the challenge were only used (and not our own detection and/or

normalization procedure);

(iii) no data-augmentation, post-processing of the results or ensemble methodology have been con-

ducted.

It should also be mentioned that the fine-tuned AffWildNet performance, in terms of total accuracy,

is:

(i) much higher than the baseline total accuracy of 0.3881 reported in [47]

(ii) better than all vanilla architectures’ performance that were reported by the three winning meth-

ods in the audio-video emotion recognition EmotiW 2017 Grand Challenge [88] [100] [205]
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Table 4.12: Overall accuracy of the best architectures of the three winning methods in the EmotiW
2017 Grand Challenge, reported on the validation set, vs that of fine-tuned AffWildNet. A higher
accuracy value indicates better performance.

Group Architecture Total Accuracy

Original
After

Fine-Tuning
on FER2013

Data
augmentation

[88]
DenseNet-121

HoloNet
ResNet-50

0.414
0.41

0.418
- -

[100]

VGG-Face
FR-Net-A
FR-Net-B
FR-Net-C

LSTM + FR-NET-B

0.379
0.337
0.334
0.376

-

0.483
0.446
0.488
0.452
0.465

-
-
-
-

0.504

[205]

Weighted C3D (no overlap)
LSTM C3D (no overlap)

VGG-Face
VGG-LSTM 1 layer

- -

0.421
0.432
0.414
0.486

Our Fine-tuned AffWildNet 0.454 - -

(iii) comparable and better in some cases than the rest of the results obtained by the three winning

methods [88] [100] [205]

The above are shown in Table 4.12. Those results verify that the AffWildNet was appropriately fine-

tuned and successfully used for dimensional, as well as for categorical emotion recognition.

4.4 Multi-Component Extensions of AffWildNet

Next we addressed the issue of estimating valence and arousal utilising the One-Minute-Gradual

Emotion Dataset (OMG-Emotion Dataset), focusing only on visual information. We present novel

extensions of the AffWildNet architecture that provided best performance in valence and arousal

estimation. It should be mentioned that the submissions we made to the OMG-Emotion Challenge

were ranked at second position for valence estimation [112, 115].

The first extension was to extract latent information from the trained AffWildNet and use them for

improving its performance in affect recognition. In general, features extracted from low CNN layers
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contain rich, complete and time varying information, whilst high-level features are highly specific

and characteristic of the specific problem studied. Taking this into account, we have developed and

used CNN plus Multi-RNN networks; these networks extract low-, mid- and high- level features from

different layers of the CNN and pass them as inputs to RNNs. The best performing networks were

split into two different types based on the adopted methodology: the first, referred as CNN-1RNN,

concatenates the extracted features from 3 CNN layers and passes them to a single RNN, whereas the

other, referred as CNN-3RNN, processes them independently through 3 RNN subnets.

Our work deviates from others, such as [28,43,130], that either: i) use standard CNN-RNN networks

in which the output of the CNN is passed to the RNN, or ii) apply ensemble methodologies, using

features extracted from many CNN networks (but not using features from multiple layers of the same

network) and fusing them.

Both facial images and landmarks (after applying a Procrustes Analysis) were provided as inputs to

these architectures. Additionally, ensemble formulations were also developed, using different levels

of fusion (Model- or Decision-level) in the proposed architectures; these formulations are shown to

further boost the obtained performance. In model-level fusion, our approach was to perform fusion

through an RNN instead of a typical fully connected layer.

Another contribution was the adaptation of AffWildNet to the OMG-Emotion dataset characteristics

and in particular to the dataset’s annotation at utterance level. To deal with this, we split each utterance

into sequences, which were individually processed by the above architectures. The mean or median

of the predicted valence-arousal values were computed per sequence. Then, the means/medians were

averaged at utterance level to provide the final valence and arousal estimates. This procedure deviates

from related works that uniformly (or randomly) sample a constant number of frames from each

utterance, assign to each of them the annotation value of the utterance and compute the prediction per

frame [43].

An additional contribution was the pre-training of the proposed architectures on the large-scale emo-

tionally rich Aff-Wild database and on its larger extension, the Aff-Wild2. Other works [163,199,239]

used networks that were not pre-trained on same task (i.e., valence-arousal estimation), but on other

tasks (face recognition, object detection). The pre-training on these specific databases provided our
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developed architectures with the ability to effectively capture the dynamics of the OMG-Emotion

in-the-wild dataset and thus provided a better performance.

Training of the CNN networks was performed as shown in Fig.4.12. In more detail, each CNN

was provided with an input sequence and was trained to predict, for each frame in the sequence,

the respective valence-arousal pair of values. The 68 facial landmarks (per each frame of the input

sequence) were also provided as additional inputs to the CNN networks. The final valence (arousal)

prediction was computed as the mean, or median (both approaches were considered) of the per-frame

valence (arousal) values in that sequence.

4.4.1 CNN-3RNN networks

The CNN-3RNN networks include the convolutional and pooling layers of VGG-FACE, followed by

a fully connected layer of 4096 units. The 68 facial landmarks were concatenated with the features

extracted from the last pooling layer of VGG-FACE and were passed to this fully connected layer.

Then, low-, mid- and high-level features were extracted and each one was processed by a 2-layer

GRU network that predicted the valence and arousal values. Each GRU layer comprised 128 units.

The CNN-3RNN networks were provided with an input sequence of frames (and the corresponding

landmarks of each frame), predicting, for each frame, the valence-arousal values; their mean, or

median constitute the final estimates.

Fig.4.9, presents an example of CNN-3RNN networks, named CNN-3RNN-2nd-pool_last-pool_fc.

In this network: i) the features extracted from the fully connected layer are passed as input to a RNN

network, denoted RNN1 in Fig.4.9; ii) the features extracted from the last pooling layer (before being

concatenated with the landmarks) are passed as input to a second RNN network, denoted RNN2 in

Fig.4.9; iii) the features extracted from the second pooling layer (following the fourth convolutional

layer) are passed as input to another RNN network, denoted RNN3 in Fig.4.9. Fig.4.10 depicts the

exact structure of the afore-mentioned RNNi, i ∈ {1, 2, 3}, networks. All networks have the same

structure; a 2-layer GRU network, with each layer having 128 units. Next, the outputs of the 3 RNNs

are concatenated and passed to the output layer that performs the valence-arousal prediction.
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Figure 4.9: The CNN-3RNN-2nd-pool_last-pool_fc. It provides a valence-arousal (V-A) estimate per
input sequence of consecutive frames. The ’68 landmarks’ are concatenated with the features of the
last ’pool’ layer and passed as input to the ’fc’ layer. This architecture provided the best results.

4.4.2 CNN-1RNN Networks

The CNN-1RNN types of networks consisted of the convolutional and pooling layers of VGG-FACE,

followed by a fully connected layer of 4096 units. The 68 facial landmarks were concatenated with the

features extracted from the last pooling layer of VGG-FACE and were passed to this fully connected

layer. Then, low-, mid- and high-level features were extracted, concatenated and passed to a 2-layer

GRU network that predicted the valence and arousal values. Each GRU layer comprised 128 units.

Similarly to the other architectures described above, the CNN-1RNN networks were provided with

an input sequence of frames (and the corresponding landmarks of each frame), predicting, for each

frame, the valence-arousal values; their mean, or median, were the final estimates.
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Figure 4.10: Structure of each RNN network in the CNN-3RNN architecture displayed in Fig. 4.9.

Fig.4.11 presents one example of CNN-1RNN networks, which we call CNN-1RNN-2nd-pool_last-

pool_fc. In this network, the features extracted from: i) the second pooling layer (following the 4th

convolutional), ii) the last pooling layer (following the 13th convolutional and before being concate-

nated with the landmarks) and iii) the fully connected layer, are concatenated and passed to the RNN.

4.4.3 Ensemble Methodology

In this Subsection we describe an ensemble approach which fuses the developed networks at: i)

Model-level and ii) Decision-level. Model-level fusion is based on concatenating the high level fea-

tures extracted by different networks, whilst Decision-level fusion is based on weighted averaging

the predictions provided by different networks. On the one hand side, Model-level fusion takes ad-

vantage of the mutual information in the data. On the other hand side, the averaging procedure in

Decision-level fusion reduces variance in the ensemble regressor (thus achieving higher robustness),

while preserving the relative importance of each individual model.

Model-level Fusion

Let us consider the CNN-1RNNs and CNN-3RNNs described in the previous Subsection. We con-

catenate the outputs of all the RNNs in the above networks and provide them, as input, either: i) to

another single RNN layer with 128 GRU units, or ii) to a fully connected layer with 128 units; the

output layer follows. We denote the resulting networks as Model-level Fusion + RNN and Model-

level Fusion + FC, respectively. Similarly to the previous Subsections, for each frame in the input

sequence of frames, this model-level fusion network predicts the valence-arousal values and then

computes their mean, or median, as final estimates.
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Figure 4.11: The CNN-1RNN-2nd-pool_last-pool_fc architecture. It provides a valence-arousal (V-
A) estimate per input sequence of consecutive frames. The ’68 landmarks’ are concatenated with the
features of the last ’pool’ layer and passed as input to the ’fc’ layer.

Decision-level Fusion

Let us consider again the CNN-1RNNs and CNN-3RNNs described above. The final valence (arousal)

estimate Odec.−level
v (Odec.−level

a ), is computed as a weighted average of the final valence (arousal)

estimates, on
v(on

a ), of these networks; each weight is proportional to the corresponding network per-

formance on the validation set:

Oi
dec.−level =

1

∑
n

tn
i

∑
n

tn
i · on

i , (4.4)
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where i ∈ {v, a} (v stands for valence, a stands for arousal), tn
i is equal to the Concordance Corre-

lation Coefficient (CCC), ρi, for valence or arousal, computed on the validation set, with n denoting

the CNN-1RNNs or CNN-3RNNs; the CCC has been the evaluation criterion of the OMG-Emotion

Challenge, taking values in [−1, 1] and is defined as follows :

ρi =
2si,xy

s2
i,x + s2

i,y + (x̄i − ȳi)2
, (4.5)

where i ∈ {v, a}, si,x and si,y are the variances of the valence/arousal labels and predicted values

respectively, x̄i and ȳi are the corresponding mean values and si,xy is the covariance value.

4.4.4 Experimental Study on the OMG-Challenge

In all developed CNN plus Multi-RNN architectures, dropout with 0.5 probability value was applied

to the fully connected layers that were on top of the convolutional and pooling layers of the CNN

networks (VGG-FACE, ResNet-50). Additionally, dropout with 0.8 probability value was applied

after the first GRU layer of the RNNs.

These networks were first pre-trained either on the Aff-Wild or the Aff-Wild2 database and then

trained on the OMG-Emotion training set.

For training these networks, we used a batch size of 4 and sequence length of 80 consecutive frames.

The training was end-to-end, with a learning rate of either 10−4 or 10−5. All networks were trained

using Tensorflow on a Quadro GV100 Volta GPU and the training time was about a day.

Since the evaluation criterion of the OMG-Emotion Challenge was the CCC, our loss function was

based on that criterion and was defined as:

Ltotal = 1− ρa + ρv

2
, (4.6)

where ρa and ρv are the CCC for the arousal and valence.
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Finally, for all developed architectures, a chain of post-processing steps was applied. These steps

included: i) median filtering of the - per frame - predictions within a sequence and ii) smoothing of

the - per utterance - predictions (especially to those that consisted of too few frames). Any of these

post-processing steps was kept when an improvement was observed on the CCC over the validation

set, and applied then, with the same configuration to the test partition.

In all conducted experiments, best results were obtained when the final estimates were the median

of the, per frame, valence and arousal estimates within a sequence. It should also be stated, that all

reported results refer to the test set. In our developments, we trained the DNNs with the training

set, evaluated them on the respective validation set and selected the best networks according to the

validation performance. There were no significant differences between training the DNN multiple

times and then averaging the predictions, or using a 10-fold cross validation (training on 8 folds,

testing on the remaining 2 and in the end averaging the predictions of the networks).

We examined to include a level of encoding for matching the size of landmarks with the size of the

CNN features before fusing them. We first passed the 68 landmarks to a fully connected layer of 512,

1024, or 2048 units and then fused this output with the features extracted from the CNN. However, we

did not notice any significant difference in performance, although the developed architectures were

more complex and bigger in terms of learnable parameters.

Evaluation of CNN plus Multi-RNN Extensions of AffWildNet

Figure 4.12: Standard CNN structures providing a single valence-arousal (V-A) estimate per input
sequence of consecutive frames. They can be any of the VGG-FACE, ResNet-50 and DenseNet-121
networks. The 68 landmarks are concatenated with the extracted features from the last pooling layer
of the CNN component and are passed to the fully connected layer that precedes the output layer.
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Comparison with standard Deep Neural Architectures First we compared the CNN plus Multi-

RNN architectures to three state-of-the-art CNN networks: VGG-Face, ResNet-50 and DenseNet-

121. These networks were pre-trained either on the Aff-Wild or the Aff-Wild2 database and then

trained on the OMG-Emotion training set. To design the structure of these networks, we took into

account the procedure used to annotate the OMG-Emotion dataset. According to this, each utterance

was labeled with a single pair of valence and arousal values. We split each utterance into smaller

parts-sequences, each consisting of the same number of consecutive frames. Then, we assigned to

each of those parts-sequences of frames, the label of the corresponding utterance.

Training of the CNN networks was performed as shown in Fig.4.12. In more detail, each CNN

was provided with an input sequence and was trained to predict, for each frame in the sequence,

the respective valence-arousal pair of values. The 68 facial landmarks (per each frame of the input

sequence) were also provided as additional inputs to the CNN networks. The final valence (arousal)

prediction was computed as the mean, or median (both approaches were considered) of the per-frame

valence (arousal) values in that sequence.

In Fig.4.12, the CNN structure can be any of the VGG-FACE, ResNet-50 and DenseNet-121 ones. In

the VGG-FACE CNN case, the landmarks were concatenated with the outputs of the last pooling layer

of the network and were given as input to the first fully connected layer, that consisted of 4096 units.

In this way, both outputs and landmarks were mapped to the same feature space, before performing

the prediction. In the ResNet-50 (and DenseNet-121) case, the landmarks were concatenated with the

averaged pooled features of the ResNet-50 (DenseNet-121) network and were given as input to a fully

connected layer consisting of 1500 units. This layer was followed by the output layer which provided

the final estimates for valence-arousal pair.

Then we compared the CNN plus Multi-RNN architectures to standard CNN plus RNN architectures,

so as to take into account the contextual information in the data and more specifically the temporal

dependencies of facial expressions in each utterance. In these architectures, the output of the CNN’s

last pooling layer is being fed to a fully connected layer, whose output constitutes the input of the RNN

layers. These architectures were pre-trained on either the Aff-Wild, or the Aff-Wild2 databases. We

then used two different strategies for training these architectures: i) keeping the CNN weights fixed
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and training the remaining architecture (i.e., the fully connected layers and the RNNs), or ii) training

the whole architecture in an end-to-end manner (by jointly training the CNN and RNN parts). The

latter approach provided the best results.

We also used a DenseNet-RNN structure that is quite similar to that of the AffWildNet described

before. The only difference was that it uses the DenseNet-121 network’s convolutional and pooling

layers.

Table 4.13 shows the performance of the developed CNN, standard CNN plus RNN, CNN plus Multi-

RNN and ensemble architectures, pre-trained on the Aff-Wild2 database, with and without the post-

processing steps (for all networks: p-value 6 10−20 � 0.05). VGG-FACE achieved the best perfor-

mance compared to the ResNet-50 and DesNet-121 networks. This was expected as the VGG-FACE

network has been pre-trained with a large dataset for face recognition (many human faces have been,

therefore, used in its construction), thus better filters are already established in comparison to the

ResNet-50 and DesNet-121 that have been pre-trained on objects. Additionally, after further pre-

training on Aff-Wild2, a better tuning of these filters was attained in the VGG-FACE case.

Additionally, AffWildNet and DenseNet-RNN networks achieved a better performance than all CNN

networks. The former networks were standard CNN plus RNNs in which the RNN is used in order to

model the contextual information in the data, taking into account temporal variations and thus a better

performance was expected.

One can also note that both CNN-1RNN-2nd-pool_last-pool_fc and CNN-3RNN-2nd-pool_last-pool_fc

exhibit a much improved performance (between 6% and 10% on average) when compared to CNN

plus RNN architectures. This validates our essence that low-level CNN features together with high-

level ones provide useful information for our task. Additionally, CNN-3RNN-2nd-pool_last-pool_fc

outperformed CNN-1RNN-2nd-pool_last-pool_fc showing that it is better to exploit the low- and

high-level features’ time variations via RNNs, independently, and then concatenate them, rather than

concatenate them first and process them through the use of a single RNN.

Table 4.13 validates that using the ensemble methodology is better than using a single network. This

is because different networks produce quite different features; fusing them exploits all these repre-
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Table 4.13: CCC based evaluation, on the OMG test set, of valence & arousal predictions provided
by our developed CNN, CNN plus RNN, CNN plus Multi-RNN and ensemble architectures. All
networks are pre-trained on Aff-Wild2 with (without) post-processing. A higher CCC value indicates
a better performance.

CCC
With (Without)
Post-Processing

Mean

Valence Arousal
VGG-Face 0.378 (0.361) 0.203 (0.193) 0.291 (0.277)

DenseNet-121 0.365 (0.350) 0.191 (0.184) 0.278 (0.267)
ResNet-50 0.359 (0.344) 0.195 (0.189) 0.277 (0.267)
AffWildNet 0.409 (0.390) 0.224 (0.219) 0.317 (0.305)

DenseNet-RNN 0.394 (0.378) 0.211 (0.209) 0.303 (0.294)
CNN-1RNN-2nd-pool_last-pool_fc 0.449 (0.441) 0.303 (0.297) 0.376 (0.369)

CNN-3RNN-2nd-pool_last-pool_fc 0.472 (0.463) 0.329 (0.322) 0.401 (0.393)
Decision-Level Fusion 0.501 (0.482) 0.332 (0.321) 0.417 (0.402)

Model-Level Fusion + FC 0.518 (0.500) 0.348 (0.328) 0.433 (0.414)
Model-Level Fusion + RNN 0.535 (0.512) 0.365 (0.340) 0.450 (0.426)

sentations that include rich information. It can also be observed that Model-level fusion method has

a superior performance compared to that of the Decision-level one, since the features from different

networks that are concatenated, contain richer information about the raw data than the final decision.

In particular, in Model-level fusion, we concatenate these features and pass them through an RNN

and the whole ensemble is trained end-to-end and optimised so that the concatenation of features can

provide the best overall result. Moreover, in Model-level fusion, a better performance is achieved

when a RNN, instead of a fully connected layer, is used for the fusion.

One can also notice that the post-processing steps helped to achieve a better performance, mainly in

valence estimation. The median filter size that we used was 81 for valence (similar to the sequence

length), whereas only 3 for the arousal. The arousal window size was small, but, when it was in-

creased, the performance decreased. This in essence means that for the frames within an utterance,

the emotional state itself did not change, but the intensity did change. Our final observation is that

the performance of the networks in arousal estimation was worse than their performance in valence

estimation. This was expected because we only used the visual modality for training our networks;

for arousal the audio cues appear to include more discriminating capabilities than facial features in

terms of correlation coefficient; this conclusion confirms previous findings [156].
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Comparison with the State-of-the-Art Here we compare the performance of our best CNN plus

Multi-RNN networks to the performances of state-of-the-art methods submitted to the OMG-Emotion

Challenge, utilizing the OMG Emotion database.

Table 4.14 shows that our Model-level Fusion + RNN method outperforms all other methods -even

those that have been trained using the audio modality as well- on both the valence and arousal es-

timation. Table 4.14 also shows that the CNN-3RNN-2nd-pool_last-pool_fc outperformed all state-

of-the-art networks, regardless whether they additionally used the audio modality, except for: i) the

Single Multi-Modal method that outperformed it on average by 0.015 (however this network used the

audio modality as well; since the audio and speech contribute more to arousal estimation, this small

difference is justified) and ii) Ensembles I and II, which are a fusion of many different networks that

used the visual and audio modalities and thus again the difference in performance was expected.

Table 4.14: CCC based evaluation, on the OMG test set, of VA predictions provided by our best
performing networks vs the state-of-the-art. V,A stand for valence and arousal. A higher CCC value
indicates a better performance. The results are taken from https://www2.informatik.uni-hamburg.de/
wtm/omgchallenges/omg_emotion2018_results2018.html

Methods Modality CCC
Valence Arousal

VNet [163] V,A: visual 0.438 0.244
ANet + VNet [163] V,A: audio + visual 0.442 0.236

openSMILE + LSTMs,
VGG-FACE-BLSTM [199]

A: audio,
V: visual 0.258 0.277

openSMILE + LSTMs,
VGG-FACE-BLSTM + openSMILE + LSTMs [199]

A: audio,
V: audio + visual 0.369 0.286

openSMILE + LSTMs [199] V,A: audio 0.361 0.293
Single Multi-Modal [239] V,A: audio + visual 0.484 0.345

Ensemble I [239] V,A: audio + visual 0.496 0.356
Ensemble II [239] V,A: audio + visual 0.499 0.361

CNN-3RNN-2nd-pool_last-pool_fc V,A: visual 0.472 0.329
Model-level Fusion + RNN V,A: visual 0.535 0.365

Ablation Study

Pre-Training In the following, we compare the performance of the best performing networks of

Table 4.13 with post-processing to that of networks trained from scratch, or being pre-trained with

the Aff-Wild or the Aff-Wild2 database. Table 4.15 presents the results of this comparison. The Aff-

https://www2.informatik.uni-hamburg.de/wtm/omgchallenges/omg_emotion2018_results2018.html
https://www2.informatik.uni-hamburg.de/wtm/omgchallenges/omg_emotion2018_results2018.html
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Wild2 database, due to its big size and emotion diversity, boosted the performance of all networks

pre-trained with it, in comparison to the performance of the networks trained directly with the OMG-

Emotion set. This was also the case when we pre-trained the networks with the Aff-Wild database.

Overall, networks pre-trained with the Aff-Wild2 achieved a better performance in comparison to

networks pre-trained with the Aff-Wild database. Between CNN-1RNN and CNN-3RNN types of

architectures, a better performance was acquired when using the latter one.

Table 4.15: CCC based evaluation, on the OMG test set, of valence & arousal predictions provided
by various networks when: they are trained from scratch or are pre-trained with the Aff-Wild and
Aff-Wild2 databases. A higher CCC value indicates a better performance.

Methods
Trained

from Scratch
Pre-trained
on Aff-Wild

Pre-trained
on Aff-Wild2

Valence Arousal Valence Arousal Valence Arousal
CNN-1RNN-2nd-pool_last-pool_fc 0.371 0.210 0.419 0.278 0.449 0.303
CNN-3RNN-2nd-pool_last-pool_fc 0.385 0.192 0.448 0.302 0.472 0.329

Model-level Fusion + RNN 0.431 0.265 0.511 0.342 0.535 0.365

Extracted Components Next, we present an ablation study on extracting different CNN low-, mid-

and high-level features in CNN-3RNN networks. Table 4.16 compares their performance (in all cases:

p-value 6 10−25 � 0.05). The first four rows of Table 4.16 show the performance of networks where

a combination of low-, mid- and high-level features are extracted, whereas the next rows show the

performance of networks where only low-, or only mid-, or only high-level features are extracted.

Let us note that worst performances among all these types of networks were obtained when features

were extracted from mid- CNN levels (convolutional layers 6-9). Generally, best performances were

obtained when features were extracted from high- and from low-levels. The optimal combination

(that provided the best performance) was through the use of CNN-3RNN-2nd-pool_last-pool_fc. One

more observation is that low-level features (convolutional layers 3-5), especially when combined with

high-level, significantly affected the performance in predicting both valence and arousal.

Utilisation of Landmarks Next, we present an ablation study on the use of landmarks as additional

input to various networks. Table 4.17 compares the performance of the CNN-1RNN-2nd-pool_last-

pool_fc, CNN-3RNN-2nd-pool_last-pool_fc and Model-level Fusion + RNN networks when land-



4.4. Multi-Component Extensions of AffWildNet 83

Table 4.16: Effect on CCC (on the OMG test set) of using features from different layers in the CNN-
3RNN case. All networks are post-processed & pre-trained on Aff-Wild2. A higher CCC value
indicates a better performance.

CNN-3RNN CCC Mean
Valence Arousal

8th conv + last pool + fc 0.416 0.261 0.339
5th conv + last pool + fc 0.455 0.322 0.389
2nd pool + last pool + fc 0.472 0.329 0.401
3rd conv + 7th conv + fc 0.402 0.267 0.335
last conv + last pool + fc 0.440 0.248 0.344

6th conv + 7th conv + 8th conv 0.328 0.162 0.245
7th conv + 8th conv + 9th conv 0.334 0.172 0.253
3rd conv + 4th conv + 5th conv 0.345 0.185 0.265

marks were/were not used as additional input. In all cases, using landmarks increased their perfor-

mance by 1.2% - 1.9%.

Table 4.17: Effect on CCC (on the OMG test set) of (not) using landmarks as additional input to
various networks. All networks are post-processed & pre-trained on Aff-Wild2. A higher CCC value
indicates a better performance. V,A stand for Valence and Arousal

CCC Without Landmarks With Landmarks
V A Mean V A Mean

CNN-1RNN-2nd-pool_last-pool_fc 0.429 0.291 0.360 0.449 0.303 0.376
CNN-3RNN-2nd-pool_last-pool_fc 0.454 0.310 0.382 0.472 0.329 0.401

Model-level Fusion + RNN 0.524 0.352 0.438 0.535 0.365 0.450

Performance Analysis on 2D VA-Space

Finally, to give more insight on the performance of the best CNN-3RNN (CNN-3RNN-2nd-pool_last-

pool_fc) network, we analysed its performance at different parts of the 2D Valence-Arousal Space.

Table 4.18 presents the obtained valence and arousal performance in terms of Mean Squared Error

(MSE) across 4 different regions of this Space. It can be seen that better results have been obtained

in the region with high arousal and positive valence; however the obtained MSE is not far away from

the MSE across the whole 2D Valence-Arousal Space.

In summary, the main findings of the proposed approach have been: i) low-level features when com-

bined with high-level ones in the CNN plus multi-RNN architectures, helped in boosting the net-

works’ performance in arousal estimation; ii) CNN plus multi-RNN architectures outperformed stan-
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Table 4.18: Valence and Arousal MSE in areas of the 2D VA Space for the best CNN-3RNN. A lower
MSE indicates a better performance. V,A stand for Valence and Arousal

2D VA-Space
V ∈ [0,1]

A ∈ [0,0.5)
V ∈ [0,1]

A ∈ [0.5,1]
V ∈ [-1,0)
A ∈ [0,0.5)

V ∈ [-1,0)
A ∈ [0.5,1]

V ∈ [-1,1]
A ∈ [0,1]

CNN-3RNN-
2nd-pool_

last-pool_fc
MSE-V = 0.101
MSE-A = 0.031

MSE-V = 0.055
MSE-A = 0.021

MSE-V = 0.154
MSE-A = 0.061

MSE-V = 0.110
MSE-A = 0.040

MSE-V = 0.110
MSE-A = 0.041

dard CNN plus RNN ones showing that features extracted from previous layers contain useful and

rich information for valence-arousal prediction; iii) better results were obtained when the features ex-

tracted from previous layers were processed by independent RNNs instead of being concatenated and

fed to a single RNN; iv) better results were obtained when using a RNN instead of a fully connected

layer for model-level fusion; v) when using the visual modality, network performance for valence

estimation was much higher than the corresponding for arousal estimation.

4.5 Expression Recognition Variants with ArcFace Loss

The traditional and most widely used loss function in CNN training for FER is the softmax one that

minimizes the cross entropy between the estimated (by the model) class probabilities and the ground

truth distribution. This loss simply forces features of different classes to remain apart, but FER in real-

world scenarios suffers from not only high inter-class similarity but also high intra-class variation.

In the related face recognition field, it has been shown [133, 212] that categorical cross entropy loss

(aka softmax loss) is insufficient to acquire discriminating power for face classification. Several loss

functions have been proposed for maximising inter-class and minimising intra-class variance. [32,85]

propose multi-loss learning to increase feature discriminating power. These, require thorough mining

of pair/triplet samples, which is a time-consuming procedure. [133] projects the original Euclidean

space of features to an angular space, introducing an angular margin for larger inter-class variance.

[206] directly adds a cosine margin penalty to the target logit, showing better performance than [133].

[45] further improved the discriminative power of face recognition models, stabilising the training

process.

Therefore, for FER, some works have proposed novel losses. Inspired by the center loss [212], which
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penalises the distance between deep features and their corresponding class centers, two variations

were proposed to assist the supervision of the softmax loss for more discriminative features for FER:

(i) island loss [22] was formalized to further increase the pairwise distances between different class

centers, and (ii) deep locality-preserving loss [128] was formalised to pull the locally neighboring

features of the same class together so that the intra-class local clusters of each class are compact.

Given the success of the ArcFace loss [45] and the boost it brought to face recognition models’

performance, we adopted the ArcFace loss and adapted it for emotion recognition. To the best of

our knowledge, this is the first time that this loss designed for face recognition, has been used in the

context of affect recognition. Another contribution we made wass the design of two networks, the one

based on residual units and the other based on VGG-FACE layers and their training with the ArcFace

loss. At first, we pre-trained them on Aff-Wild2 and then re-trained them, one at a time, on a plethora

of other databases. Our results outperformed all state-of-the-art networks, illustrating: i) the richness

of Aff-Wild2 (providing it with the ability to be used as robust prior for network pre-training) and ii)

that the ArcFace loss can be used in the affect recognition field, yielding state-of-the-art results. In

fact, this was the very first proof of the effectiveness of additive angular margin in affect recognition.

4.5.1 The ArcFace Loss Function

The softmax cross-entropy loss can be modified as follows:

L =
−1
N

N

∑
i=1

log
eWT

yi
xi

∑7
j=1 eWT

j xi
=
−1
N

N

∑
i=1

log
e‖Wyi‖·‖xi‖·cos θyi

∑7
j=1 e‖Wj‖·‖xi‖·cos θj

‖xi‖=s,

‖Wj‖ = 1
======

−1
N

N

∑
i=1

log
es·cos θyi

∑7
j=1 es·cos θj

(4.7)

where the embedding feature xi ∈ Rd denotes the deep feature of the i-th sample belonging to the

yi-th class, Wj ∈ Rd denotes the j-th column of the weight W ∈ Rd×7, N is the batch size, θj is the

angle between weight Wj and feature xi, ‖Wj‖ is fixed to 1 by l2 normalization, ‖xi‖ is fixed by l2

normalisation and re-scaled to s.
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From eq.4.7, it can be seen that the embedding features are distributed around each feature centre

on the hypersphere. In our case, we adopt the ArcFace loss, where an angular margin penalty m

between xi and Wyi is added to simultaneously enhance the intra-class compactness and inter-class

discrepancy (eq.4.7: θyi −→ θyi + m). m is equal to the geodesic distance margin penalty in the

normalised hypersphere. We refer the interested reader to [45] for more details and explanation of

this loss.

4.5.2 The ArcRes and ArcVGG Deep Neural Architectures

Next, we develop two networks that will be trained with this loss. The first CNN architecture, called

ArcFace-Residual (ArcRes) uses residual units and is depicted in Fig.4.13; ’bn’ stands for batch

normalization, the convolution layer is in the format: filter height × filter width ’conv.’, number of

output feature maps; the stride is equal to 2, everywhere; the fc layer is the embedding layer; the

output layer provides the seven expresion class logits (WT
j xi, j = 1..7). Table 4.19 shows the exact

network configuration of ArcRes.

Figure 4.13: The ArcRes network that has been trained with the ArcFace loss

Figure 4.14: The ArcVGG network that has been trained with the ArcFace loss

The second network is called Arcface-VGG (ArcVGG) and is depicted in Fig.4.14; the difference
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Table 4.19: ArcRes: the developed network with residual units for seven basic expression classifica-
tion

Block Layer filter , # feature maps stride # units
Normal 1 conv 3× 3 , 64 2× 2 -

Residual 1
batch norm, conv
batch norm, conv

[
3× 3 , 64
3× 3 , 64

]
×3 2× 2 -

Normal 2
batch norm, conv

conv
batch norm, conv

1× 1 , 128
3× 3 , 128
3× 3 , 128

2× 2 -

Residual 2
batch norm, conv
batch norm, conv

[
3× 3 , 128
3× 3 , 128

]
×3 2× 2 -

Normal 3
batch norm, conv

conv
batch norm, conv

1× 1 , 256
3× 3 , 256
3× 3 , 256

2× 2 -

Residual 3
batch norm, conv
batch norm, conv

[
3× 3 , 256
3× 3 , 256

]
×13 2× 2 -

Normal 4
batch norm, conv

conv
batch norm, conv

1× 1 , 512
3× 3 , 512
3× 3 , 512

2× 2 -

Residual 4
batch norm, conv
batch norm, conv

[
3× 3 , 512
3× 3 , 512

]
×2 2× 2 -

Normal 5 batch norm, fully connected - - 32/512
Normal 6 batch norm, fully connected - - 7

with ArcRes is that the rectangular area in the Figure 4.13 contains VGGFace’s convolutional and

pooling layers. In more detail, Table 4.20 shows the exact network configuration of ArcVGG.

In both ArcRes and ArcVGG, during testing we keep the feature embedding layer denoted as ’fc’

in Figures 4.13 and 4.14, discarding the output layer. For all training images, we extract features

from the embedding layer and split them in seven clusters. Then, for each test image, we compute its

distance (based on cosine similarity) from all cluster centers and assign it to the center for which this

distance is minimum.

4.5.3 Pre-Processing & Network Training Details

The SSH detector [152] based on the ResNet and trained on the WiderFace dataset [220] was used

to extract face bounding boxes from all images. Also, 5 facial landmarks (two eyes, nose and two
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Table 4.20: ArcVGG: the developed network with residual units for seven basic expression classifi-
cation

Layer filter # feature maps stride # units
conv 1 3× 3 64 1× 1 -
conv 2 3× 3 64 1× 1 -

max pooling 2× 2 - 2× 2 -
conv 3 3× 3 128 1× 1 -
conv 4 3× 3 128 1× 1 -

max pooling 2× 2 - 2× 2 -
conv 5 3× 3 256 1× 1 -
conv 6 3× 3 256 1× 1 -
conv 7 3× 3 256 1× 1 -

max pooling 2× 2 - 2× 2 -
conv 8 3× 3 512 1× 1 -
conv 9 3× 3 512 1× 1 -

conv 10 3× 3 512 1× 1 -
max pooling 2× 2 - 2× 2 -

conv 11 3× 3 512 1× 1 -
conv 12 3× 3 512 1× 1 -
conv 13 3× 3 512 1× 1 -

max pooling 2× 2 - 2× 2 -
batch normalisation - - - -

fully connected - - - 32/512
batch normalisation - - - -

fully connected - - - 7

mouth corners) were extracted and used to perform similarity transformation (for face alignment).

After that we obtained the cropped faces which were then resized to dimension 96× 96× 3. The

pixel intensities were normalized to take values in [−1, 1].

As far as specific details about hyperparameters of the developed architectures are concerned, they

can be found in Table 4.21. For both networks, the optimal learning rate was 10−4, the batch size

was 300 and dropout with 0.4 has been used. The best angular margin penalty m was either 0.1 or

1, s was 32 or 64 and d was either 32 or 512 meaning that the embedding layer had either 32 or 512

features. All experiments were implemented in TensorFlow, on a Tesla V100 32GB GPU, using SGD

with momentum (0.9).

Let us also note that ArcRes and ArcVGG networks were first trained on Aff-Wild2 using the ArcFace

loss as we defined before and then, they were re-trained end-to-end on each of the examined databases,

which were AffectNet, RAF-DB, IMFDB and FER2013 (again using the ArcFace loss).
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Table 4.21: Network Configurations

ArcRes / ArcVGG
learning rate [10−4, 10−5], best : 10−4

batch size 300

parameters
dropout=0.4, d ∈ {32, 512}, s ∈ {32, 64},
m ∈ {0.1, 0.5, 1, 1.5, 2, 2.5, 3}, best : 0.1/1

4.5.4 Performance Evaluation

The best performing network in AffectNet database is an AlexNet [120] [151]. AlexNet consists of

five convolution layers, followed by max-pooling and normalization layers, and three fully-connected

one. The authors in [151] took into account the data imbalance existing in the training set and thus

weighted the loss for each of the classes by their relative proportion in the training dataset. This

loss heavily penalised AlexNet for misclassifying examples from under-represented classes, while

penalised AlexNet less for misclassifying examples from well-represented classes.

The best performing network in RAF-DB database is the DLP-CNN [128] network consisting of

six convolutional layers followed by max-pooling ones and then by a fully connected layer before

the output that performs the classification into the seven basic expressions. The authors of [128]

developed a loss function that preserved the locality of each sample and made the local neighborhoods

within each class as compact as possible. The DLP-CNN was trained for discriminative feature

learning using the joint supervision of the softmax loss that characterises the global scatter and the

locality preserving loss that characterises the local scatters within class.

The best performing method in FER2013 was developed by [70], where automatic features learned

by VGGFACE, VGG-f [27] and VGG-13 [14] are combined with handcrafted features computed by

the bag-of-visual-words model. For training the CNN models, the authors used the Dense-Sparse-

Dense [80] training procedure. After fusing the two types of features, a local learning framework was

employed that included k-nearest neighbors and an one-versus-all Support Vector Machines (SVM)

classifier, which provided the final prediction.

Table 4.22 presents a performance comparison between the ArcRes and ArcVGG networks trained

with the ArcFace loss on Aff-Wild2 and re-trained on each of the examined databases and the state-of-
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the-art in these databases (whose results are taken from the respective papers). At first, it can be seen

that both networks outperformed the state-of-the-art by a large margin, on all examined databases.

In AffectNet and FER2013 ArcRes outperformed ArcVGG by 1%, whereas in RAF-DB and IMFDB

ArcVGG outperformed ArcRes by 1%.

Table 4.22: Performance evaluation of ArcRes and ArcVGG

Databases ArcRes ArcVGG AlexNet [151] DLP-CNN [128] VGG [71]
AffectNet 0.63 0.62 0.58 - -
RAF-DB 0.75 0.76 - 0.74 -
IMFDB 0.55 0.56 - - -

FER2013 0.8 0.79 - - 0.75



Chapter 5

Multi-Task Learning for Affect Analysis

5.1 A Multi-Task Approach to Affect Recognition

In the former Chapters of this Thesis, we have described the development of Aff-Wild and Aff-Wild2

databases, which have extended early efforts towards collecting large scale datasets of naturalistic

behaviour captured in uncontrolled conditions, in-the-wild [16,151,226]. We have described the three

main affect recognition tasks: recognition of the seven basic expressions, i.e., anger, disgust, fear,

happiness, sadness, surprise and neutral [62], in-the-wild [36, 40]; estimation of continuous affect

dimensions, i.e. valence and arousal; detection of facial action units (AU) [63], which code facial

motion with respect to activation of facial muscles, using automatic AU annotation toolboxes [11,16].

Up to the present, these three tasks have been generally tackled individually from each other, despite

the fact that they are interconnected. In [63], the facial action coding system (FACS) has been built,

indicating, for each of the basic expressions, the respective prototypical action units. In [59], a ded-

icated user study has been conducted to study the relationship between AU activations and emotion

expressions beyond basic types, dealing with compound emotions (e.g., happily surprised). In [99],

the authors showed that neural networks trained for expression recognition implicitly learn to detect

facial action units as well. Moreover, in [145] the authors have discovered that valence and arousal

dimensions could be interpreted through AUs; for example, AU12 (lip corner puller) is related to

positive valence.

91
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Multi-task learning (MTL) is an approach that can be used to jointly learn all three behaviour analysis

tasks. MTL was first studied in [25], where the authors proposed to jointly learn parallel tasks sharing

a common representation and transferring part of the knowledge - learned to solve one task - to

improve learning of the other related task. Since then, several approaches have adopted MTL for

solving different problems in computer vision and machine learning. In the face analysis domain, the

use of MTL is somewhat limited. In [211], MTL was tackled through a neural network that jointly

handled face recognition and facial attribute prediction tasks. MTL helped to capture global feature

and local attribute information simultaneously. In the following we develop a new MTL approach to

affect recognition in-the-wild, by using Aff-Wild2 which includes annotations for all three tasks and

appropriately extending AffWildNet that was described in the previous Chapter.

5.1.1 Related Work

In 2020 we organised the Affective Behavior Analysis in-the-wild (ABAW) Competition [106], in

conjunction with the IEEE Conference on Face and Gesture Recognition. The ABAW 2020 Com-

petition was the first Competition aiming at automatic analysis of the three main behaviour tasks of

valence-arousal estimation, basic expression recognition and action unit detection. It was split into

three Challenges, based on the Aff-Wild2 database, with each one addressing a respective behaviour

analysis task. In the following we make reference to five approaches that displayed the best perfor-

mance in each Challenge and ranked in the top-3 positions; we also present each Challenge’s baseline

system.

The NISL2020 team [42] participated in all three Challenges, ranking first, third and first in Valence-

Arousal Estimation, Seven Basic Expression Classification and Eight Action Unit Detection Chal-

lenges, respectively. They used multi-task learning of the three tasks, through an algorithm that learnt

from partial labels. At first, they trained a teacher model to perform all three tasks, where each in-

stance was trained by the ground truth label of its corresponding task. Then, they used the outputs of

the teacher model and the ground truth to train the student model, so that the latter outperformed the

teacher model. They also used an ensemble methodology so as to further boost the performance of

the model.
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The TNT team [121] participated in all three Challenges and ranked second, first and second in

Valence-Arousal Estimation, Seven Basic Expression Classification and Eight Action Unit Detection

Challenges, respectively. They also used multi-task learning of the three tasks using both provided

video and audio inputs. They developed a two-stream aural-visual analysis model in which audio

and image streams were first processed separately and fed into a convolutional neural network. They

did not use recurrent architectures for temporal analysis, but instead used temporal convolutions.

Furthermore, the model was given access to additional features extracted during face-alignment in

the pre-processing stage. At training time, correlations between different emotion representations

were exploited so as to improve the model’s performance.

The ICT-VIPL-VA team [234] participated in the Valence-Arousal Estimation Challenge and ranked

third. Their methodology fused both visual features extracted from videos and acoustic features

extracted from audio tracks. To extract visual features, they followed a CNN-RNN paradigm, in which

spatio-temporal visual features were extracted by a 3D convolutional network and / or a pretrained 2D

convolutional network, and were fused through a bidirectional recurrent neural network. The audio

features were extracted by a GRU-MLP network.

The ICT-VIPL-Expression team [131] participated in the Seven Basic Expression Classification Chal-

lenge and ranked second. Their methodology combined a Deep Residual Network with convolutional

block attention module and Bidirectional Long-Short-Term Memory Units. They provided visualisa-

tion of the learned attention maps and analysed the importance of different regions in facial expression

recognition.

The SALT team [158] participated in the Eight Action Unit Detection Challenge and ranked third.

Their methodology included a multi-label class balancing algorithm as a pre-processing step for over-

coming the imbalanced occurrences of Action Units in the training dataset. Then a ResNet was trained

using the augmented training dataset.

The architecture of the baseline system that we generated for estimating valence and arousal was

based on that of PatchGAN [31, 91, 243]. PatchGAN is a deep convolutional neural network initially

designed to classify patches of an input image, rather than the entire image, as real or fake. The

PatchGAN was the discriminator of the pix2pix architecture [91]. The output of the network is a
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single feature map of real/fake predictions that is averaged to give a single score. In StarGAN [31],

PatchGAN was additionally used as a classifier. Here, we adopted PatchGAN for valence-arousal

regression. The exact architecture used, can be seen in Table 5.1.

Table 5.1: PatchGAN adopted for valence-arousal estimation. Leaky Rely follows each convolutional
layer.

Name Type Filter # Feature Maps
conv 1 weights 4× 4 64
conv 2 weights 4× 4 128
conv 3 weights 4× 4 256
conv 4 weights 4× 4 512
conv 5 weights 4× 4 1024
conv 6 weights 4× 4 1024
conv 7 weights 4× 4 2048
conv 8 weights/D-label 1× 1 2

The baseline systems for the tasks of classification into the seven basic expressions and detection of

eight action units, were based on the architecture of MobileNetV2 [177]. MobileNetV2 belongs to the

class of efficient models called MobileNets [86] that are light-weight deep neural networks. They are

based on a streamlined architecture that uses depth-wise separable convolutions which dramatically

reduce the complexity, cost and model size of the network. For more detail regarding this class of

architectures and the MobileNetV2 network, we refer the interested reader to [177]. Table 5.2 shows

the basic structure of MobileNetV2.

Let us note that: i) batch normalization was applied after each convolutional or expanded convolu-

tional layer, ii) the non-linear activation used was the Relu6 and iii) no average pooling was conducted

in the end. After the final convolutional layer (shown in Table 5.2), a fully connected layer followed

(with 7 units if the task was to predict the 7 basic expressions, or 8 units if the task was to detect the

8 action units) and on top of that was a softmax or sigmoid layer, respectively.

5.1.2 MT Extensions of AffWildNet

Here, we present multi-task CNN, CNN-RNN and audiovisual CNN-RNN networks, including exten-

sion of the AffWildNet architecture, taking into account the fact that the three tasks of facial behaviour
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Table 5.2: The MobileNetV2 network

Name Type Filter
conv weights (3, 3, 3, 32)

expanded conv depthwise (3, 3, 32, 1)
expanded conv project (1, 1, 32, 16)

expanded conv 1 expand (1, 1, 16, 96)
expanded conv 1 depthwise (3, 3, 96, 1)
expanded conv 1 project (1, 1, 96, 24)
expanded conv 2 expand (1, 1, 24, 144)
expanded conv 2 depthwise (3, 3, 144, 1)
expanded conv 2 project (1, 1, 144, 24)
expanded conv 3 expand (1, 1, 24, 144)
expanded conv 3 depthwise (3, 3, 144, 1)
expanded conv 3 project (1, 1, 144, 32)
expanded conv 4 expand (1, 1, 32, 192)
expanded conv 4 depthwise (3, 3, 192, 1)
expanded conv 4 project (1, 1, 192, 32)
expanded conv 5 expand (1, 1, 32, 192)
expanded conv 5 depthwise (3, 3, 192, 1)
expanded conv 5 project (1, 1, 192, 32)
expanded conv 6 expand (1, 1, 32, 192)
expanded conv 6 depthwise (3, 3, 192, 1)
expanded conv 6 project (1, 1, 192, 64)
expanded conv 7 expand (1, 1, 64, 384)
expanded conv 7 depthwise (3, 3, 384, 1)
expanded conv 7 project (1, 1, 384, 64)
expanded conv 8 expand (1, 1, 64, 384)
expanded conv 8 depthwise (3, 3, 384, 1)
expanded conv 8 project (1, 1, 384, 64)
expanded conv 9 expand (1, 1, 64, 384)
expanded conv 9 depthwise (3, 3, 384, 1)
expanded conv 9 project (1, 1, 384, 64)

expanded conv 10 expand (1, 1, 64, 384)
expanded conv 10 depthwise (3, 3, 384, 1)
expanded conv 10 project (1, 1, 384, 96)
expanded conv 11 expand (1, 1, 96, 576)
expanded conv 11 depthwise (3, 3, 576, 1)
expanded conv 11 project (1, 1, 576, 96)
expanded conv 12 expand (1, 1, 96, 576)
expanded conv 12 depthwise (3, 3, 576, 1)
expanded conv 12 project (1, 1, 576, 96)
expanded conv 13 expand (1, 1, 96, 576)
expanded conv 13 depthwise (3, 3, 576, 1)
expanded conv 13 project (1, 1, 576, 160)
expanded conv 14 expand (1, 1, 160, 960)
expanded conv 14 depthwise (3, 3, 960, 1)
expanded conv 14 project (1, 1, 960, 160)
expanded conv 15 expand (1, 1, 160, 960)
expanded conv 15 depthwise (3, 3, 960, 1)
expanded conv 15 project (1, 1, 960, 160)
expanded conv 16 expand (1, 1, 160, 960)
expanded conv 16 depthwise (3, 3, 960, 1)
expanded conv 16 project (1, 1, 960, 320)

conv 1 weights (1, 1, 320, 1280)
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analysis (valence-arousal estimation, action unit detection and basic expression classification) are in-

terconnected.

MT-VGGFACE

At first, we developed a multi-task CNN network based on the VGGFACE structure (MT-VGGFACE).

We kept the convolutional and pooling layers of VGGFACE, discarded all its fully connected layers

and added on top of it 2 fully connected layers with 4096 units. A (linear) output layer followed that

provided final estimates for valence and arousal; it also produced 7 basic expression logits that were

passed through a softmax function to get the final 7 basic expression predictions; lastly, it produced

8 AU logits that were passed through a sigmoid function to get the final 8 AU predictions. Table 5.3

shows the structure of MT-VGGFACE (except of the output layer).

Table 5.3: MT-VGGFACE: the multi-task developed CNN model

Layer Filter # Feature Maps stride no of units
conv 1 3× 3 64 1× 1 -
conv 2 3× 3 64 1× 1 -

max pooling 2× 2 - 2× 2 -
conv 3 3× 3 128 1× 1 -
conv 4 3× 3 128 1× 1 -

max pooling 2× 2 - 2× 2 -
conv 5 3× 3 256 1× 1 -
conv 6 3× 3 256 1× 1 -
conv 7 3× 3 256 1× 1 -

max pooling 2× 2 - 2× 2 -
conv 8 3× 3 512 1× 1 -
conv 9 3× 3 512 1× 1 -

conv 10 3× 3 512 1× 1 -
max pooling 2× 2 - 2× 2 -

conv 11 3× 3 512 1× 1 -
conv 12 3× 3 512 1× 1 -
conv 13 3× 3 512 1× 1 -

max pooling 2× 2 - 2× 2 -
fully connected 1 - - - 4096

dropout
fully connected 2 - - - 4096
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MT-AffWildNet

Next we exploited the fact that the developed AffWildNet has shown best performance in capturing

the dynamics and the in-the-wild nature of the Aff-Wild database. Moreover, since it has a CNN-

RNN structure, it effectively models contextual information in the data, taking into account temporal

affect variations. As a consequence, we have developed a network, extending AffWildNet - initially

developed for valence-arousal estimation - to additionally account for action unit detection and for

basic expression classification. The developed MT-AffWildNet, a multi-task CNN-RNN network in

which the CNN-RNN part was the AffWildNet (the CNN part included 13 convolutional and pooling

layers of VGG-FACE, followed by a fully connected layer of 4096 hidden units; the RNN was a

2-layer GRU with 128 cells each and was stacked on top of the CNN); the output layer followed on

top of it, which was exactly the same as in MT-VGGFACE. It is therefore evident that the predictions

for all tasks are pooled from the same feature space, since there exist correlations between the three

different tasks.

A/V-MT-AffWildNet

Since Aff-Wild2 is an audiovisual (A/V) database, we additionally developed a network for handling

both the video and audio modalities. We based this developed network on MT-AffWildNet, which

was above-described, generating A/V-MT-AffWildNet. A/V-MT-AffWildNet took as input frames

extracted from the video and spectrograms extracted from the audio sequences. We used a feature

level fusion strategy, illustrated in Figure 5.1. A/V-MT-AffWildNet consisted of two identical streams

that extracted features directly from raw input images and spectrograms, respectively. Each stream

consisted of a MT-AffWildNet, without an output layer. The features from the two streams were

concatenated, forming a 256-dimensional feature vector that was passed through a 2-layer GRU layer

with 128 units in each layer, so as to fuse the information of the audio and visual streams. The output

layer followed on top of it, being exactly the same as in MT-AffWildNet. No feature normalisation

was performed on the two concatenated streams as they were from the same scale/numerical range

and the training was end-to-end. A/V-MT-AffWildNet is a multi-modal and multi-task network. Let

us note here that it was the first time - in our Challenge - that audio was taken into account for action
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unit detection.

Figure 5.1: A/V-MT-AffWildNet: the Multi-Modal and Multi-Task developed model

5.1.3 Pre-Processing, Performance Measures & Network Training Details

At first, we describe the two pre-processing steps, applied to the visual and audio modalities respec-

tively, that have been used to generate the input data for affect analysis. Next, we present the loss

function used for training the multi-task networks, as well as the evaluation metrics used in each

affect recognition task. These metrics have been used across 11 databases, including Aff-Wild2, Aff-

Wild, AFEW-VA, AffectNet, RAF-DB, FER2013, EmotioNet, DISFA, BP4DS and BP4D+. Finally,

the network implementation details are described.

Pre-Processing

Visual Modality The SSH detector [152], based on ResNet and trained on the WiderFace dataset

[220] was used to extract face bounding boxes from all images. Also, 5 facial landmarks (two eyes,

nose and two mouth corners) were extracted and used to perform similarity transformation (for face

alignment). As a result, we obtained cropped faces which were then resized to dimension 96× 96× 3.

The pixel intensities were normalized to take values in [−1, 1].

Audio Modality The audio signal (mono) was sampled at 44, 100Hz. Then spectrograms were

extracted; spectrogram frames were computed over a 33ms window with 11ms overlap. The resulting
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intensity values were normalized in [−1, 1] to be consistent with the visual modality.

Loss Function

The objective function minimized during training of the multi-task networks was the sum of the

individual task losses:

LCCE = E[−log
epp

∑7
i=1 epi

] (5.1)

LBCE = E[−∑8
i=1 (ti · log pi + (1− ti) · log (1− pi))] (5.2)

LCCC = 1− (ρa + ρv)

2
, with ρa,v =

2sxy

[s2
x + s2

y + (x̄− ȳ)2]
(5.3)

where LCCE is the categorical cross entropy loss, LBCE is the binary cross entropy loss, pp is the

prediction of positive class, pi is the prediction of AUi or Expri, ti ∈ {0, 1} is the label of AUi,

ρa,v is the Concordance Correlation Coefficient (CCC) of arousal/valence, sx and sy are the variances

of arousal/valence labels and predicted values respectively and sxy is the corresponding covariance

value.

Evaluation Metrics

Valence-Arousal Estimation The mean value of CCC for valence and arousal estimation is adopted

as the main evaluation criterion of the performance of systems providing valence and arousal estima-

tion.

Etotal =
ρa + ρv

2
, (5.4)

Basic Expression Classification The F1 score is a weighted average of the recall (i.e., the ability of

the classifier to find all positive samples) and precision (i.e., the ability of the classifier not to label as
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positive a sample that is negative). The F1 score reaches its best value at 1 and its worst score at 0.

The F1 score is defined as:

F1 =
2× precision× recall

precision + recall
(5.5)

The F1 score for affect recognition is computed based on a per-frame prediction (an emotion category

is specified in each frame).

Total accuracy (denoted as T Acc) is defined on all test samples and is the fraction of predictions that

the model got right. Total accuracy reaches its best value at 1 and its worst score at 0. It is defined as:

T Acc =
Number of Correct Predictions
Total Number of Predictions

(5.6)

When comparing our developed architectures’ performance to the ABAW Challenge participating

teams’ systems performance, the weighted average between the F1 score and the total accuracy, T Acc,

is the main evaluation criterion:

Etotal = 0.67× F1 + 0.33 ∗ T Acc, (5.7)

When comparing our developed architectures’ performance, to the state-of-the-art methods’ perfor-

mance in different databases, the evaluation criterion is the usual F1 score, because of its robustness

to the imbalance in positive and negative samples, which is very common in the case of AUs. Excep-

tions are the RAF-DB and FER2013 databases, in which the mean diagonal value of the confusion

matrix and the accuracy metric, respectively, are the default performance measures.

Action Unit Detection We first obtain the F1 score for each AU independently, and then compute

the (unweighted) average over all 8 AUs (denoted as AF1) :

AF1 =
1
8

8

∑
i=1

Fi
1 (5.8)



5.1. A Multi-Task Approach to Affect Recognition 101

The F1 score for AUs is computed based on a per-frame detection (whether each AU is present or

absent).

When comparing our developed architectures’ performance to the ABAW Challenge participating

teams’ systems performance, the average between the AF1 score and the total accuracy, T Acc, is the

main evaluation criterion:

Etotal = 0.5×AF1 + 0.5 ∗ T Acc (5.9)

When comparing our developed architectures’ performance, to the state-of-the-art methods’ perfor-

mance in different databases, the evaluation criterion is the usual F1 score.

Network Training Details

Specific details about hyperparameters of the developed architectures can be found in Table 5.4. All

experiments were implemented in TensorFlow, on a Tesla V100 32GB GPU, using Adam optimizer

(with default values). Details follow:

I) MT-VGGFACE: The network has first been pre-trained for VA estimation on the Aff-Wild database,

then the output layer was discarded and substituted by a multi-task one. Then it was trained end-to-

end on Aff-Wild2. Best results have been provided with a learning rate of 10−4, with batch size 256.

Dropout with value 0.4 has been used.

II) MT-AffWildNet: The CNN-RNN part was initialized with the weights of the AffWildNet. Then

the whole architecture was trained end-to-end on Aff-Wild2. Learning rate used was in the range

[10−4, 10−6]. Best results have been provided for 10−5, with batch size 10 and sequence length 90.

Dropout with value 0.4 has been used after all fully connected layers.

III) A/V-MT-AffWildNet: Training was divided in two phases: first the audio/visual streams were

trained independently and then the audiovisual network was trained end-to-end. To train each stream

individually, we followed the same procedure as in the MT-AffWildNet case: for each stream, the

CNN-RNN part was initialized with the weights of the AffWildNet, then we appended on top an
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output layer; then the whole stream was trained end-to-end on Aff-Wild2. Once each single stream

has been trained, we discarded their output layers and they were used for initializing the corresponding

streams in the multi-stream architecture. Finally, the entire audiovisual network was trained end-to-

end. The learning rate was in the range [10−3, 10−6]. Best results have been provided for 10−5, with

batch size 5 and sequence length 90 (for each modality). Dropout with value 0.4 has been used after

all fully connected layers.

Table 5.4: Network Configurations: MT = Multi-Task, A/V = audiovisual

MT-VGGFACE MT-AffWildNet A/V-MT-AffWildNet
learning rate [10−4, 10−5], best : 10−4 [10−4, 10−6], best : 10−5 [10−3, 10−6], best : 10−5

batch size 256 10 5
sequence length - 90 90

parameters dropout=0.4 dropout=0.4 dropout=0.4

Finally, let us mention that for the Basic Expression Classification task, we did not tackle the data

imbalanced problem (the majority of the frames are labelled as neutral) since the evaluation metric

for that task contained the F1 score which in general is known to take into account the data imbalance

and since the results -as shown in the Experimental Study that follows- have been great outperforming

all state of the art.

5.1.4 Experimental Study

The experimental study consists of three parts. In the first, we compare our developed networks’

performance to each single- and multi-task CNN, showing that our MT networks outperform: their

single-task counterparts; other single-task networks; other multi-task networks. In the second, we

compare our developed networks’ performance to the state-of-the-art methods developed on Aff-

Wild2, showing that our networks outperform the methods of the teams that participated in the ABAW

Competition on Aff-Wild2. In the final part, we perform a cross database experimental study, by

testing our developed networks on 10 different databases and comparing the achieved performance

to that of state-of-the-art methods on these databases, showing that our networks provide the best

pre-trained framework for a large variety of affect recognition settings.
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Results: Developments vs Single- & Multi-Task CNNs

At first, we employed 3 state-of-the-art networks, SphereFace-20 [133], VGGFACE [161], and In-

ception ResNet [190]. We train these networks to perform a single behavior task (VA estimation, or

AU detection, or Expr classification), or jointly perform all 3 tasks. The predictions for all tasks were

pooled from the same feature space.

Table 5.5 compares the performance of the developed MT-VGGFACE and MT-AffWildNet (in two

settings: i) when trained only with video frames and thus with the visual modality; ii) when trained

only with spectrograms and thus with the audio modality); it also compares A/V-MT-AffWildNet to

single- and multi-task SphereFace-20, VGGFace and Inception ResNet, denoted as ST-SphereFace/MT-

SphereFace, ST-VGGFACE and ST-InceptionResNet/MT-InceptionResNet. The utilised database

was Aff-Wild2. Table 5.5 shows the corresponding performance for each task: valence-arousal es-

timation (denoted as VA), seven basic expression classification (denoted as Expr) and eight action

unit detection (denoted as AU). We note that the corresponding performance metrics are the CCC for

valence and arousal and the F1 score for the action units and the expression categories.

It is evident from Table 5.5 that MT-VGGFACE outperformed in all tasks: i) its single-task counterpart

network, ST-VGGFACE and ii) all other developed either single- or multi-task CNN networks. It is

also evident that the MT-AffWildNet either when trained with the audio modality or the visual one,

outperformed in all tasks the MT-VGGFACE network. When trained with the visual modality, since

it is a CNN-RNN network and the RNN is used to model temporal variations, a better performance

over MT-VGGFACE was expected in all three tasks.

When trained with the audio modality, in the VA estimation task, one can observe a big performance

difference (9/% increase to the MT-VGGFACE and 6% increase to the MT-AffWildNet that used the

visual modality) when estimating arousal; this is expected because for arousal the audio cues appear to

include more discriminating capabilities than facial features in terms of correlation coefficient [156].

Additionally, for valence, facial features appear to include more discriminating capabilities than audio

cues; as expected, in valence estimation, the MT-AffWildNet, when trained with the visual modality,

outperformed the MT-AffWildNet, when trained with the audio modality.
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It is interesting to note that, in expression recognition, the performance was the same regardless of

which of the two modalities was used. In action unit detection, the visual modality provided MT-

AffWildNet with better performance than the audio one; a result which is intuitive. Finally, the

A/V-MT-AffWildNet displayed the best performance on all tasks.

These results illustrate the ability of the developed networks to capture the underline affect state

(either valence-arousal, or basic expression or action units) when using only the audio modality. Let

us mention that it is the first time that it is shown and proved that action units detection can benefit by

the audio modality.

Table 5.5: Evaluation on Aff-Wild2 for the developed networks and other single- and multi-task
CNNs. ’ST’ means single-task, ’MT’ means multi-task; VA evaluation is shown as CCCV and CCCA;
AU and Expr evaluation corresponds to F1 score

Networks Aff-Wild2
CCC-V CCC-A F1 Expr F1 AU

ST-SphereFace 0.33 0.33 0.37 0.28
MT-SphereFace 0.35 0.34 0.39 0.29

ST-InceptionResNet 0.35 0.35 0.36 0.29
MT-InceptionResNet 0.37 0.36 0.38 0.30

ST-VGGFACE 0.40 0.39 0.38 0.30
MT-VGGFACE 0.43 0.42 0.41 0.32

MT-AffWildNet (audio modality) 0.44 0.51 0.44 0.34
MT-AffWildNet (visual modality) 0.46 0.45 0.44 0.36

A/V-MT-AffWildNet 0.47 0.52 0.46 0.37

Results: Developments vs State-of-the-art ABAW Competition Teams

Table 5.6 compares the performance, in all tasks, of the developed MT-VGGFACE and MT-AffWildNet

(in two settings: i) when trained only with video frames and thus with the visual modality; ii)

when trained only with spectrograms and thus with the audio modality); it also compares A/V-MT-

AffWildNet to state-of-the-art methods in Aff-Wild2, developed by the top-3 performing teams of the

ABAW Competition. We note that the corresponding performance metrics are the CCC for valence

and arousal, a weighted average between the F1 score and the total accuracy, as discussed in Sec-

tion 5.1.3 for expression recognition and the average between the F1 score and the total accuracy, as

discussed in Section 5.1.3 for action unit detection.
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It can be easily observed that the MT-AffWildNet, either when trained with the audio, or visual

modality, outperformed, in all tasks, all other methods; the same happened with the best performing

A/V-MT-AffWildNet. It can also be seen that the MT-VGGFACE displayed a slightly worse perfor-

mance in all tasks than the best performing other methods, which was expected given that the other

methods used either an ensemble methodology of CNN-RNN networks, or fused the visual and audio

modalities.

Table 5.6: Performance Comparison on Aff-Wild2 for the VA, Expr, AU tasks between our de-
velopments and the state-of-the-art developed by the top-3 performing teams of ABAW Compe-
tition (and the baseline method); ’-’ means that no result is reported in the corresponding paper;
EExpr

total = 0.67× F1 + 0.33 ∗ T Acc; EAU
total = 0.5×AF1 + 0.5 ∗ T Acc

Network Team Name Aff-Wild2
CCC-V CCC-A EExpr

total EAU
total

Baseline - 0.11 0.27 0.30 0.26
CNN-RNN Ensemble NISL2020 0.440 0.454 0.405 0.607

Two-Stream Aural-Visual Model TNT 0.448 0.417 0.509 0.601
Multi-Modal MultiFeature Network ICT-VIPL 0.361 0.408 0.408 -

MT-VGGFACE - 0.430 0.420 0.495 0.601
MT-AffWildNet (audio modality) - 0.440 0.510 0.513 0.615
MT-AffWildNet (visual modality) - 0.460 0.450 0.521 0.619

A/V-MT-AffWildNet - 0.470 0.520 0.532 0.624

Results: Cross Database Experiments & Comparison with State-of-the-Art

Table 5.7 presents a cross-database comparison for the three tasks on 10 databases, between the state-

of-the-art in these databases and our developed networks. Cross-database means that the models were

trained on Aff-Wild2 and were then evaluated on the other databases. Let us note that the mean

diagonal value of the confusion matrix was the evaluation criterion for RAF-DB, the accuracy metric

was the one for FER2013, CCC was the criterion in all dimensionally annotated databases and the F1

score was the criterion for all other databases. Let us also note that AffectNet, RAF-DB, FER2013

and EmotioNet are static databases, meaning that they contain only images and not videos and thus

we could only test the MT-VGGFACE on them. AFEW-VA database does not contain audio and thus

we could not test the A/V-MT-AffWildNet on it. DISFA, BP4DS and BP4D+ do not contain audio as

well.
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Table 5.7: Cross-database evaluation (models trained on Aff-Wild2 and tested on other databases)
for the three tasks on 10 databases, between the state-of-the-art and our developed networks; VA
evaluation is shown as CCCV-CCCA; the mean diagonal value of the confusion matrix (denoted as
’Diag.’) was the evaluation criterion for RAF-DB; ’Acc’ stands for Accuracy; ’-’ means that either
the database did not contain audio or the database is a static one consisting of only images or the
network was not trained on this database or the network was not trained for this task

Network Aff-Wild AFEW-VA AffectNet RAF-DB FER2013 EmotioNet DISFA BP4DS BP4D+
CCC CCC CCC F1 Diag. Acc. F1 F1 F1 F1

best CNN [105, 109] 0.51-0.33 0.49-0.52 0.51-0.36 - - - - - - -
AffWildNet [105, 109] 0.57-0.43 0.52-0.56 - - - - - - - -

AlexNet [151] - - 0.6-0.34 0.58 - - - - - -
VGGFACE [128] - - - - 0.58 - - - - -

VGG [70] - - - - - 0.75 - - - -
ResNet-34 [57] - - - - - - 0.51 - - -

FVGG [129] - - - - - - - 0.52 - -
R-T1 [129] - - - - - - - 0.6 - -

DLE extension [225] - - - - - - - - 0.54 -
LGBP+Geometric [203] - - - - - - - - 0.53 -

VGG+SVM [193] - - - - - - - - - 0.51
Geometric+CRF [204] - - - - - - - - - 0.34

MT-VGGFACE 0.56-0.35 0.58-0.53 0.61-0.46 0.54 0.61 0.76 0.52 0.61 0.66 0.49
MT-AffWildNet
(audio modality) 0.54-0.47 - - - - - - - - -

MT-AffWildNet
(visual modality) 0.6-0.45 0.6-0.6 - - - - - 0.63 0.67 0.52

A/V-MT-AffWildNet 0.62-0.49 - - - - - - - - -

The A/V-MT-AffWildNet achieved the best performance in Aff-Wild for both valence and arousal

estimation, outperforming the existing state-of-the-art AffWildNet. Moreover, it can be seen that

MT-AffWildNet performed best for valence estimation when trained, on Aff-Wild, with the visual

modality, whilst performing best for arousal when trained with the audio modality. This is because

audio tends to have thematic constancy. Consider, for example, two fight sequences in a movie, one

being a flashy fight scene and the other a one-sided fight with a person being injured. In both cases,

arousal can be high due to loud and pronounced music, but valence will be positive in the former and

negative in the latter sequence.

Table 5.7 shows that the MT-AffWildNet, trained with the visual modality, outperformed the fine-

tuned AffWildNet in AFEW-VA database. It can also be observed that the MT-VGGFACE outper-

formed: i) the state-of-the-art AlexNet [151] on AffectNet both in valence and arousal estimation,

ii) the state-of-the-art VGGFACE [128] in RAF-DB, iii) the state-of-the-art VGG [70] in FER2013

and iv) the winner [57] of Emotionet 2017 Challenge, ResNet-34. Only, in expression recognition in

AffectNet, the obtained performance of the MT-VGGFACE is lower to the state-of-the-art. Finally,

the MT-AffWildNet trained with the visual modality outperformed: i) the fine-tuned VGG (FVGG)
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and R-TI methods [129] in DISFA, ii) the baseline LGBP+Geometric [203] and the winner DLE ex-

tension [225] of FERA 2015 Challenge and iii) the baseline Geometric+CRF [204] and the winner

VGG+SVM [193] of FERA 2017 Challenge.

5.2 A Holistic Approach to Affect Recognition in-the-wild

In the previous subsection we described and tested the proposed multi-task networks, trained on Aff-

Wild2. There, we exploited the fact that Aff-Wild2 contains annotations for all three affect recognition

tasks. It should be, however, mentioned that the other existing databases contain annotations for only

one or two of the tasks and not for all three of them; it is not, therefore, straightforward how to take

advantage of the knowledge developed by the multi-task networks in these other cases.

In this Section, we present the first and largest study of all facial behaviour tasks learned jointly in

a single holistic framework, deriving the novel FaceBehaviorNet architecture. To achieve this, we

utilise all publicly available datasets (including over 5 million images) that study facial behaviour

tasks in-the-wild. At first, we demonstrate that by training an end-to-end network jointly on all tasks,

we consistently achieve a better performance than by training each of the single-task networks. Then,

we propose a new approach for coupling all three tasks during training, through co-annotation and

distribution matching. We show that this approach performs well under partial, or non-overlapping,

annotation of the datasets. Finally we show that FaceBehaviorNet learns features that encapsulate

all aspects of facial behaviour; being capable of successfully performing tasks (such as compound

emotion recognition) beyond the ones that it has been trained, in an efficient zero- or few-shot learning

setting.

5.2.1 Related Work

Holistic frameworks, where several parts, e.g. learning tasks, are interconnected and explicable by

the reference to the whole, are common in computer vision. The diverse examples range from the

scene understanding framework that reasons about 3D object detection, pose estimation, semantic
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segmentation and depth reconstruction [208], the face analysis framework that addresses face detec-

tion, landmark localization, gender recognition, age estimation [170], to the universal networks for

low-, mid-, high-level vision [102] and for various visual tasks [228]. Most if not all of these prior

works rely on building a multi-task framework where learning is done based on the ground truth anno-

tations with full or partial overlap across tasks. During training, all tasks are optimised simultaneously

aiming at representation learning that supports the holistic view.

In this work we propose the first holistic framework for emotional behaviour analysis in-the-wild,

where different emotional states such as binary action units activations, basic categorical emotions

and continuous dimensions of valence and arousal constitute the interconnected tasks that are expli-

cable by the human’s affective state. What makes it different from the aforementioned holistic ap-

proaches is exploring the idea of task-relatedness, given explicitly either as external expert knowledge

or from empirical evidence. In this form, it is similarly motivated to the classical multi-task literature

exploring feature sharing [6] and task relatedness [93] during training; more examples can be found

in the surveys [159, 233]. However in the multi-task setting, one typically assumes homogeneity of

the tasks, i.e. tasks of the same type such as object classifiers or attribute detectors. The main differ-

ence and novelty of our work is that the proposed holistic framework (i) explores the relatedness of

non-homogeneous tasks, e.g. tasks for classification, detection, regression; (ii) operates over datasets

with partial or non-overlapping annotations of the tasks; (iii) encodes explicit relationship between

tasks to improve transparency and to enable expert input.

Works exist in literature that use emotion labels to complement missing AU annotations or increase

generalization of AU classifiers [175, 209, 219]. Our work deviates from such methods, as we target

a joint learning of three facial behaviour tasks via a single holistic framework, whilst these works

perform only AU detection and not emotion recognition (nor valence-arousal estimation).

One of the closest goals to ours is [26], where an integrated deep learning framework (FATAUVA-Net)

for sequential facial attribute recognition, AU detection, and valence-arousal estimation was proposed.

This framework employed face attributes as low-level (first component) and AUs as mid-level (sec-

ond component) representations for predicting quantized valence-arousal values (third component).

However training of this model is made of transfer learning and fine-tuning steps, is hierarchical and
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not end-to-end. In a similar work of [210], a two-level attention with two stage multi-task learning

framework was constructed for emotion recognition and valence-arousal estimation; this work was

based on a database (AffectNet [151]) annotated for both tasks. In the first attention level, a CNN

extracted position-level features and then in the second an RNN with self-attention was proposed to

model the relationship between layer-level features.

5.2.2 The Proposed Approach

In the following:

• We propose a flexible holistic framework that can accommodate non-homogeneous tasks with en-

coding prior knowledge of tasks relatedness. In our experiments we evaluate two effective strate-

gies of task relatedness: a) obtained from a cognitive and psychological study, e.g. how action

units are related to basic emotion categories [59], and b) inferred empirically from external dataset

annotations.

• We propose an effective algorithmic approach of coupling the tasks via co-annotation and distribu-

tion matching and show its effectiveness for facial behaviour analysis.

• We present the first, to the best of our knowledge, holistic network for facial behaviour analysis

(FaceBehaviorNet) and train it, in end-to-end manner, for simultaneously predicting 7 basic expres-

sions, 17 action units and continuous valence-arousal, in-the-wild. For network training we utilise

all publicly available in-the-wild databases that, in total, consist of over 5M images with partial

and/or non-overlapping annotations for different tasks.

• We show that FaceBehaviorNet greatly outperforms each of the single-task networks, validating

that the network’s affect recognition capabilities are enhanced when it is jointly trained for all

related tasks. We further explore the feature representation learned during joint training and show

its good generalisation on the task of compound expression recognition, when no, or little, training

data is available (corresponding to zero-shot and few-shot learning).

As in the former subsection, we start with the multi-task formulation of the facial behaviour model.

In this model we have three objectives: (1) learning seven basic emotions, (2) detecting activations
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of 17 binary facial action units, (3) learning the intensity of the valence and arousal continuous affect

dimensions. Our target is to train a multi-task neural network model to jointly achieve objectives

(1)-(3). However, now we assume that for a given image x ∈ X , we can have a single type of label

annotations; i.e., in terms of either the seven basic emotions yemo ∈ {1, 2, . . . , 7}, or the 171 binary

action units activations yau ∈ {0, 1}17, or the two continuous affect dimensions, valence and arousal,

yva ∈ [−1, 1]2. For simplicity of presentation, we use the same notation x for all images leaving

the context to be explained by the label notations. We train the multi-task model by minimizing the

following total objective, which is similar to (4.1)-(4.3), with a slight change in the symbols and

notations used, so as to fit the following developments:

LMT = LEmo + λ1LAU + λ2LVA (5.10)

LEmo = Ex,yemo [−log p(yemo|x)]

LAU = Ex,yau [−log p(yau|x)]

LVA = 1− CCC(yva, ȳva),

where: the first term is the cross entropy loss computed over images with a basic emotion label;

the second term is the binary cross entropy loss computed over images with 17 AU activations,

log p(yau|x) := [∑17
k=1 δk]

−1 ·∑17
i=1 δi· [yi

aulog p(yi
au|x) + (1− yi

au)log (1− p(yi
au|x))], with δi ∈

{0, 1} indicating whether the image contains annotation for AUi; the third term measures the concor-

dance correlation coefficient between the ground truth valence and arousal yva and the predicted ȳva,

CCC(yva, ȳva) =
ρa+ρv

2 , in which for i ∈ {v, a}, yi is the ground truth, ȳi is the predicted value and

ρi =
2 ·E[(yi −Eyi) · (ȳi −Eȳi)]

E2[(yi −Eyi)
2] +E2[(ȳi −Eȳi)

2] + (Eyi −Eȳi)
2 (5.11)

Coupling of basic emotions and AUs via co-annotation In the seminal work of [59], the authors

conduct a study on the relationship between emotions (basic and compound) and facial action unit

117 is an aggregate of action units in all datasets; typically each dataset has from 10 to 12 AUs labelled by purposely
trained annotators.
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Table 5.8: Basic emotions and their prototypical and observational AUs from [59]. The weights w in
brackets correspond to the fraction of annotators that observed the AU activation.

Emotion Prototypical AUs Observational AUs (with weights w)
happiness 12, 25 6 (0.51)
sadness 4, 15 1 (0.6), 6 (0.5), 11 (0.26), 17 (0.67)
fear 1, 4, 20, 25 2 (0.57), 5 (0.63), 26 (0.33)
anger 4, 7, 24 10 (0.26), 17 (0.52), 23 (0.29)
surprise 1, 2, 25, 26 5 (0.66)
disgust 9, 10, 17 4 (0.31), 24 (0.26)

activations. The summary of the study is a Table of the emotions and their prototypical and observa-

tional actions units (Table 1 in [59]), which we include in Table 5.8 for completeness. Prototypical

ones are action units that are labelled as activated across all annotators’ responses, observational are

action units that are labelled as activated by a fraction of annotators. For example, in emotion hap-

piness the prototypical are AU12 and AU25, the observational is AU6 with weight 0.51 (observed by

51% of the annotators).

Here let us mention that Table 5.8 constitutes the relatedness between the emotion categories and

action units obtained from a cognitive study. In our experiments, in Section 5.2.4, we also show that

such relatedness can be inferred empirically from external dataset annotations.

We propose a co-annotation strategy to couple the training of emotions and action unit predictions.

Given an image x with the ground truth basic emotion yemo, we enforce the prototypical and observa-

tional AUs of this emotion to be activated. We co-annotate the image (x, yemo) with yau; this image

contributes to both LEmo and LAU
2 in eq. 5.10. We re-weight the contributions of the observational

AUs with the annotators’ agreement score (from Table 5.8).

Similarly, for an image x with ground truth action units yau, we check whether we can co-annotate

it with an emotion label. For an emotion to be present, all its prototypical and observational AUs

have to be present. In cases when more than one emotion is possible, we assign the label yemo of the

emotion with the largest requirement of prototypical and observational AUs. The image (x, yau) that

is co-annotated with the emotion label yemo contributes to both LAU and LEmo in eq. 5.10. We use

this approach to develop FaceBehaviorNet, with co-annotation.

2Here we overload slightly our notations; for co-annotated images, yau has variable length and only contains proto-
typical and observational AUs.
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Coupling of basic emotions and AUs via distribution matching The aim here is to align the pre-

dictions of emotions and action units tasks during training. For each sample x we have the predictions

of emotions p(yemo|x) as the softmax scores over seven basic emotions and we have the prediction

of AU activations p(yi
au|x), i = 1, . . . , 17 as the sigmoid scores over 17 AUs.

The distribution matching idea is the following: we match the distribution over AU predictions

p(yi
au|x) with the distribution q(yi

au|x), where the AUs are modeled as a mixture over the basic

emotion categories:

q(yi
au|x) = ∑

yemo∈{1,...,7}
p(yemo|x) p(yi

au|yemo), (5.12)

where p(yi
au|yemo) is defined in a deterministic way from Table 5.8 and is equal to 1 for proto-

typical/observational action units, or to 0 otherwise. For example, AU2 is prototypical for emotion

surprise and observational for emotion fear and thus q(yAU2|x) = p(ysurprise|x) + p(yfear|x)3.

This matching aims to make the network’s predicted AUs consistent with the prototypical and ob-

servational AUs of the network’s predicted emotions. So if, e.g., the network predicts the emotion

happiness with probability 1, i.e., p(yhappiness|x) = 1, then the prototypical and observational AUs

of happiness, i.e., AUs 12, 25 and 6- need to be activated in the distribution q: q(yAU12|x) = 1;

q(yAU25|x) = 1; q(yAU6|x) = 1; q(yi
au|x) = 0, i ∈ {1, .., 14}.

In spirit of the distillation approach [83], we match the distributions p(yi
au|x) and q(yi

au|x) by mini-

mizing the cross entropy with the soft targets loss term4:

LDM = Ex

17

∑
i=1

[−p(yi
au|x)log q(yi

au|x)], (5.13)

where all available training samples are used to match the predictions. We use this approach to

develop FaceBehaviorNet, with distr-matching.

A mix of the two strategies, co-annotation and distribution matching, is also possible. Given an

image x with the ground truth annotation of the action units yau, we can first co-annotate it with a

soft label in form of the distribution over emotions and then match it with the predictions of emotions

3We also tried a variant with reweighting for observational AUs, i.e. p(yi
au|yemo) = w

4This can be seen as minimizing the KL-divergence KL(p||q) across the 17 action units.
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p(yemo|x). More specifically, for each basic emotion, we compute the score of its prototypical and

observational AUs being present. For example, for emotion happiness, we compute (yAU12 + yAU25 +

0.51 · yAU6)/(1+ 1+ 0.51), or se all weights to be equal to 1, when no reweighting is used. We take

a softmax over the scores to produce the probabilities over emotion categories. In this variant, every

single image that has ground truth annotation of AUs will have a soft emotion label assigned to it.

Finally we match the predictions p(yemo|x) and the soft label by minimizing the cross entropy with

soft targets similarly to eq. 5.13. We use this approach to develop FaceBehaviorNet, with soft co-

annotation.

Coupling of categorical emotions and AUs with continuous affect In our work, continuous af-

fect (valence and arousal) is implicitly coupled with the basic expressions and action units via a joint

training procedure. Also one of the datasets we used has annotations for categorical and continu-

ous emotions (AffectNet [151]). Studying an explicit relationship between them is a novel research

direction beyond the scope of this work.

FaceBehaviorNet structure Fig.5.2 shows the structure of the holistic (multi-task, multi-domain

and multi-label) FaceBehaviorNet, based on the 13 convolutional and pooling layers of VGG-FACE

[161] (its fully connected layers are discarded), followed by 2 fully connected layers, each with

4096 hidden units. The structure of FaceBehaviorNet is based on the VGG-Face as it has been pre-

trained with a large dataset for face recognition and therefore many human faces have been used in

its construction. A (linear) output layer follows that gives final estimates for valence and arousal; it

also gives 7 basic expression logits that are passed through a softmax function to get the final 7 basic

expression predictions; lastly, it gives 17 AU logits that are passed through a sigmoid function to get

the final 17 AU predictions. One can see that the predictions for all tasks are pooled from the same

feature space.
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Figure 5.2: The holistic (multi-task, multi-domain, multi-label) FaceBehaviorNet; ’VA/AU/EXPR-
BATCH’ refers to batches annotated in terms of VA/AU/7 basic expressions

5.2.3 Pre-Processing, Performance Measures & Network Training Details

At first, we describe the two pre-processing steps that has been used to generate the input data for

affect analysis. Next, we present the databases that we utilised, as well as the evaluation metrics used

across these databases. Finally, we present the network implementation details.

Pre-Processing

We used the SSH detector [152] based on ResNet and trained on the WiderFace dataset [220] to

extract, from all images, face bounding boxes and 5 facial landmarks; the latter were used for face

alignment. All cropped and aligned images were resized to 96× 96× 3 pixel resolution and their

intensity values were normalized to [−1, 1].
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Databases

We utilised the following databases in our experiments: Aff-Wild, AffectNet, AFEW, RAF-DB,

BP4D-Spontaneous (denoted as BP4DS), BP4D+, DISFA, EmotioNet. We selected to work with

these databases because they provide a large number of samples with accurate annotations of valence-

arousal, basic expressions and AUs. Through training with these datasets, the networks learn to rec-

ognize affective states under a large number of image conditions, e.g., different resolutions, poses,

orientations and lighting conditions. These datasets also include a variety of samples in gender, eth-

nicity and race.

Performance measures

We use:

• the CCC for Aff-Wild (as CCC was the evaluation criterion of Aff-Wild Challenge) and AffectNet

(for valence and arousal estimation, we use CCC to be consistent)

• the total accuracy for AFEW (as this metric was the evaluation criterion of the EmotiW Challenges),

the mean diagonal value of the confusion matrix for RAF-DB (as this criterion was selected for

evaluating the performance in this database by [128]), the F1 score for AffectNet (for evaluating

the 7 basic expressions, as this metric is widely used in classification task)

• the F1 score for BP4D-Spontaneous, BP4D+ (as this metric was the evaluation criterion of the

respective FERA 2015 and 2017 Challenges) and DISFA (for consistency purposes) For AU detec-

tion in Emotionet, the Challenge’s metric was the average between: a) the mean F1 score, across

all AUs, b) the mean accuracy, across all AUs; regarding the emotion classification it was the av-

erage between: a) the mean F1 score, b) the unweighted average recall (UAR), over all emotion

categories.

Training Implementation Details

At this point let us describe the strategy that was used for feeding images from different databases to

FaceBehaviorNet. At first, the training set was split into three different sets, each of which contained
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images that were annotated in terms of either valence-arousal, or action units, or seven basic expres-

sions; let us denote these sets as VA-Set, AU-Set and EXPR-Set, respectively. During training, at

each iteration, three batches, one from each set (as can be seen in Fig.5.2), were concatenated and fed

to FaceBehaviorNet. This step was important for network training, because: i) the network minimizes

the objective function of eq. 5.10; at each iteration, the network has seen images from all categories

and thus all loss terms contribute to the objective function, ii) since the network sees an adequate

number of images from all categories, the weight updates (during gradient descent) are not based on

noisy gradients; this in turn prevents poor convergence behaviors; otherwise, we would need to tackle

these problems, e.g. do asynchronous SGD as proposed in [102] to make the task parameter updates

decoupled, iii) the CCC cost function needs an adequate sequence of predictions.

Since VA-Set, AU-Set and EXPR-Set had different sizes, they needed to be ’aligned’. To do so,

we selected the batches of these sets in such a manner, so that after one epoch we have sampled all

images in the sets. In particular, we chose batches of size 401, 247 and 103 for the VA-Set, AU-Set and

EXPR-Set, respectively. The training of FaceBehaviorNet was performed in an end-to-end manner,

with a learning rate of 10−4. A 0.5 Dropout value was used in the fully connected layers. Training

was performed on a Tesla V100 32GB GPU and training time was about 2 days. The Tensorflow

platform has been used.

5.2.4 Task-Relatedness from Empirical Evidences

Table 5.8 was created using a cognitive and psychological study with human participants. Next,

we created another Table inferred empirically from external dataset annotations. In particular, we

used the recently proposed Aff-Wild2 database, which is the first in-the-wild database that contains

annotations for all three behavior tasks that we are dealing with.

At first, we trained a network for AU detection on the union of Aff-Wild2 and GFT databases [72].

Next, this network was used for automatically annotating all Aff-Wild2 videos with AUs. Table 5.9

shows the distribution of AUs for each basic expression. In parenthesis next to each AU (e.g. AU12)

is the percentage of images (0.82) annotated with the specific expression (happiness) in which this
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AU (AU12) was activated.

Table 5.9: Relatedness between basic emotions and AUs, inferred from Aff-Wild2

Emotion AUs (with weights w)
happy 12 (0.82), 25 (0.7), 6 (0.57), 7 (0.83), 10 (0.63)
sad 4 (0.53), 15 (0.42), 1 (0.31), 7 (0.13), 17 (0.1)
fearful 1 (0.52), 4 (0.4), 25 (0.85), 5 (0.38), 7 (0.57), 10 (0.57)
angry 4 (0.65), 7 (0.45), 25 (0.4), 10 (0.33), 9 (0.15)
surprised 1 (0.38), 2 (0.37), 25 (0.85), 26 (0.3), 5 (0.5), 7 (0.2)
disgusted 9 (0.21), 10 (0.85), 17 (0.23), 4 (0.6), 7 (0.75), 25 (0.8)

5.2.5 Experimental Results

Ablation Study on Loss Functions

At first, we compare the performance of FaceBehaviorNet when trained: i) with only the loss func-

tions of eq. 5.10 and without using the coupling losses described in Section 5.2.2, ii) with co-

annotation coupling loss, iii) with soft co-annotation coupling loss, iv) with distr-matching coupling

loss, v) with soft co-annotation and distr-matching coupling losses. Table 5.10 shows the results

obtained using all these approaches, whilst Tables 5.8 and 5.9 are used for the task relatedness.

Table 5.10: Performance evaluation of valence-arousal, seven basic expression and action units pre-
dictions on all used databases provided by the FaceBehaviorNet when trained with/without the cou-
pled losses, under the two task relatedness scenarios.

Databases Relatedness Aff-Wild AffectNet AFEW RAF-DB EmotioNet DISFA BP4DS BP4D+

FaceBehaviorNet CCC-V CCC-A CCC-V CCC-A
F1

Score
Total

Accuracy
Mean diag.

of conf. matrix
F1

Score
Accuracy

F1
Score

F1
Score

F1
Score

no coupling loss - 0.55 0.36 0.56 0.46 0.54 0.38 0.67 0.49 0.94 0.52 0.61 0.57
co-annotation [59] 0.56 0.38 0.56 0.46 0.55 0.40 0.67 0.49 0.94 0.54 0.64 0.58

soft co-annotation [59] 0.56 0.39 0.57 0.47 0.57 0.41 0.67 0.50 0.94 0.54 0.64 0.60
distr-matching [59] 0.56 0.37 0.57 0.49 0.57 0.42 0.68 0.50 0.94 0.56 0.66 0.58

soft co-annotation
and distr-matching [59] 0.59 0.41 0.59 0.50 0.60 0.43 0.70 0.51 0.95 0.57 0.67 0.60

co-annotation Aff-Wild2 0.55 0.37 0.56 0.47 0.54 0.40 0.67 0.50 0.93 0.54 0.61 0.57
soft co-annotation Aff-Wild2 0.56 0.37 0.57 0.47 0.55 0.42 0.68 0.52 0.94 0.58 0.63 0.59

distr-matching Aff-Wild2 0.57 0.39 0.60 0.51 0.57 0.42 0.69 0.50 0.94 0.57 0.62 0.58
soft co-annotation
and distr-matching Aff-Wild2 0.60 0.40 0.61 0.51 0.60 0.42 0.71 0.54 0.94 0.60 0.66 0.60

Many deductions can be made. Firstly, when FaceBehaviorNet is trained with any coupling loss, or

any combination of these, it displays a better (or in the worst case equal) performance on all databases,

in both task relatedness scenarios. This validates the fact that the proposed losses help to couple the

three studied tasks regardless of which relatedness scenario was followed; this shows the generality
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of the proposed losses that boosted the performance of the network. Secondly, the performance in

estimation of valence and arousal improved, although we did not explicitly designed a coupling loss

for this; we only coupled emotion categories and action units. We conjecture that when action unit

detection and expression classification accuracy is improving (due to coupling), valence and arousal

performance also improves, because valence and arousal are implicitly coupled with emotions via

joint dataset annotations for both emotion types.

Thirdly, in all scenarios, the co-annotation loss results in FaceBehaviorNet having the worst perfor-

mance when compared to all other coupling losses. Furthermore, in both settings, when the network

was trained with the soft co-annotation loss, the performance increase in AUs was bigger than the cor-

responding increase in expressions; whereas, when the network was trained with the distr-matching

loss the performance increase in expressions was bigger than the corresponding increase in AUs. Fi-

nally, overall best results have been achieved, in both scenarios, when FaceBehaviorNet was trained

with both soft co-annotation and distr-matching losses. In particular, in both settings, an average per-

formance increase of more than 2% has been observed when using both coupling losses, compared to

the (two) cases when only one of them was used.

Comparison with State-of-the-Art and Single-Task Methods

Table 5.11: Performance evaluation of valence-arousal, seven basic expression and action units pre-
dictions on all utilised databases provided by the FaceBehaviorNet and state-of-the-art methods.

Databases Aff-Wild AffectNet AFEW RAF-DB EmotioNet DISFA BP4DS BP4D+

CCC-V CCC-A CCC-V CCC-A
F1

Score
Total

Accuracy
Mean diagonal
of conf. matrix

F1
Score

Mean
Accuracy

F1
Score

F1
Score

F1
Score

best performing CNN [105, 109] 0.51 0.33 - - - - - - - - - -
FATAUVA-Net [26] 0.40 0.28 - - - - - - - - - -

(2 × ) AlexNet [151] - - 0.60 0.34 0.58 - - - - - - -
non-linear SVM [47] - - - - - 0.38 - - - - - -

VGG-FACE-mSVM [128] - - - - - - 0.58 - - - - -
AlexNet [17] - - - - - - - 0.39 0.83 - - -

ResNet-34 [57] - - - - - - - 0.64 0.82 - - -
DLE extension [225] - - - - - - - - - - 0.59 -

[193] - - - - - - - - - - - 0.58
(3 ×) VGG-FACE single-task 0.52 0.31 0.53 0.43 0.51 0.37 0.59 0.41 0.92 0.47 0.56 0.54

FaceBehaviorNet, no coupling loss 0.55 0.36 0.56 0.46 0.54 0.38 0.67 0.49 0.94 0.52 0.61 0.57
FaceBehaviorNet, soft co-annotation

and distr-matching, [59] 0.59 0.41 0.59 0.50 0.60 0.43 0.70 0.51 0.95 0.57 0.67 0.60

FaceBehaviorNet, soft co-annotation
and distr-matching, Aff-Wild2 0.60 0.40 0.61 0.51 0.60 0.42 0.71 0.54 0.94 0.60 0.66 0.60

Next, we trained a VGG-FACE network on all the dimensionally annotated databases to predict

valence and arousal; we also trained another VGG-FACE network on all categorically annotated
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databases, to perform seven basic expression classification; finally we trained a third VGG-FACE

network on all databases annotated with action units, so as to perform AU detection. For brevity these

three single-task networks are denoted as ’(3 ×) VGG-FACE single-task’ in one row of Table 5.11.

We compared these networks’ performance with the performance of FaceBehaviorNet when trained

with and without the coupling losses. We also compare them with the performances of the state-

of-the-art methodologies of each utilised database: i) FATAUVA-Net [26], which was the winner of

Aff-Wild Challenge; ii) the best performing CNN (VGG-FACE) on Aff-Wild [105, 109]; iii) the best

performing networks (AlexNet) on AffectNet [151] (in Table 5.11 they are denoted as ’(2×) AlexNet’

as they are two different networks: one for VA estimation and another for expression classification);

iv) the baseline network (non-linear Chi-square kernel based SVM) [51] on EmotiW Challenges; v)

VGG-FACE-mSVM [128] on RAF-DB; vi) the baseline network (AlexNet) on EmotioNet [17]; vii)

ResNet-34, which was the winner of the EmotioNet Challenge [57]; viii) Discriminant Laplacian

Embedding extension (DLE extension) [225], which was the winner of FERA 2015 on BP4DS; ix)

[193], which was the winner of FERA 2017 on BP4D+. Table 5.11 displays the performance of all

these networks.

Here, let us mention that on RAF-DB the best performing network is the Deep Locality-preserving

CNN (DLP-CNN) of [128] with a performance metric value of 0.74; this network was trained using

a joint classical softmax loss - which forces different classes to stay apart - and a newly created

loss - that pulls the locally neighboring faces of the same class together. For the task of expression

recognition, our approach used the standard cross entropy loss; therefore a fair comparison cannot be

made with our model because DLP-CNN uses a different cost function that we do not use and thus

DLP-CNN is not listed in Table 5.11.

It might be argued that the more data used for network training (even if they contain partial or non-

overlapping annotations), the better network performance will be in all tasks. However this may not be

true, as the three studied tasks are non-homogeneous and each one of them contains ambiguous cases:

i) there is generally discrepancy in the perception of the disgust, fear, sadness and (negative) surprise

emotions across different people and across databases; ii) the exact valence and arousal value for a

particular affect is also not consistent among databases; iii) the AU annotation process is a hard to do
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and error prone one. Nevertheless, from Table 5.11, it can be verified that FaceBehaviorNet achieved

a better performance on all databases than the independently trained VGG-FACE single-task models.

This shows that, all described facial behavior understanding tasks are coherently correlated to each

other; training an end-to-end architecture with heterogeneous databases simultaneously, therefore,

leads to improved performance.

In Table 5.11, it can be observed that FaceBehaviorNet trained with no coupling loss: i) ouperforms

the state-of-the-art by 3.5% (average CCC) on Aff-Wild, 4% (average CCC) on AffectNet, 9% on

RAF-DB and 2% on BP4DS; ii) has the same performance on AFEW; iii) shows inferior performance

by 4% on AffectNet and 1.5% (on average) on EmotioNet, 1% on BP4D+. However, when FaceBe-

haviorNet is trained with soft co-annotation and distr-matching losses (either when task relatedness is

inferred from Aff-Wild2 or from [59]), it shows superior performance to all state-of-the-art methods.

The fact that it outperforms these methods and the single-task networks, in both task relatedness set-

tings, verifies the generality of the proposed losses; network performance is boosted independently of

the Table of task relatedness which was used.

Zero-Shot and Few-Shot Learning

In order to further prove and validate that FaceBehaviorNet learned good features encapsulating all

aspects of facial behaviour, we conducted zero-shot learning experiments for classifying compound

expressions. Given that there exist only 2 datasets (EmotioNet and RAF-DB) annotated with com-

pound expressions and that they do not contain a lot of samples (less than 3,000 each), at first, we used

the predictions of FaceBehaviorNet together with the rules from [59] to generate compound emotion

predictions. Additionally, to demonstrate the superiority of FaceBehaviorNet, we used it as a pre-

trained network in a few-shot learning experiment. We took advantage of the fact that our network

has learned good features and used them as priors for fine-tuning the network to perform compound

emotion classification.

RAF-DB database At first, we performed zero-shot experiments on the 11 compound categories of

RAF-DB. We computed a candidate score, Cs(yemo), for each class yemo:
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Cs(yemo) = [
17

∑
k=1

p(yk
au|yemo)]

−1 ·
17

∑
k=1

p(yk
au|x) p(yk

au|yemo)

+ p(yemo1) + p(yemo2)

+ 0.5 · ( p(yv|x)
|p(yv|x)|

+ 1), p(yv|x) 6= 0, (5.14)

where: i) the first term of the sum is FaceBehaviorNet’s predictions of only the prototypical (and

observational) AUs that are associated with this compound class according to [59]; in this manner,

every AU acts as an indicator for this particular emotion class; this terms describes the confidence

(probability) of AUs that this compound emotion is present; ii) p(yemo1) and p(yemo2) are FaceBe-

haviorNet’s predictions of only the basic expression classes emo1 and emo2 that are mixed and form

the compound class (e.g., if the compound class is happily surprised then emo1 is happy and emo2 is

surprised); iii) the last term of the sum is added only to the happily surprised and happily disgusted

classes and is either 0 or 1 depending on whether FaceBehaviorNet’s valence prediction is negative

or positive, respectively; the rationale is that only happily surprised and (maybe) happily disgusted

classes have positive valence; all other classes are expected to have negative valence as they cor-

respond to negative emotions. Our final prediction was the class that had the maximum candidate

score.

Table 5.12 shows the results of this approach when we used the predictions of FaceBehaviorNet

trained with and without the soft co-annotation and distr-matching losses. Best results have been

obtained when the network was trained with the coupling losses. One can observe, that this approach

outperformed by 4.8% the VGG-FACE-mSVM [128] which has the same architecture as our network

and it has been trained for compound emotion classification.

Next, we target few-shot learning. In particular, we fine-tune the FaceBehaviorNet (trained with and

without the soft co-annotation and distr-matching losses) on the small training set of RAF-DB. In

Table 5.12 we compare its performance to a state-of-the-art network. It can be seen that our fine-

tuned FaceBehaviorNet, trained with and without the coupling losses, outperformed by 1.2% and

3.7%, respectively, the best performing network, DLP-CNN, that was trained with a loss designed for
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this specific task.

EmotioNet database Next, we performed zero-shot experiments on the EmotioNet basic and com-

pound set that was released for the related Challenge. This set includes 6 basic plus 10 compound

categories, as described at the beginning of this Section. Our zero-shot methodology was similar to

the one described above for the RAF-DB database.

The results of this experiment can be found in Table 5.12. Best results have also been obtained

when the network was trained with the two coupling losses. It can be observed that this approach

outperformed by 5.7% and 8.6% in F1 score and Unweighted Average Recall (UAR), respectively,

the state-of-the-art NTechLab’s [17] approach, which used the Emotionet’s images with compound

annotation.

Table 5.12: Performance evaluation of generated compound emotion predictions on EmotioNet and
RAF-DB databases.

Databases EmotioNet RAF-DB

Methods
F1

Score
Unweighted

Average Recall
Mean diagonal
of conf. matrix

zero-shot, FaceBehaviorNet, no coupling loss 0.243 0.260 0.342
zero-shot, FaceBehaviorNet, both coupling losses 0.312 0.329 0.364

NTechLab [17] 0.255 0.243 -
VGG-FACE-mSVM [128] - - 0.316

DLP-CNN [128] - - 0.446
fine-tuned FaceBehaviorNet, no coupling loss - - 0.458

fine-tuned FaceBehaviorNet, both coupling losses - - 0.483



Chapter 6

Affect Synthesis

Rendering photorealistic facial expressions from single static faces while preserving the identity infor-

mation is an open research topic which has significant impact on the area of affective computing. Gen-

erating faces of a specific person with different facial expressions can be used in various applications,

including face recognition [24, 161], face verification [188, 191], emotion prediction [104, 108, 110],

expression database generation, facial expression augmentation and entertainment.

In this Chapter, we present a novel approach that uses an arbitrary face image with a neutral expres-

sion and synthesizes a new face image of the same person, but with a different expression, generated

according to a categorical or dimensional emotion representation model. This problem cannot be

tackled using small databases with labeled facial expressions, as it would be really difficult to disen-

tangle facial expressions and identity information through them. Our approach is based on analysis of

a large 4D facial database, the 4DFAB [29]. A dimensional emotion model, in terms of valence and

arousal [215] [176], has been used to annotate a large amount of 600,000 facial images in 4DFAB. I

should be mentioned that it is the first time that the dimensional model of affect is used when synthe-

sizing face images. A categorical emotion model, in terms of the six basic facial expressions (Anger,

Disgust, Fear, Happiness, Sadness, Surprise), has also been used, according to which 12,000 expres-

sions were generated from the 4DFAB, including 2,000 cases for each of the six basic expressions.

The proposed approach for facial affect synthesis can accept, either a pair of valence-arousal values

and synthesise the respective facial affect, or a path of affect in the 2D VA Space and synthesise the

123
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respective temporal facial affect sequence, or a value indicating the desired basic facial expression

and synthesise it. A given neutral 2D image of a person is used in all cases to appropriately transfer

the synthesised affect. The affect synthesis is implemented by fitting a 3D Morphable Model on the

neutral image, then deforming the reconstructed face, adding the inputted affect and blending the new

face with given affect into the original image.

Qualitative experiments illustrate the synthesis of realistic images, when the neutral image is sam-

pled from 15 well known lab-controlled and in-the-wild databases; also showing the achieved higher

quality when compared to Generative Adversarial Network (GAN) generated facial affect. Then, we

use the synthesized facial images for data augmentation and for training Deep Neural Networks over

eight databases, annotated with either dimensional or categorical affect labels. We show that im-

proved affect recognition, when compared to state-of-the-art methods, as well as to GAN-based data

augmentation is achieved, over all databases.

6.1 Related Work

Facial expression transfer is a research field for mapping and generating desired images of specified

subject and facial expression. Many methods achieved significant results for high-resolution images

and are applied to a wide range of applications, such as facial animation, facial editing, and facial

expression recognition.

There are mainly two categories of methods for facial expression transfer from a single image: tra-

ditional graphic-based methods and emerging generative methods. In the first case, some methods

directly warp the input face to create the targeted expression, by either 2D warps [66, 68], or 3D

warps [18, 23, 134]. Other methods construct parametric global models. In [150], a probabilistic

model is learned, in which existing and generated images obey structural constraints. [8] added fine-

scale dynamic details, such as wrinkles and inner mouth, that are associated with facial expressions.

Although these methods have achieved some positive results in high-resolution and one-to-many im-

age synthesis, they are still limited due to their sophisticated design and expensive computation.

In [194], the authors developed a real-time face-to-face expression transfer system, with an extra
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blending step for mouth. This 2D-to-3D approach shows promising results, but due to the nature of

its formulation, it is unable to retrieve fine-details, and its applicability is limited to expressions lying

in a linear shape subspace with known rank. The authors extended this system to human portrait video

transfer [195]. They captured facial expressions, eye gaze, rigid head pose, and motions of the upper

body of a source actor and transferred them to a target actor in real time.

The second category of methods is based on data-driven generative models. At the beginning, some

generative models, such as deep belief nets (DBN) [189] and higher-order Boltzmann machines [171],

had been applied to facial expression synthesis. However, these models faced problems such as blurry

generated images, incapability of fine control of facial expression and low-resolution outputs.

With the recent development of Generative Adversarial Networks (GANs) [75], these networks have

been applied to facial expression transfer; due to the fact that the generated images are of high-quality,

these provided positive results. A generative model is trained according to a dataset, including all

information about identity, expression, viewing angle, etc, while performing facial expression trans-

fer. Generative modeling methods reduce the complicated design of the connection between facial

textures and emotional states and encode intuitionistic facial features into parameters of data distri-

bution. However, the main drawback of GANs is the training instability and the trade-off between

visual quality and image diversity.

Since the original GAN could not generate facial images with a specific facial expression referring to a

specific person, some methods conditioned on expression categories have been proposed. Conditional

GANs (cGANs) [149] (and conditional variational autoencoders (cVAEs) [184]) can generate samples

conditioned on attribute information, when this is available. Those networks require large training

databases so that identity information can be properly disambiguated. Otherwise, when presented

with an unseen face, the networks tend to generate faces which look like the “closest” subject in the

training datasets. During training, those networks require the knowledge of the attribute labels; it is

not clear how to adapt them to new attributes without retraining from scratch. Finally, these networks

suffer from mode-collapse (e.g., the generator only outputs samples from a single mode, or with

extremely low variety) and blurriness.

The conditional difference adversarial autoencoder (CDAAE) [242] aims at synthesizing specific ex-
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pressions for unseen persons with a targeted emotion or facial action unit label. However, such GAN-

based methods are still limited to discrete facial expression synthesis, i.e., they cannot generate a

face sequence showing a smooth transition from an emotion to another. [55] proposed an Expression

Generative Adversarial Network (ExprGAN) in which the expression intensity could be controlled

in a continuous manner from weak to strong. The identity and expression representation learning

were disentangled and there was no rigid requirement of paired samples for training. The authors

developed a three-stage incremental learning algorithm to train the model on small datasets.

In [165], the authors proposed a weakly supervised adversarial learning framework for automatic fa-

cial expression synthesis based on continuous action unit coefficients. In [167], the GANimation was

proposed that additionally controlled the generated expression by AU labels, and allowed a continu-

ous expression transformation. The authors introduced an attention-based generator to promote the

robustness of their model for distracting backgrounds and illuminations.

There are some differences between continuous expression synthesis based on AUs and VA. Firstly,

AUs are related to some facial muscles, with only a small number of them being mapped to facial ex-

pression modelling. On the contrary, the VA model covers the whole spectrum of emotions. Moreover,

mapping AUs to emotions is not straightforward (different psychological studies provide different re-

sults). GANimation is solely based on automatic annotation of AUs, whilst the proposed methodology

is based on manual, i.e., more robust and trusted, VA annotation of the 4DFAB database. Finally, it

can be mentioned that annotation of AUs needs experienced FACS coders; especially in in-the-wild

datasets. That is why, there exists only one in-the-wild database annotated for AUs (existence and not

intensity information), the EmotioNet, which only contains 50,000 annotations, in terms of 12 AUs.

Recently, [186] utilized landmarks and proposed the geometry-guided GAN (G2GAN) to generate

smooth image sequences of facial expressions. G2GAN uses geometry information based on dual

adversarial networks to express face changes and synthesizes facial images. Through manipulating

landmarks, smoothly changed images can also be generated. However, this method demands a neutral

face of the targeted person as the intermediate of facial expression transfer. Although the expression

removal network could generate a neutral expression of a specific person, this procedure brings addi-

tional artifacts and degrades the performance of expression transition.
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[168] used geometry (facial landmarks) to control the expression synthesis with a facial geometry

embedding network and proposed a Geometry-Contrastive Generative Adversarial Network (GC-

GAN) to transfer continuous emotions across different subjects, even if there existed big difference in

shapes. [217] proposed a boundary latent space and boundary transformer. They mapped the source

face into the boundary latent space, and transformed the source face’s boundary to the target’s bound-

ary, which was the medium to capture facial geometric variances during expression transfer.

In [137], an unpaired learning framework was developed to learn the mapping between any two fa-

cial expressions in the facial blendshape space. This framework automatically transforms the source

expression in an input video clip to a specified target expression. This work lacks the capability

to generate personalized expressions; individual-specific expression characteristics, such as wrin-

kles and creases, are ignored. Also, the transitions between different expressions are not taken into

consideration. Finally, this work is limited in the sense that it cannot produce highly exaggerated

expressions.

Both the graphic-based methods and the genererative methods of facial expression transfer have been

used to create synthetic data that are used as auxiliary data in network training, augmenting the train-

ing dataset. A synthetic data generation system with a 3D convolutional neural network (CNN) was

created in [1] to confidentially create faces with different levels of saturation in expression. [5] pro-

posed the Data Augmentation Generative Adversarial Network (DAGAN) which is based on cGAN

and tested its effectiveness on vanilla classifiers and one shot learning. DAGAN is a basic framework

for data augmentation based on cGAN.

[244] presented another basic framework for face data augmentation based on CycleGAN [243].

Similar to cGAN, CycleGAN is also an general-purpose solution for image-to-image translation,

but it learns a dual mapping between two domains simultaneously with no need for paired training

examples, because it combines a cycle consistency loss with adversarial loss. The authors used this

framework to generate auxiliary data for imbalanced datasets, where the data class with fewer samples

was selected as transfer target and the data class with more samples was the reference.
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6.2 Materials & Methods

In the following, we first describe the 4DFAB database, its annotation in terms of valence-arousal and

the selection of expressive categorical sequences from it. The annotated 4DFAB database has been

used for constructing the 3D facial expression gallery that is the basis of our affect synthesis pipeline

described in the next Section. Then we describe the methods we have used: a) for registering and

correlating all components of the 3D gallery into a universal coordinate frame; b) for constructing the

3D Morphable Model used in this work.

The 4DFAB Database

The 4DFAB database [29] is the first large scale 4D face database designed for biometric applica-

tions and facial expression analysis. It consists of 180 subjects (60 females, 120 males) aging from

5 to 75 years. 4DFAB was collected over a period of 5 years under four different sessions, with

over 1,800,000 3D faces. The database was designed to capture articulated facial actions and spon-

taneous facial behaviors, the latter being elicited by watching emotional video clips. In each of the

four sessions, different video clips were shown that stimulated different spontaneous behaviors. We

used all 1,580 spontaneous expression sequences (video clips) for dimensional emotion analysis and

synthesis. The frame rate of 4DFAB database is 60 FPS and the average clip length for sponta-

neous expression sequences is 380 frames. Consequently the 1,580 expression sequences correspond

to 600,000 frames, which we annotated in terms of valence and arousal (details follow in the next

subsection). These sequences cover a wide range of expressions as shown in Figs. 6.2 and 6.3.

Moreover, to be able to develop the categorical emotion synthesis model, we used the 2,000 expressive

3D meshes per basic expression (12,000 meshes in total) that were provided along with 4DFAB. Those

3D meshes corresponded to (annotated) apex frames of posed expression sequences in 4DFAB. Such

examples are shown in Fig.6.1.
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AN

DI

FE

J

SA

SU

Figure 6.1: Examples from the 4DFAB of apex frames with posed expressions for the six basic
expressions: Anger (AN), Disgust (DI), Fear (FE), Joy (J), Sadness (SA), Surprise (SU)

4DFAB Dimensional Annotation

Targeting to develop the novel dimensional expression synthesis method, all 1,580 dynamic 3D se-

quences (i.e., over 600,000 frames) of 4DFAB have been annotated in terms of valence and arousal

emotion dimensions. In total, three experts were chosen to perform the annotation task. Each expert

performed a time-continuous annotation for both affective dimensions. The application-tool described

in [226] was used in the annotation process.

Each expert logged into the application-annotation tool using an identifier (e.g. his/her name) and

selected an appropriate joystick; then the application showed a scrolling list of all videos and the

expert selected a video to annotate; then a screen appeared that showed the selected video and a
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slider of valence or arousal values ranging in [−1, 1] ; the expert annotated the video by moving the

joystick either up or down; finally, a file was created with the annotations. The mean inter-annotation

correlation per annotator was 0.66, 0.70, 0.68 for valence and 0.59, 0.62, 0.59 for arousal. The average

of those mean inter-annotation correlations was 0.68 for valence and 0.60 for arousal. Those values

are high, indicating a very good agreement between annotators. As a consequence, the final label

values were chosen to be the mean of those three annotations.

Examples of frames from the 4DFAB along with their annotations, are shown in Fig. 6.2. Fig. 6.3

shows the 2D histogram of annotations of 4DFAB. In the following, we refer to the 4DFAB database

either as: i) the 600,000 frames with their corresponding 3D meshes, which have been annotated with

2D valence and arousal (VA) emotion values, or ii) the 12,000 apex frames of posed expressions with

their corresponding 3D meshes, which have categorical annotation.

Figure 6.2: The 2D Valence-Arousal Space and some representative frames of 4DFAB

Mesh Pre-Processing: Establishing Dense Correspondence

Each 3D mesh is first re-parameterised into a consistent form where the number of vertices, the

triangulation and the anatomical meaning of each vertex are made consistent across all meshes. For

example, if the vertex with index i in one mesh corresponds to the nose tip, it is required that the
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Figure 6.3: The 2D histogram of annotations of 4DFAB

vertex with the same index in every mesh corresponds to the nose tip too. Meshes satisfying the

above properties are said to be in dense correspondence with one another. So, correlating all these

meshes with a universal coordinate frame (viz. a 3D face template) is a step to follow so as to establish

dense correspondence.

In order to do so, we need to define a 2D UV space for each mesh, which in fact is a contiguous

flattened atlas that embeds the 3D facial surface. Such a UV space is associated with its corresponding

3D surface through a bijective mapping; thus, establishing dense correspondence between two UV

images implicitly establishes a 3D-to-3D correspondence for the mapped mesh. UV mapping is the

3D modelling process of projecting a 2D image to a 3D model’s surface for texture mapping. The

letters U and V denote the axes of the 2D texture, since X, Y and Z are already taken to denote the

axes of the 3D object in model space.

We employ an optimal cylindrical projection method [21] to synthetically create a UV space for each

mesh. A UV map (which is an image I), with each pixel encoding both spatial information (X, Y,

Z) and texture information (R, G, B), is produced, on which we perform non-rigid alignment. Non-

rigid alignment is performed through the UV-TPS method that utilises key landmarks fitting and Thin

Plate Spline (TPS) warping [35]. Following [29], we perform several modifications to [35], to suit
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our data. Firstly, we build session-and-person-specific Active Appearance Models (AAMs) [144] to

automatically track feature points in the UV sequences. This means that 4 different AAMs are built

and used separately for one subject. Main reasons behind this are: i) textures of different sessions

differ due to several facts (i.e. aging, beards, make-ups, experiment lighting condition), ii) person-

specific model is proven more accurate and robust in specific domains [30].

In total, 435 neutral meshes and 1047 expression meshes (1 neutral and 2-3 expressive meshes per per-

son and session) in 4DFAB were selected; these contained annotations with 79 3D landmarks. They

were unwrapped and rasterised to UV space, then grouped for building the corresponding AAMs.

Each UV map was flipped to increase fitting robustness. Once all the UV sequences were tracked

with 79 landmarks, they were then warped to the corresponding reference frame using TPS, thus

achieving the 3D dense correspondence. For each subject and session, one specific reference coor-

dinate frame from his/her neutral UV map was built. From each warped frame, we could uniformly

sample the texture and 3D coordinates. Eventually, a set of non-rigidly corresponded 3D meshes

under the same topology and density were obtained.

Given that meshes have been aligned to their designated reference frame, the last step was to establish

dense 3D-to-3D correspondences between those reference frames and a 3D template face. This is a

3D mesh registration problem, solved by Non-rigid ICP [4]. We employed it to register the neutral

reference meshes to a common template, the Large Scale Facial Model (LSFM) [20]. We brought all

600,000 3D meshes into full correspondence with the mean face of LSFM. As a result, we created

a new set of 600,000 3D faces that share identical mesh topology, while maintaining their original

facial expressions. In the following, this set constitutes the 3D facial expression gallery which we use

for facial affect synthesis.

Constructing a 3D Morphable Model

General Pipeline A common 3DMM consists of three parametric models: the shape, the camera

and the texture models.

To build the shape model, the training 3D meshes should be put in dense correspondence (similarly to
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the previous Mesh Pre-Processing subsection). Next, Generalized Procrustes Analysis is performed to

remove any similarity effects, leaving only shape information. Finally, Principal Component Analysis

(PCA) is applied to these meshes, which generates a 3D deformable model as a linear basis of shapes.

This model allows for the generation of novel shape instances. The model can be expressed as:

S(p) = s̄ + Usp (6.1)

where s̄ ∈ R3N is the mean component of 3D shape (in our case it is the mean of shape models from

the LSFM model described in the next subsection) with N denoting the number of vertices in the

shape model; Us ∈ R3N×ns is the shape eigenbase (in our case it is the identity subspace of LSFM)

with ns << 3N being the number of principal components (ns is chosen to explain a percentage of

the training set variance; generally, this percentage is 99.5%); and p ∈ Rns is a vector of parameters

which allows for the generation of novel shape instances.

The purpose of camera model is to project the object-centered Cartesian coordinates of a 3D mesh

instance into 2D Cartesian coordinates in an image plane. At first, given that the camera is static, the

3D mesh is rotated and translated using a linear view transformation, which results in 3D rotation and

translation components. Then, a nonlinear perspective transformation is applied. Note that quater-

nions [122, 213] are used to parametrise the 3D rotation, which ensures computational efficiency,

robustness and simpler differentiation. In this manner we construct the camera parameters (i.e., 3D

translation components, quaternions and parameter of linear perspective transformation). The camera

model of the 3DMM applies the above transformations on the 3D shape instances generated by the

shape model. Finally, the camera model can be written as:

W(p, c) = P(S(p), c), (6.2)

where S(p) is a 3D face instance; c ∈ Rnc are the camera parameters (for rotation, translation and

focal length; nc is 7); and P : R3N → R2N is the perspective camera projection.

For the texture model, large facial “in-the-wild” data-bases annotated for sparse landmarks are needed.

Let us assume that the meshes have corresponding camera and shape parameters. These images are
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passed through a dense feature extraction function that returns feature-based representations for each

image. These are then sampled from the camera model at each vertex location so as to build a texture

sample, which will be nonsensical for some regions mainly due to self occlusions present in the mesh

projected in the image space. To complete the missing information of the texture samples, Robust

PCA (RPCA) with missing values [181] is applied. This produces complete feature-based textures

that can be processed with PCA to create the statistical model of texture, which can be written as:

T (λ) = t̄ + Utλ, (6.3)

where t ∈ R3N is the mean texture component (in our case it is the mean of texture model from

LSFM); Ut ∈ R3N×nt and λ ∈ Rnt are the texture subspace (eigenbase) and texture parameters,

respectively, with nt << 3N being the number of principal components. This model can be used to

generate novel 3D feature-based texture instances.

The Large Scale Facial Model (LSFM) We have adopted the LSFM model constructed using the

MeIn3D dataset [20]. The construction pipeline of LSFM starts with a robust approach to 3D land-

mark localization resulting in generating 3D landmarks for the meshes. The 3D landmarks are then

employed as soft constraints in Non-rigid ICP to place all meshes in correspondence with a template

facial surface; the mean face of the Basel Face Model [162] has been chosen. However, the large co-

hort of data could result in convergence failures. These are an unavoidable byproduct of the fact that

both landmark localization and NICP are non-convex optimization problems sensitive to initialization.

A refinement post-processing step weeds out problematic subjects automatically, guaranteeing that

the LSFM models are only constructed from training data for which there exist a high confidence of

successful processing. Finally, the LSFM models are derived by applying PCA on the corresponding

training sets, after excluding the shape vectors that have been classified as outliers. In total, 9,663

subjects are used to build LSFM, which covers a wide variety of age (from 5 to over 80s), gender

(48% male, 52% female), and ethnicity (82% White, 9% Asian, 5% Mixed Heritage, 3% Black and

1% other).
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Figure 6.4: The facial affect synthesis framework: the user inputs an arbitrary 2D neutral face and the
affect to be synthesized (a pair of valence-arousal values in this case)

6.3 The Proposed Approach

In this Section, we present the fully automatic facial affect synthesis framework. The user needs to

provide a neutral image and an affect, which can be a VA pair of values, a path in the 2D VA space,

or one of the basic expression categories. Our approach: 1) performs face detection and landmark

localization on the input neutral image, 2) fits a 3D Morphable Model (3DMM) on the resulting

image [19], 3) deforms the reconstructed face and adds the input affect, and 4) blends the new face

with the given affect into the original image. Here let us note that the total time needed for the first

two steps is about 400ms; this has to be performed only once, if generating multiple images from

the same input image. Specific details regarding the described steps of our approach follow. This

procedure is shown in Fig. 6.4.

Face Detection & Landmark Localization

The first step to edit an image is to locate landmark points that will be used for fitting the 3DMM. We

first perform face detection with the face detection model from [230] and then utilize [46] to localize

68 2D facial landmark points which are aware of the 3D structure of the face, in the sense that points

on occluded parts of the face (most commonly part of the jawline) are correctly localized.
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3DMM-Fitting: Cost Function & Optimization

The goal of this step is to retrieve a reconstructed 3D face with the texture sampled from the original

image. In order to do so, we first need a 3DMM; we select the LSFM.

Fitting a 3DMM on face images is an inverse graphics approach to 3D reconstruction and consists

of optimizing three parametric models of the 3DMM, the shape, texture and camera models. The

optimization aims at rendering a 2D image which is as close as as possible to the input one. In

our pipeline we follow the 3DMM fitting approach of [19]. As is already noted, we employ the

LSFM [20] S(p) to model the identity deformation of faces. Moreover, we adopt the robust, feature-

based texture model T (λ) of [19], built from in-the-wild images. The employed camera model is a

perspective transformationW(p, c), which projects shape S(p) on the image plane.

Consequently, the objective function that we optimize can be formulated as:

argmin
p,λ,c

‖F(W(p, c))− T (λ)‖2 + cl‖Wl(p, c)− sl‖2 + cs‖p‖2
Σ−1

s
+ ct‖λ‖2

Σ−1
t

, (6.4)

where the first term denotes the pixel loss between the feature based image F sampled at the projected

shape’s locations and the model generated texture; the second term denotes a sparse landmark loss

between the image 2D landmarks and the corresponding 2D projected 3D points, where the 2D shape,

sl, is provided by [46]; the rest two terms are regularization terms which serve as counter over-fitting

mechanism, where Σs and Σt are diagonal matrices with the main diagonal being eigenvalues of the

shape and texture models respectively; cl, cs and ct are weights used to regularize the importance of

each term during optimization and were empirically set to 105, 3× 106 and 1, respectively, following

[19]. Note also, that the 2D landmarks term is useful as it drives the optimization to converge faster.

Eq. 6.4 is solved by the Project-Out variation of Gauss-Newton optimization as formulated in [19].

From the optimized models, the optimal shape instance constitutes the neutral 3D representation of

the input face. Moreover, by utilizing the optimal shape and camera models, we are able to sample

the input image at the projected locations of the recovered mesh and extract a UV texture, that we
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later use for rendering.

Deforming Face & Adding Affect

Given an affect and an arbitrary 2D image I, we first fit the LSFM to this image using the afore-

mentioned 3DMM fitting method. After that, we can retrieve a reconstructed 3D face sorig with the

texture sampled from the original image (texture sampling is simply extracting image pixel value for

each projected 3D vertex in image plane). Let us assume that we have created an affect synthesis

model MA f f that takes the affect as input and generates a new expressive face (denoted as sgen), i.e.,

s = MA f f (a f f ect) (specific details regarding the generation of the expressive face, can be found in

subsection 6.3). Next, we calculate the facial deformation ∆s by subtracting the synthesized face sgen

from the LSFM template s̄, i.e., ∆s = sgen − s̄, and impose this deformation on the reconstructed

mesh, i.e., snew = sorig + ∆s. Therefore, we obtain a 3D face (dubbed snew) with facial affect.

Synthesizing 2D Face

The final step in our pipeline is to render the new 3D face snew back to the original 2D image. To

do that we employ the mesh that we have deformed according to the given affect, the extracted UV

texture and the optimal camera transformation of the 3DMM. For rendering, we pass the three model

instances to a renderer and we use as background the background of the input image. Lastly, the

rendered image is fused with the original image via poisson blending [164] to smooth the boundary

between foreground face and image background so as to produce a natural and realistic result. In our

experiments, we used both a CPU-based renderer [2] and a GPU-based renderer [69]. The GPU-based

renderer greatly decreases the rendering time, as it needs 20ms to render a single image, while the

CPU-based renderer needs 400ms.

Synthesising Expressive Faces with Given Affect

VA & Basic Expression cases: Building Blendshape Models & Computing Mean Faces Let us

first describe the VA case. We have 600,000 3D meshes (established into dense correspondence) and
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their VA annotations. We want to appropriately discretize the VA Space into classes, so that each

class contains a sufficient number of data. This is due to the fact that if classes contain only few

examples, it is more likely to include identity information. However, the synthesized facial affect

should only describe the expression associated with the VA pair of values, rather than information for

the person’s identity, gender, or age. We have chosen to perform agglomerative clustering [139] on

the VA values, using the euclidean distance as metric and the ward as linkage criterion (keeping the

correspondence between VA values and 3D meshes). In this manner, we created 550 clusters, i.e.,

classes. Then we built blendshape models and computed the mean face per class. Fig. 6.5 illustrates

the mean faces of various classes. It should be mentioned that the majority of classes correspond to

the first two quadrants of the VA Space, namely the regions of positive valence (as can be seen in the

2D histogram of Fig. 6.3).

Figure 6.5: Some mean faces of the 550 classes in the VA Space

As far as the basic expression case is concerned, based on the derived 12,000 3D meshes, 2,000 for

each of the six basic expressions, we built six blendshape models and six corresponding mean faces.
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User Selection: VA/Basic Expr & Static/Temporal Synthesis The user first chooses the type of

affect that our approach will generate. The affect could be either a point, or a path in the VA space, or

one the six basic expression categories. If the user chooses the latter, then we retrieve the mean face of

this category and add it on the 3D face reconstructed from the user’s input neutral image. In this case,

the only difference in Fig. 6.4 would be for the user to input a basic expression, the happy one, instead

of a VA pair of values. If the user chooses the former, then (s)he needs to additionally clarify if our

approach should generate an image (’static synthesis’) or a sequence of images (’temporal synthesis’)

with this affect.

Static synthesis If the user selects ’static synthesis’, then the user should input a specific VA pair of

values. Then, we retrieve the mean face of the class to which this VA value belongs. We use this mean

face as the affect to be added on the 3D face reconstructed from the provided neutral image. Fig. 6.4

shows the proposed approach for this specific case. Fig. 6.6 illustrates the procedure described in 6.3

given that the 550 VA classes are already created.

Temporal synthesis If the user selects ’temporal synthesis’, then, (s)he should provide a path in the

VA space (for instance by drawing) that the synthesized sequence should follow. Then, we retrieve

the mean faces of the classes to which the VA values of the path belong. We use each of these mean

faces as the affect to be added on the 3D faces reconstructed from the provided neutral image. As a

consequence, an expressive sequence is generated that shows the evolution of affect on the VA path

specified by the user.

Here let us mention that the fact that the 4DFAB used in our approach is a temporal database, ensures

that successive video frames’ annotations are adjacent in the VA Space, since they generally show the

same or slightly different states of affect. Thus, the 3D meshes of successive video frames will lie in

the same and in adjacent classes in the 2-D VA space. Thus mean faces from adjacent classes can be

used to show temporal evolution of affect as was above described.

Expression Blendshape Models Expression blendshape models provide an effective way to param-

eterize facial behaviors. The localized blendshape model [153] has been used to describe the selected

VA samples. To build this model, we first bring all meshes into full correspondence following the
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Figure 6.6: Generation of new facial affect from the 4D face gallery; the user provides a target VA
pair

dense registration approach described in Section 6.2. As a result, we have a set of training meshes

with the same number of vertices and identical topology. Note that we have also selected one neutral

mesh for each subject, which should have full correspondence with the rest data. Next, we subtract

each 3D mesh from the respective neutral mesh, and create a set of m difference vectors di ∈ R3N.

We then stack them into a matrix D = [d1, ..., dm] ∈ R3N×m, where N is number of vertices in the

mesh. Finally, a variant of sparse Principal Component Analysis (PCA) is applied to the data matrix

D, so as to identify sparse deformation components C ∈ Rh×1:

arg min ‖D− BC‖2
F + Ω (C) s.t. V (B) , (6.5)

where, the constraint V can be either max (|Bk|) = 1, ∀k or max (Bk) = 1, B ≥ 1, ∀k, with

Bk ∈ R3N×1 denoting the kth components of sparse weight matrix B = [B1, · · · , Bh]. Selection of

these two constraints depends on the actual usage; the major difference is that the latter one allows

for negative weights and therefore enables deformation towards both directions, which is useful for

describing shapes like muscle bulges. In this paper, we have selected the latter constraint, as we

wish to enable bidirectional muscle movement and synthesise a rich variety of expressions. The

regularization of sparse components C was performed with `1/`2 norm [10, 216]. To permit more

local deformations, additional regularization parameters were added into Ω (C). To compute optimal

C and B, an iterative alternating optimization was employed (please refer to [153] for more details).
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6.4 Databases

To evaluate our facial affect synthesis method in different scenarios (e.g. controlled laboratory en-

vironment, uncontrolled in-the-wild setting), we utilized neutral facial images from as many as 15

databases (both small and large in terms of size). Table 6.1 briefly presents the Multi-PIE [78],

Aff-Wild [109, 226], AFEW 5.0 [47], AFEW-VA [118], BU-3DFE [223], RECOLA [173], Affect-

Net [151], RAF-DB [128], KF-ITW [19], Face place, FEI [196], 2D Face Sets and Bosphorus [179]

databases that we used in our experimental study. Let us note that for AffectNet no test set is re-

leased and thus we use the released validation set to test on and randomly divide the training set into

a training and a validation subset (with a 85/15 split).

Table 6.1 presents these databases by showing: i) the model of affect they use, their condition, their

type (static images or audiovisual image sequences), the total number of frames and (male/female)

subjects that they contain and the range of ages of the subjects, and ii) the total number of images that

we synthesized using our approach (both in the valence-arousal and the six basic expressions cases).

6.5 Qualitative evaluation of achieved facial affect synthesis

This section provides a qualitative evaluation of the proposed approach by showing many synthesized

images or image sequences from all fifteen databases described in the previous Section; as well as

by comparing images generated by state-of-the-art GANs (StarGAN, GANimation) and the proposed

approach [54, 103].

We used all databases mentioned in Section 6.4 to supply the proposed approach with ’input’ neutral

faces. We then synthesized the emotional state corresponding to specific affects (both in VA case and

in the six basic expressions one) for these images. At first we show many generated images (static

synthesis) according to different VA values, then we illustrate examples of generated image sequences

(temporal synthesis) and next we present some synthesized (static) images according to the six basic

expressions. Finally, we visually compare images generated by our approach with synthesized images

by StarGAN and GANimation.
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Table 6.1: Databases used in our approach, along with their properties and the number of synthesized
images in the valence-arousal case and the six basic expressions one; ’static’ means images, ’A/V’
means audiovisual sequences, i.e., videos

Databases (DBs) DB Type Model of Affect Condition DB Size # of Subjects Age Range
Total # of

Synthesized Images
VA Basic Expr

MULTI-PIE [78] static
Neutral, Surprise, Disgust,

Smile + Squint, Scream controlled 755,370
337

Male: 235
Female: 102

- 52,254 5,520

Kinect Fusion ITW [19] static Neutral, Happiness , Surprise in-the-wild 3,264 17 - 116,235 12,236

FEI [196] static Neutral, Smile controlled 2,800
200

Male: 100
Female: 100

19-40 11,400 1,200

Face place1 static 6 Basic Expr, Neutral, Confusion controlled 6,574
235

Male: 143
Female: 92

- 59,736 6,288

AFEW 5.0 [47] A/V 6 Basic Expr, Neutral in-the-wild 41,406 >330 1-77 705,649 56,514

RECOLA [173] A/V VA controlled 345,000
46

Male: 19
Female: 27

- 46,455 4,890

BU-3DFE [223] static 6 Basic Expr, Neutral controlled 2,500
100

Male: 56
Female: 44

18-70 5,700 600

Bosphorus [179] static 6 Basic Expr controlled 4,666
105

Male: 60
Female: 45

25-35 17,018 1,792

AffectNet [151] static
VA + 6 Basic Expr,
Neutral + Contempt in-the-wild

450,000
manually
annotated

- 0 to >50 2,476,235 176,425

Aff-Wild [109] [226] A/V VA in-the-wild 1,224,094
200

Male: 130
Female: 70

- 60,135 6,330

AFEW-VA [118] A/V VA in-the-wild 30,050 <600 - 108,864 11,460

RAF-DB [128] static
6 Basic, Neutral

+ 11 Compound Expr in-the-wild
15,339
+ 3,954 - 0-70 121,866 12,828

2D Face Sets2:
Pain

static
6 Basic, Neutral
+ 10 Pain Expr controlled 599

23
Male: 13

Female: 10
- 2,736 288

2D Face Sets:
Iranian static Neutral, Smile controlled 369

34
Male: 0

Female: 34
- 2,679 282

2D Face Sets:
Nottingham Scans static Neutral controlled 100

100
Male: 50

Female: 50
- 5,700 600
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(a)

(b) (c)

Figure 6.7: (a)-(c). VA Case of static (facial) synthesis across all databases; first rows show the neu-
tral, second ones show the corresponding synthesized images and third rows show the corresponding
VA values. Images of: (b) kids, (c) elderly people and (a) in-between ages, are shown.

6.5.1 Results on Static & Temporal Affect Synthesis

Fig. 6.7 shows representative results of facial affect synthesis, when user inputs a VA pair and selects

to generate a static image. These results are organized in three age groups: Fig. 6.7(b) kids, Fig.

6.7(c) elderly people and Fig. 6.7(a) in-between ages. In each part, the first row illustrates neutral

images sampled from each of the aforementioned databases, the second one shows the respective

synthesized images and the third shows the respective VA values that were synthesized. Moreover,

Fig. 6.8 shows neutral images on the left hand side (first column) and synthesized images, with

various valence and arousal values, on the right hand side (following columns). It can be observed

that the synthesized images are identity preserving, realistic and vivid. Fig. 6.9 refers to the basic

expression case; it shows neutral images on the left hand side of (a) and (b) and synthesized images

with basic expressions on the right hand side. Fig. 6.10 illustrates the VA case for temporal synthesis,

as was described in Section 4.5.2. Neutral images are shown on the left hand side, while synthesized

face sequences with time-varying levels of affect are shown on the right hand side.

All these Figs. show that the proposed framework works well, when using images from either in-the-

wild, or controlled databases. This indicates that we can effectively synthesize facial affect irregard-
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Figure 6.8: VA case of facial synthesis: on the left hand side are the neutral 2D images and on the
right the synthesized images with different levels of affect
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(a) (b)

Figure 6.9: Basic Expression Case of facial synthesis: on the left hand side of (a) and (b) are the
neutral 2D images and on the right the synthesized images with some basic expressions

less of image conditions (e.g., occlusions, illumination and head poses).

6.5.2 Comparison with GANs

In order to characterize the value that the proposed approach imparts, we provide qualitative com-

parisons with two state-of-the-art GANs that have been widely used for affect generation, namely

StarGAN [31] and GANimation. Like CycleGAN, Star-GAN performs image-to-image translation,

but adopts a unified approach such that a single generator is trained to map an input image to one

of multiple target domains, selected by the user. By sharing the generator weights among different

domains, a dramatic reduction of the number of parameters is achieved.

At first, it should be mentioned that, the original StarGAN synthesized images according to the basic

expressions (apart from facial attributes) and the GANimation synthesized images according to AUs.

However, in psychology, there does not exist any mapping between AUs - VA and no consistent

mapping (across studies) between AUs - expressions, or VA - expressions. In order to achieve a

fair comparison of our method with these networks, we applied them - for the first time - to the VA

Space [117]; we trained them with the same 600,000 frames of 4DFAB that we used in our approach.

In both networks, pre-processing was conducted, which included face detection and alignment. For a

fair comparison, in all presented results (both qualitative and quantitative), the GANs were provided

with the same neutral images and the same VA values.
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Figure 6.10: VA Case of temporal (facial) synthesis: on the left hand side are the neutral 2D images
and on the right the synthesized image sequences
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Figure 6.11: Generated results by our approach, StarGAN and GANimation
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Fig. 6.11 presents a visual comparison between images generated by our approach, StarGAN and

GANimation. It shows the neutral images, the synthesized VA values and the resulting images. It

is evident that our approach synthesizes samples that: i) look much more natural and realistic, ii)

maintain the degree of sharpness of the original neutral image, and iii) combine visual accuracy with

spatial resolution.

Some further deductions can be made from Fig. 6.11. StarGAN does not perform well when tested

on different in-the-wild and controlled databases that include variations in illumination conditions

and head poses. StarGAN is unable to reflect detailed illumination; unnatural lighting changes were

observed on the results. These can be explained because in the original StartGAN paper [31], its

capability to generate affect has not been tested on in-the-wild facial analysis (we refer only to the

case of emotion recognition). In general, StarGAN yields more realistic results when it is trained

simultaneously with multiple datasets annotated for different tasks.

Additionally, in [31], when referring to emotion recognition, StarGAN was trained and evaluated on

Radboud Faces Database (RaFD) [123] which: i) is very small in terms of size (around 4,800 images)

and ii) is a lab-controlled and posed expression database. Last but not least, StarGAN has been tested

to change only a particular aspect of a face among a discrete number of attributes/emotions defined

by the annotation granularity of the dataset. As can be seen in Fig. 6.11, StarGAN cannot accurately

provide realistic results when tested in the much broader and more difficult task of valence and arousal

generation (and estimation).

As far as GANimation is concerned, its results are also worse than the results of our approach. In most

cases, it shows artifacts and in some cases certain levels of blurriness. When compared to StarGAN,

GANimation seems more robust to changing backgrounds and lighting conditions; this is due to the

attention and color masks that it contains. Nevertheless, in general, errors in the attention mechanism

occur when the input contains extreme expressions. The attention mechanism does not seem to suf-

ficiently weight the color transformation, causing transparencies. It is interesting to note that on the

Leonardo DiCaprio image, the synthesized image by GANimation shows open eyes, whereas on the

neutral image (and the one synthesized by our approach) eyes are closed; this illustrates errors of the

mask. For example, in Fig. 6.11, images produced by GANimation in columns 1, 3, 4, 5, 6, 9 show
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the discussed problems.

6.6 Quantitative evaluation of the facial affect synthesis

Next, in order to assess the quality of the synthesized images, we perform a quantitative evaluation

by using them as additional data to train Deep Neural Networks (DNNs). If the synthesized images

are of good quality, using them as additional data will lead to better performance of the DNNs (com-

pared to the case when the DNNs are trained without these additional data). Such data augmentation

methodologies have been widely used in DNN training so as to increase the effective size of the

training dataset. We, therefore, present a data augmentation strategy which uses the synthesized data

produced by our approach, as additional data to train DNNs, for both valence-arousal prediction, as

well as classification into the basic expression categories.

In particular, we describe experiments performed on eight databases, presenting the adopted evalu-

ation criteria, the networks we used and the obtained results. We also report the performances of

the networks trained -in a data augmentation manner- with synthesized images from StarGAN and

GANimation. It is shown that the DNNs trained with the proposed data augmentation methodology

outperform both the state-of-the-art techniques and the DNNs trained with StarGAN and GANima-

tion, in all experiments, validating the effectiveness of the proposed facial synthesis approach. Let

us first explain some notations. In the following, by reporting ’network_name trained using Star-

GAN’, ’network_name trained using GANimation’ and ’network_name trained using the proposed

approach’, we refer to networks trained with the specific database’s training set augmented with data

synthesized by StarGAN, GANimation and the proposed approach, respectively.

6.6.1 Leveraging synthesised data for training DNNs: Valence-Arousal case

In this set of experiments we consider four facial affect databases annotated in terms of valence and

arousal, the Aff-Wild, RECOLA, AffectNet and AFEW-VA data-bases. At first, we selected neutral

frames from these databases, i.e., frames with zero valence and arousal values (human inspection was
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also conducted to make sure that they represented neutral faces). For every frame, we synthesized

facial affect according to the methodology described in Section 6.3. We start by first describing the

evaluation criteria used in our experiments.

The adopted evaluation criteria

The main evaluation criterion that we use is the Concordance Correlation Coefficient (CCC) [124],

which has been widely used in related Challenges (e.g., [200]); we also report the Mean Squared

Error (MSE), since this has been also frequently used in related research.

As already mentioned previously, CCC evaluates the agreement between two time series by scaling

their correlation coefficient with their mean square difference. CCC takes values in the range [−1, 1],

where +1 indicates perfect concordance and −1 denotes perfect discordance. Therefore high values

are desired. CCC is defined as follows:

ρc =
2sxy

s2
x + s2

y + (x̄− ȳ)2 , (6.6)

where sx and sy are the variances of the ground truth and predicted values respectively, x̄ and ȳ are

the corresponding mean values and sxy is the respective covariance value.

The Mean Squared Error (MSE) provides a simple comparative metric, with a small value being

desirable. MSE is defined as follows:

MSE =
1
N

N

∑
i=1

(xi − yi)
2, (6.7)

where x and y are the ground truth and predicted values respectively and N is the total number of

samples.

In some cases we also report the Pearson-CC (P-CC) and the Sign Agreement Metric (SAGR), since

they have been reported by respective state-of-the-art methods.



6.6. Quantitative evaluation of the facial affect synthesis 151

The P-CC takes values in the range [-1,1] and high values are desired. It is defined as follows:

ρxy =
sxy

sxsy
, (6.8)

where sx and sy are the variances of the ground truth and predicted values respectively and sxy is the

respective covariance value.

The SAGR takes values in the range [0,1], with high values being desirable. It is defined as follows:

SAGR =
1
N

N

∑
n=1

δ(sign(xi), sign(yi)), (6.9)

where N is the total number of samples, x and y are the ground truth and predicted values respectively,

δ is the Kronecker delta function and δ(sign(x), sign(y)) is defined as:

δ(sign(x), sign(y)) =


1, x > 0 and y > 0

1, x 6 0 and y 6 0

0, otherwise

(6.10)

1) Experiments on Aff-Wild We synthesized 60,135 images from the Aff-Wild database and added

those images to the training set of the first Affect-in-the-wild Challenge. The employed network

architecture was the AffWildNet (VGG-FACE-GRU) [105,109] described in Chapter 3 of the Thesis.

Table 6.2 shows a comparison of the performance of: the VGG-FACE-GRU trained using: i) our

approach, ii) StarGAN, iii) GANimation; AffWildNet; the winner of the Aff-Wild Challenge [26]

(FATAUVA-Net).

From Table 6.2, it can be verified that the network trained on the augmented dataset, with synthesised

by our approach images, outperformed all other networks. It should be noted that the number of syn-

thesised images (around 60K) was small compared to the size of Aff-Wild’s training set (around 1M),

the latter being already sufficient for training the best performing DNN; consequently, the improve-

ment was not large, about 2%. An interesting observation is that the network trained using StarGAN

displayed worse performance than AffWildNet. This means that the 68 landmark points that were



152 Chapter 6. Affect Synthesis

Table 6.2: Aff-Wild: CCC and MSE evaluation of valence & arousal predictions provided by the
VGG-FACE-GRU trained using our approach vs state-of-the-art networks and methods. Valence and
arousal values are in [−1, 1].

Networks CCC MSE
Valence Arousal Valence Arousal

FATAUVA-Net [26] 0.396 0.282 0.123 0.095
VGG-FACE-GRU

trained using StarGAN 0.556 0.424 0.085 0.060

VGG-FACE-GRU
trained using GANimation 0.576 0.433 0.077 0.057

AffWildNet [105, 109] 0.570 0.430 0.080 0.060
VGG-FACE-GRU

trained using the proposed approach 0.595 0.445 0.074 0.051

passed as additional input to the AffWildNet helped the network in reaching a better performance

than just adding a small amount (compared to the training set size) of auxiliary synthesized data. The

MSE error improvement on Valence and Arousal estimation provided by the augmented training vs

the AffWildNet one, over the different areas of the VA space, is shown through the 2D histograms

presented in Fig. 6.12. It can be seen that the improvement on MSE was better in areas in which a

larger number of new samples was generated, i.e., in the positive valence regions.

2) Experiments on RECOLA We generated 46,455 images from RECOLA; this number corresponds

to around 40% of its training data set size. The employed network architecture was the ResNet-GRU

described in [109].

Table 6.3 shows a comparison of the performance of: the ResNet-GRU network trained using: i)

our approach, ii) StarGAN, and iii) GANimation; AffWildNet fine-tuned on RECOLA, as reported

in [109]; a ResNet-GRU directly trained on RECOLA, as reported in [109].

From Table 6.3, it can be verified that the network trained using the proposed approach outperformed

all other networks. The gain in performance can be justified by the fact that the number of synthe-

sised images (around 46,500) was significant compared to the size of RECOLA’s training set (around

120,000) and that the original training set size was not very sufficient to train the DNNs. It is worth

mentioning that the GAN based methods have not managed to provide a sufficiently enriched dataset

so that a similar boost in the achieved performances could be obtained. The MSE error improvement

on Valence and Arousal estimation provided by the augmented training vs the original one (which
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(a)

(b)

Figure 6.12: The 2D histogram of valence and arousal Aff-Wild’s test set annotations, along with
the MSE per grid area, in the case of (a) AffWildNet and (b) VGG-FACE-GRU trained using the
proposed approach

was 0.045-0.100 vs 0.055-0.160), over the different areas of the VA space, is shown through the 2D

histograms presented in Fig. 6.13. Big reduction of MSE value was achieved in all covered VA areas.

3) Experiments on AffectNet The AffectNet database contains around 450,000 manually annotated

images and around 550,000 automatically annotated images for valence-arousal. We only used the

manually annotated images so as to be consistent with the state-of-the-art networks that were also
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Table 6.3: RECOLA: CCC evaluation of valence & arousal predictions provided by the ResNet-GRU
trained using the proposed approach vs other state-of-the-art networks and methods.

Networks CCC
Valence Arousal

ResNet-GRU [109] 0.462 0.209
ResNet-GRU

trained using StarGAN 0.503 0.245

ResNet-GRU
trained using GANimation 0.486 0.222

fine-tuned AffWildNet [109] 0.526 0.273
ResNet-GRU trained

using the proposed approach 0.554 0.312

trained using this set. Additionally, the manually annotated set ensures that the images used by

our approach to synthesise new, are indeed neutral. We created 2,476,235 synthesised images from

the AffectNet database, a number that is more than 5 times bigger than the training data size. The

employed network architecture was VGG-FACE. For comparison purposes, we trained the network

using the original training data set (let us call this network ’the VGG-FACE baseline’).

Table 6.4: AffectNet: CCC, P-CC, SAGR and MSE evaluation of valence & arousal predictions
provided by the VGG-FACE trained using the proposed approach vs state-of-the-art networks and
methods. Valence and arousal values are in [−1, 1].

Networks CCC P-CC SAGR MSE
Valence Arousal Valence Arousal Valence Arousal Valence Arousal

AlexNet [151] 0.60 0.34 0.66 0.54 0.74 0.65 0.14 0.17
the VGG-FACE baseline 0.50 0.37 0.54 0.48 0.65 0.60 0.19 0.18

VGG-FACE
trained using StarGAN 0.55 0.42 0.58 0.49 0.74 0.73 0.17 0.16

VGG-FACE trained
using GANimation 0.56 0.45 0.59 0.51 0.74 0.74 0.15 0.16

VGG-FACE trained
using the proposed approach 0.62 0.54 0.66 0.55 0.78 0.75 0.14 0.15

Table 6.4 shows a comparison of the performance of: the VGG-FACE baseline; the VGG-FACE

trained using: i) our approach, ii) StarGAN, and iii) GANimation; AlexNet, which is the state-of-the-

art network of the AffectNet database [151].

From Table 6.4, it can be verified that the network trained by the proposed methodology outperformed

all other networks. This boost in performance has been large, in all evaluation criteria, compared to

the VGG-FACE baseline network, with spread of this improvement over the VA space shown in Fig.

6.14. The explanation arises from the large number of synthesized images that helped the network
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(a)

(b)

Figure 6.13: The 2D histogram of valence and arousal RECOLA’s test set annotations, along with the
MSE per grid area, in the case of (a) ResNet-GRU and (b) ResNet-GRU trained using the proposed
approach

train and generalize better, since in the training set there existed a lot of ranges that were poorly

represented. This is shown in the histogram of the -manually annotated- training set, for valence

and arousal, in Fig. 6.15. Our network also outperformed the AffectNet’s database baseline. For

the arousal estimation, the performance gain was remarkable, mainly in CCC and SAGR evaluation

criteria, whereas for the valence estimation the performance gain was also significant.

4) Experiments on AFEW-VA. We synthesised 108,864 images from the AFEW-VA database, a
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(a)

(b)

Figure 6.14: The 2D histogram of valence and arousal AffectNet’s test set annotations, along with the
MSE per grid area, in the case of (a) the VGG-FACE baseline, (b) the VGG-FACE trained using the
proposed approach

number that is more than 3.5 times bigger than its original size. For training, we used the VGG-

FACE-GRU architecture described in [109]. Similarly to [118], we used a 5-fold person-independent

cross-validation strategy and at each fold we augmented the training set with the synthesised images

of people appearing only in that set (preserving person independence).

Table 6.5 shows a comparison of the performance of: the VGG-FACE-GRU network trained using: i)

our approach, ii) StarGAN, and iii) GANimation; the best performing network as reported in [118].

From Table 6.5, it can be verified that the network trained using the proposed approach outperformed
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Figure 6.15: The 2D histogram of valence and arousal AffectNet’s annotations for the manually
annotated training set

Table 6.5: AFEW-VA: P-CC and MSE evaluation of valence & arousal predictions provided by the
VGG-FACE trained using the proposed approach vs state-of-the-art network and methods. Valence
and arousal values are in [−1, 1].

Networks Pearson CC MSE
Valence Arousal Valence Arousal

best of [118] 0.407 0.450 0.484 0.247
VGG-FACE

trained using StarGAN 0.512 0.489 0.262 0.097

VGG-FACE
trained using GANimation 0.491 0.453 0.308 0.151

VGG-FACE-GRU
trained using the proposed approach 0.562 0.614 0.226 0.075

all other networks. Great boost in performance was achieved. The general gain in performance can

be justified by the fact that the number of synthesised images (around 109,000) is much greater than

the number of images in the dataset (around 30,000), with the latter being rather small for effectively

training the DNNs. The 2D histogram in Fig. 6.16 shows the achieved MSE when using the proposed

approach over the different areas of the VA space.
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Figure 6.16: The 2D histogram of valence and arousal AFEW-VA’s test set annotations, along with
the MSE per grid area, in the case of the VGG-FACE trained using the proposed approach

6.6.2 Leveraging synthesised data for training DNNs: Basic Expressions case

In the following experiments we used the synthesized faces to train DNNs, for classification into the

six basic expressions, over four facial affect databases, RAF-DB, AffectNet, AFEW and BU-3DFE.

Our first step has been to select neutral frames from these four databases. Then, for each frame, we

synthesised facial affect according to the methodology described in Section 6.3. We start by first

describing the evaluation criteria used in our experiments.

The adopted evaluation criteria

One evaluation criterion used in the experiments is total accuracy, defined as the total number of

correct predictions divided by the total number of samples. Another criterion is the F1 score, which

is a weighted average of the recall (= the ability of the classifier to find all the positive samples) and

precision (= the ability of the classifier not to label as positive a sample that is negative). The F1

score reaches its best value at 1 and its worst score at 0. In our multi-class problem, F1 score is the

unweighted mean of the F1 scores of the expression classes. F1 score of each class is defined as:

F1 =
2× precision× recall

precision + recall
(6.11)
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Another criterion that is used is the average of the diagonal values of the confusion matrix for the

seven basic expressions.

One, or more of the above criteria are used in our experiments, so as to illustrate the comparison with

other state-of-the-art methods.

Table 6.6: RAF-DB: The diagonal values of the confusion matrix for the seven basic expressions
and their average, using the VGG-FACE trained using the proposed approach, as well as using other
state-of-the-art networks.

Networks Anger Disgust Fear Happy Sad Surprise Neutral Average
LDA-VGG-FACE [128] 0.661 0.250 0.378 0.731 0.515 0.535 0.472 0.506

mSVM-VGG-FACE [128] 0.685 0.275 0.351 0.853 0.649 0.663 0.599 0.582
the VGG-FACE baseline 0.691 0.287 0.363 0.853 0.661 0.666 0.600 0.589
mSVM-DLP-CNN [128] 0.716 0.522 0.622 0.928 0.801 0.812 0.803 0.742

VGG-FACE trained
using the proposed approach 0.784 0.644 0.622 0.911 0.812 0.845 0.806 0.775

(a) (b)

Figure 6.17: The confusion matrix of (a) the VGG-FACE baseline and (b) the VGG-FACE trained
using the proposed approach for the RAF-DB database; 0: Neutral, 1: Anger, 2: Disgust, 3: Fear, 4:
Joy, 5: Sadness, 6: Surprise

1) Experiments on RAF-DB. In this database we only considered the six basic expression categories,

since our approach synthesizes images based on these categories; we ignored compound expressions

that were included in the original dataset. We created 12,828 synthesized images, which are slightly

more than the training images (12,271). We employed the VGG-FACE network. For comparison

purposes, we trained the network using the original training dataset (let us call this network ’the

VGG-FACE baseline’).
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For further comparison purposes, we used the networks defined in [128]: i) mSVM-VGG-FACE: first

the VGG-FACE was trained on the RAF-DB database and then features from the penultimate fully

connected layer were extracted and fed into a Support Vector Machine (SVM) that performed the

classification, ii) LDA-VGG-FACE: same as before: LDA was applied on the features which were

extracted from the penultimate fully connected layer and performed the final classification and iii)

mSVM-DLP-CNN: the designed Deep Locality Preserving CNN network (we refer the interested

reader for more details to [128]) was first trained on the RAF-DB database and then a SVM per-

formed the classification using the features extracted from the penultimate fully connected layer of

this architecture.

Table 6.6 shows a comparison of the performance of the above described networks. From Table 6.6,

it can be verified that the network trained using the proposed approach outperformed all state-of-the-

art nets. When compared to the mSVM-VGG-FACE and LDA-VGG-FACE networks, the boost in

performance has been significant. This can be explained by the fact that the disgust and fear classes,

originally, did not contain a lot of training images, but after adding the synthesised data, they did.

This resulted in obtaining a better performance in the other classes, as well. Interestingly, there was

also a considerable performance gain in the neutral class, that did not contain any synthesised images.

This can be explained by considering the fact that the network trained with the augmented data could

distinguish better the classes, since it had more samples in the two above described categories. Fig.

6.17 illustrates the whole confusion matrix of the VGG-FACE baseline and the VGG-FACE trained

using the proposed approach, giving a better insight on the improved performance and verifying the

above explanations.

2) Experiments on AffectNet. We synthesised 176,425 images from the AffectNet database, a num-

ber that is almost 40% of its size. It should be mentioned that the AffectNet database contained the

six basic expressions and another one, contempt. Our approach synthesized images only for the basic

expressions, so for the contempt class we only kept the original training data. The network architec-

ture that we employed here was VGG-FACE. For comparison purproses, we trained a VGG-FACE

network using the training set of the AffectNet database (let us call this network ’the VGG-FACE

baseline’).
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(a) (b)

Figure 6.18: The confusion matrix of (a) the VGG-FACE baseline and (b) the VGG-FACE trained
using the proposed approach for the AffectNet database; 0: Neutral, 1: Anger, 2: Disgust, 3: Fear, 4:
Joy, 5: Sadness, 6: Surprise, 7: Contempt

Table 6.7 shows a comparison of the performance of: i) the VGG-FACE baseline, ii) the VGG-FACE

network trained using the proposed approach and iii) AlexNet, the baseline network of the AffectNet

database [151].

Table 6.7: AffectNet: Total accuracy and F1 score of the VGG-FACE trained using the proposed
approach vs state-of-the-art networks

Networks Total Accuracy F1 score
AlexNet [151] 0.58 0.58

the VGG-FACE baseline 0.52 0.51
VGG-FACE trained

using the proposed approach 0.60 0.59

From Table 6.7, it can be verified that the network trained using the proposed approach outperformed

all the other networks. In more detail, when compared to the VGG-FACE baseline network, the boost

in performance was significant, as also shown in Fig. 6.18 in terms of the confusion matrices obtained

by the two networks. This can be explained by the big size of the added synthesized images. When

compared to the AffectNet’s baseline, a slightly improved performance was also obtained; this could

be higher, if we had synthesized images for the contempt category as well.

3) Experiments on AFEW. We synthesized 56,514 images from the AFEW database; this number

was almost 1.4 times bigger than its training set size (41,406). The employed network architecture
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(a) (b)

Figure 6.19: The confusion matrix of (a) the VGG-FACE baseline and (b) the VGG-FACE trained
using the proposed approach for the AFEW database; 0: Neutral, 1: Anger, 2: Disgust, 3: Fear, 4:
Joy, 5: Sadness, 6: Surprise

was VGG-FACE. For comparison purposes, we first trained a baseline network on AFEW’s training

set, which we call the VGG-FACE baseline. For further comparisons, we used the following networks

developed by the three winning methods of the EmotiW 2017 Grand Challenge: i) VGG-FACE-FER:

the VGG-FACE was first fine-tuned on the FER2013 database [76] and then trained on the AFEW

as described in [100], ii) VGG-FACE-external: the VGG-FACE was trained on the union of the

AFEW database and some external data as described in [205] and iii) VGG-FACE-LSTM-external-

augmentation: the VGG-FACE-LSTM was trained on the union of the AFEW database and some

external data; then data augmentation was performed, as described in [205].

Table 6.8: AFEW: Total accuracy of the VGG-FACE trained using the proposed approach vs state-
of-the-art networks

Networks Total Accuracy
the VGG-FACE baseline 0.379

VGG-FACE-external [205] 0.414
VGG-FACE-FER [100] 0.483

VGG-FACE-LSTM-external-augmentation [205] 0.486
VGG-FACE trained

using the proposed approach 0.484

Table 6.8 shows a comparison of the performance of the above described networks. From Table 6.8,



6.6. Quantitative evaluation of the facial affect synthesis 163

one can see that the VGG-FACE trained using the proposed approach performed much better than

the same network trained on, either only the AFEW database, or the union of the AFEW database

with some external data whose size in terms of videos was the same as that of AFEW. The boost in

performance can be explained taking into account the fact that the fear, disgust and surprise classes

contained few data in AFEW and that our approach augmented the data size of those classes; in total

the large number of synthesised images assisted to improve the performance of the network. This is

evident when comparing the confusion matrix of the VGG-FACE baseline to the one of VGG-FACE

trained using the proposed approach, as can be seen in Fig.6.19. The diagonal of the two confusion

matrices indicates that there is an increase in the performance in almost all basic categories.

Additionally, performance of our network is slightly better than the performance of the same VGG-

FACE network first fine-tuned on the FER2013 database and then trained on the AFEW. FER2013

is a database of around 35,000 still images and different identities, annotated with the six basic ex-

pressions. In this case, the network that was first fine-tuned on the FER2013 database has seen more

faces, since the tasks were similar. However, still our network provided a slightly better performance.

On the other hand, our network had a slightly worse performance than a VGG-FACE-LSTM network

that was trained with the same external data mentioned before and was also trained with data augmen-

tation. Here, it was the LSTM network, which due to the time recurrent nature could better exploit

the fact that AFEW consists of video sequences.

4) Experiments on BU-3DFE. We synthesized 600 images from the BU-3DFE database. This num-

ber was almost one fourth of its size (2,500). BU-3DFE is a small database and is not really suited

for training DNNs. The network architecture that we employed here was VGG-FACE, with a modi-

fication in the number of hidden units in the two first fully connected layers. Since we did not have

a lot of data for training the network, we i) used 256 and 128 units in the two fully connected layers

and ii) kept the convolutional weights fixed, training only the fully connected ones. For training the

network on this database, we used a 10-fold person-independent cross-validation strategy; in each

fold, we augmented the training set with the synthesised images of people appearing only in that set

(preserving person independence). The reported total accuracy of the model has been the average of

the total accuracies over the 10-folds.
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At first, we trained the above described VGG-FACE network (let us call this network ’the VGG-FACE

baseline’). Next, we trained the above described VGG-FACE network, but also applied on-the-fly data

augmentation techniques, such as: small rotations, left and right flipping, first resize and then random

crop to original dimensions, random brightness and saturation (let us call this network ’VGG-FACE-

augmentation’). Finally, we trained the above described VGG-FACE network using the proposed

approach.

Table 6.9: BU-3DFE: Total accuracy of the VGG-FACE trained using the proposed approach vs the
VGG-FACE baseline and the VGG-FACE trained with on-the-fly data augmentation.

Networks Total Accuracy
the VGG-FACE baseline 0.528

VGG-FACE-augmentation 0.588
VGG-FACE trained

using the proposed approach 0.768

Table 6.9 shows a comparison of the performance of those networks. From Table 6.9, it can be

verified that the network trained using the proposed approach greatly outperformed the networks

trained without it. This indicates that the proposed approach for synthesising images can be used for

data augmentation in cases of small amount of DNN training data, being able to significantly improve

the obtained performance.

6.7 Ablation Studies

6.7.1 Quantitative evaluation of facial affect synthesis in testing or training

Results in the previous section show that the data generated using our approach provide improve-

ments in network performance in both valence-arousal and basic expressions settings, when used for

data augmentation. In the following, we perform further analysis (two different settings) to assess

the quality of our generated data, compared to the data synthesised by StarGAN and GANimation,

focusing only on the synthesised data.

In the first setting, the synthesised data are evaluated as a test set, for each database, against models

trained on real data/images. The AffWildNet that has been trained solely on Aff-Wild’s training
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set, the ResNet-GRU trained on the RECOLA’s training set and the VGG-FACE baseline trained on

AffectNet’s training set, have been used as emotion regressors and were evaluated on each of the three

afore-mentioned synthesised datasets. From Table 6.10 it is evident that the networks trained on the

afore mentioned databases displayed a much better performance (in all databases) when tested on data

produced by the proposed approach in comparison to data produced by StarGAN, or GANimation.

We further conducted a second setting, using the synthesised data to train respective DNN models.

These models were then evaluated on the real test set of Aff-Wild, RECOLA and AffectNet. Table

6.11 shows the results of this setting. The performance in terms of both CCC and MSE was much

higher in all databases when the networks were trained with data synthesised by the proposed ap-

proach. This difference in achieved performance, along with the former results, reflect the direct

value of our generated data in enhancing regression accuracy.

Table 6.10: CCC and MSE evaluation of valence & arousal predictions provided by the: i) AffWild-
Net (trained on Aff-Wild), ii) ResNet-GRU (trained on RECOLA) and iii) the VGG-FACE baseline
(trained on AffectNet); these networks are tested on images produced by StarGAN, GANimation and
our approach. Each score is shown in the format: Valence value-Arousal value

Databases Methods Evaluation Metrics Networks
AffWildNet [109] ResNet-GRU [109] the VGG-FACE baseline

Aff-Wild
StarGAN

CCC
MSE

0.33-0.26
0.21-0.19 - -

GANimation
CCC
MSE

0.35-0.28
0.19-0.16 - -

Ours
CCC
MSE

0.43-0.33
0.15-0.13 - -

RECOLA
StarGAN CCC - 0.29-0.23 -

GANimation CCC - 0.28-0.22 -
Ours CCC - 0.34-0.33 -

AffectNet
StarGAN

CCC
MSE - -

0.23-0.23
0.34-0.37

GANimation
CCC
MSE - -

0.26-0.21
0.31-0.38

Ours
CCC
MSE - -

0.39-0.31
0.27-0.28

6.7.2 Effect of synthesised data granularity on performance improvement

In this subsection we performed experiments using a subset of our synthesised data for augmenting

the data-bases. Our aim was to see if all synthesised data were needed for augmenting network
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Table 6.11: CCC and MSE evaluation of valence & arousal predictions provided by the: i) AffWild-
Net, ii) ResNet-GRU and iii) the VGG-FACE baseline; these networks are trained on the synthesized
images by StarGAN, GANimation and our approach; these networks are evaluated on the Aff-Wild,
RECOLA and AffectNet test sets. Each score is shown in the format: Valence value-Arousal value

Databases Methods Evaluation Metrics Networks
AffWildNet ResNet-GRU VGG-FACE baseline

Aff-Wild
StarGAN

CCC
MSE

0.16-0.13
0.18-0.17 - -

GANimation
CCC
MSE

0.17-0.14
0.17-0.15 - -

Ours
CCC
MSE

0.21-0.20
0.15-0.12 - -

RECOLA
StarGAN CCC - 0.19-0.10 -

GANimation CCC - 0.17-0.10 -
Ours CCC - 0.23-0.14 -

AffectNet
StarGAN

CCC
MSE - -

0.37-0.29
0.23-0.21

GANimation
CCC
MSE - -

0.40-0.31
0.20-0.19

Ours
CCC
MSE - -

0.45-0.35
0.18-0.17

training and more generally to see how the improvement in classification and regression scaled with

the granularity of synthesised data. In more detail, for each database used in our experiments, we

used a subset of N synthesised data from this database to augment its training set. Table 6.12 shows

the databases and the corresponding N values.

Fig. 6.20 shows the improvement in network performance when training using additionally auxiliary

data; the improvement shown per database is the difference in performance when training networks

with only the database’s training set and when training them with the union of the training and auxil-

Table 6.12: Databases used in our approach and the different values of N for each one; N denotes a
subset of the synthesised data (per database) by the proposed approach

Databases N synthesized data
Aff-Wild N ∈ {10K, 20K, 30K, 40K, 50K, 60K}
RECOLA N ∈ {10K, 20K, 30K, 40K, 50K}

AffectNet (VA)
N ∈ {10K, 20K, 30K, 40K, 50K, 60K, 70K, 80K, 90K, 100K, 110K, 300K, 600K,

1M, 1.5M, 2M, 2.5M}
AFEW-VA N ∈ {10K, 20K, 30K, 40K, 50K, 60K, 70K, 80K, 90K, 100K, 110K}
RAF-DB N ∈ {200, 400, 600, 3.5K, 6.5K, 9.5K, 12.5K}

AffectNet (Expressions) N ∈ {6.5K, 12.5K, 25K, 38K, 56.5K, 75K, 100K, 150K, 180K}
AFEW N ∈ {3.5K, 6.5K, 12.5K, 25K, 38K, 56.5K}

BU-3DFE N ∈ {200, 400, 600}
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(a)

(b)

Figure 6.20: Improvement in network performance vs amount of synthesized data; criteria: (a)
mean/average CCC of VA in Aff-Wild, RECOLA, AffectNet, AFEW-VA and (b) mean diagonal
value of the confusion matrix for RAF-DB, F1 score for AffectNet, Total Accuracy for AFEW and
BU-3DFE.

iary datasets. Fig. 6.20 illustrates for each database the difference in network performance, when N

data generated by our approach (N defined in Table 6.12) were used as auxiliary data.

The performance measure for Aff-Wild, RECOLA, AffectNet and AFEW-VA is the average of va-
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lence CCC and arousal CCC. The performance measure for the rest databases depends on the database,

as reported next.

Dimensional affect generation

For the Aff-Wild database, we used the VGG-FACE-GRU network. When augmenting the dataset

with 30K or less synthesised images, no performance improvement was observed, whereas when

augmenting it with more than 30K, the performance increased, following the increase in the gran-

ularity of synthesised data. Adding synthesised data to the training set seemed to be beneficial for

improving performance and thus improvement would be much greater if we added more than 60K

(if we had more neutral expressions), although probably at a given point, a plateau would be reached

(considering the large training set that consisted of around 1M images).

For the RECOLA database, we used the ResNet-GRU network. When augmenting the dataset with

up to 30K synthesized images, there appeared small performance improvement, whereas when aug-

menting it with more than 30K, the performance was continuously increasing following the increase

in the granularity of synthesised data; this increase is large. This is expected, since 120K frames are

not sufficient for training a network for regression and additionally, 170K frames are not either.

For the AffectNet database, we used the VGG-FACE network. After adding 10K synthesised images,

performance started to increase. This increase continued as more data were added until the training

set had been augmented with 1.5M data. If more data were added, the performance did not change,

implying that a plateau had been reached. The final performance improvement was large.

For the AFEW-VA database, we used the VGG-FACE-GRU network. The improvement was system-

atically very significant. When adding more than 30K data, the increase in performance was more

rapid. The performance is expected to continue increasing while more data are added, as both the

initial training set of around 23K frames and the augmented set of around 135K frames are not large

enough to train a DNN for regression.
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Categorical affect generation

For the RAF-DB database, we used the VGG-FACE network and the performance was measured in

terms of the mean diagonal value of the confusion matrix. The increase in performance was almost

linear as more data were used. The final gain in performance was large. RAF-DB is a very small

database (of size about 12K images) and therefore if we had more data to add, the performance would

further improve.

In the AffectNet database, we used the VGG-FACE network and performance was measured in terms

of the F1 score. Increasing the amount of added data provided a respective increase in performance.

After adding 60K images the performance was increasing at a lower rate. It should be mentioned that

the results included erroneous classification of the contempt class. If we synthesised samples of the

contempt class as well, the network would provide a higher performance; but this was beyond the

scope of our work.

In the AFEW database, we used the VGG-FACE network; the performance measure was total accu-

racy. The performance increased with the addition of more data. This increase was significant. The

AFEW database is a small database (of size about 40K images) and therefore adding data is expected

to improve performance.

In the BU-3DFE database, we used the VGG-FACE network; the performance measure was total

accuracy. There was a huge and rapid increase in network performance with the addition of data.

This is explained by the very small size of BU-3DFE (around 2K) which makes it impossible to train

a neural network on it.

General deductions that can be made from Fig. 6.20:

• the smaller the size of the database, the bigger and faster the increase in performance would be,

when augmenting it with data synthesised by our approach

• the improvement in performance is small if we augment the training set with few data in proportion

to its size

• in dimensionally annotated databases, a plateau is reached and no further improvement is seen

when a lot of data (about ≥ 1.5M in our case) are added
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Table 6.13: Age Analysis in terms of CCC and MSE for the dimensionally annotated databases

Databases Ages # Test Samples # Synthesized Samples Network-Augmented Network
CCC MSE CCC MSE

Aff-Wild

20-29
30-39
40-49
50-59

29,013
99,962
44,727
41,748

5,301
23,427
21,831
9,120

0.61-0.38
0.66-0.47
0.50-0.48
0.58-0.40

0.101-0.063
0.077-0.054
0.048-0.033
0.074-0.054

0.59-0.37
0.61-0.44
0.46-0.44
0.57-0.38

0.102-0.066
0.088-0.066
0.054-0.044
0.075-0.057

total 215,450 59,679 0.60-0.45 0.074-0.051 0.57-0.43 0.080-0.060

RECOLA
30-39
40-49
50-59

90,000
15,000
7,500

11,001
16,188
11,742

0.61-0.38
0.43-0.24
0.49-0.20

-
-
-

0.60-0.34
0.36-0.19
0.44-0.10

-
-
-

total 112,500 38,931 0.55-0.31 - 0.53-0.27 -

AffectNet

0-19
20-29
30-39
40-49
50-59
60-89

172
1,179
1,218
762
569
600

118,902
714,232
814,588
452,504
229,938
146,091

0.67-0.55
0.60-0.53
0.64-0.54
0.64-0.61
0.58-0.53
0.62-0.44

0.105-0.156
0.128-0.159
0.139-0.145
0.149-0.134
0.161-0.149
0.145-0.167

0.61-0.41
0.51-0.36
0.50-0.39
0.49-0.44
0.47-0.34
0.51-0.29

0.127-0.181
0.170-0.193
0.193-0.169
0.202-0.166
0.216-0.181
0.200-0.195

total 4,500 2,476,235 0.62-0.54 0.141-0.150 0.50-0.37 0.190-0.180

AFEW-VA

20-29
30-39
40-49
50-59
60-79

766
1,990
1,558
946
396

17,466
36,388
34,906
15,102
4,102

0.46-0.60
0.51-0.62
0.59-0.47
0.74-0.85
0.63-0.45

0.192-0.084
0.254-0.080
0.211-0.076
0.215-0.045
0.236-0.100

-
-
-
-
-

-
-
-
-
-

total 5,646 108,864 0.57-0.59 0.226-0.075 - -

• the performance due to data augmentation does not increase commensurately; in the AffectNet

database (mainly in the valence-arousal case) the gain yielded by data augmentation saturates as N

increases

• generally, the performance increase is larger in categorically annotated databases in comparison to

dimensionally annotated ones. This is an interesting result, since it indicates that synthesising more

data is needed in the latter case, to make the data distribution more dense.

Effect of subjects’ age in classification & regression results

It is interesting to quantitatively assess the effect of age on the performance of the proposed approach.

However, not all databases contain age information about their subjects. To achieve this, we trained an

age estimator on them. In more detail, we trained a Wide Residual Network (WideResNet) [227] on

the union of IMDB [174] and Adience datasets [60] (so that the training dataset contained an adequate

number of images of people under the age of 25) and tested it on WIKI [174]. Then we applied this

estimator on the test sets of the examined databases.
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Table 6.14: Age Analysis for the categorically annotated databases; criterion for RAF-DB & Affect-
Net is F1 score, for AFEW & BU-3DFE is total accuracy; AFEW test samples refer to number of
videos (frames)

Databases Ages # Test Samples # Synthesized Samples VGG-FACE-Augmented VGG-FACE
Performance Metric Performance Metric

RAF-DB

10-19
20-29
30-39
40-49
50-59
60-69
70-79

168
911
998
516
258
149
68

210
2,250
4,320
3,606
1,776
552
128

0.631
0.813
0.739
0.744
0.709
0.657
0.904

0.446
0.556
0.498
0.511
0.440
0.550
0.635

total 3,068 12,828 0.738 0.505

AffectNet

0-19
20-29
30-39
40-49
50-59
60-69
70-79
80-89

152
882
962
594
431
289
161
29

12,516
45,182
55,513
27,632
20,204
11,178
3,582
618

0.593
0.584
0.593
0.586
0.648
0.564
0.466
0.448

0.453
0.477
0.518
0.532
0.606
0.498
0.398
0.410

total 3,500 176,425 0.590 0.510

AFEW

20-29
30-39
40-49
50-59
60-79

29 (1,536)
156 (8,568)
132 (7,803)
57 (3,202)
16 (764)

6,474
22,518
17,934
7,482
2,106

0.379
0.455
0.553
0.474
0.438

0.241
0.333
0.439
0.456
0.313

total 390 (21,873) 56,514 0.484 0.379

BU-3DFE

20-29
30-39
40-49
50-59
60-70

115
100
100
100
85

192
240
120
30
18

0.800
0.820
0.800
0.790
0.600

0.600
0.570
0.550
0.490
0.400

total 500 600 0.768 0.528

Table 6.13 shows, for each dimensionally annotated database (Aff-Wild, RECOLA, AffectNet and

AFEW-VA), the estimated age groups (we split the age values into appropriate groups so that each

group contained a significant amount of samples), the number of test samples that are within the age

groups, the number of samples synthesised by our approach for each age group, different evaluation

metrics (CCC and MSE) for each age group in two cases: when a network trained only with the

training set of each database was used (denoted as ’Network’ in Table 6.13) and when the same net-

work was trained with the training set augmented with data synthesised by our approach (denoted as

’Network-Augmented’ in Table 6.13). For Aff-Wild and AFEW-VA, the VGG-FACE-GRU network

was used, for RECOLA the ResNet-GRU and for AffectNet the VGG-FACE.



172 Chapter 6. Affect Synthesis

Table 6.14 is similar to Table 6.13 with the difference being that it refers to categorically annotated

databases (RAF-DB, AffectNet, AFEW and BU-3DFE). In this case, the evaluation metrics are the

F1 score for RAF-DB and AffectNet, and the total accuracy for AFEW and BU-3DFE. The ’VGG-

FACE-Augmented’ refers to the case in which the VGG-FACE network is trained on the union of

training set of each database and data synthesised by our approach.

By observing the two Tables (6.13 and 6.14), it is seen that augmenting the training dataset with the

images generated by our approach is beneficial in all age groups, both for regression and classification.

It would be interesting to focus on specific groups, such as very young (<20 years old) in RAF-DB

and AffectNet, each containing more than 150 subjects, or elderly (e.g., 70-79 years old) in AffectNet,

also containing more than 150 subjects. In the former case, the F1 value improved from about 0.45 to

0.6; the F1 values over all categories improved from about 0.51 to 0.66. Although the F1 values in the

very young category were lower than the mean F1 values over all ages, the improvement in both cases

was similar. A similar observation can be made in the latter case, of elderly persons, with the F1 value

in the category being improved from about 0.4 to 0.47. Although these values were lower than the

total F1 values over all ages, which were 0.51 and 0.59 respectively, the improvement in these cases

was similar as well. This verifies the observation that the proposed approach for data augmentation is

also beneficial in cases where the number of available samples is rather small.
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Conclusions & Future Work

7.1 Summary of Thesis Achievements

The current thesis has managed to create new knowledge on affect analysis, recognition and synthesis.

This knowledge contains new large databases in-the-wild, annotated in terms of: dimensional vari-

ables, i.e., valence and arousal; seven basic expression categories; facial action units. It also contains

novel deep neural architectures that are trained with these databases, providing state-of-the-art per-

formance on them and constitute robust priors for both dimensional and categorical recognition over

all other main datasets in-the-wild. Moreover, it includes a new approach for facial affect synthesis

that can be used for data augmentation and improvement of the performance of deep neural networks

in dimensional and categorical affect recognition.

In particular, we first presented the generation of Aff-Wild, a new, very large in-the-wild database.

Aff-Wild has been introduced in a respective Workshop and Challenge in CVPR 2017 and used,

thereafter, by many researchers in the field. We also presented the design of the AffWildNet, which

produced the best performance for valence and arousal estimation on Aff-Wild, both in terms of the

Concordance Correlation Coefficient and the Mean Squared Error criteria, when compared to other

deep learning networks trained on the same database.

We then showed that the AffWildNet, which has been trained on the Aff-Wild database, constitutes

173



174 Chapter 7. Conclusions & Future Work

a robust prior for affect recognition on other datasets and other environments. Using appropriate

retraining methodologies, AffWildNet was able to produce the best performance when retrained and

applied to other dimensional databases, when compared to other state-of-the-art pre-trained and fine-

tuned networks. Furthermore, we have been able to show that AffWildNet can be a robust prior,

not only for dimensional, but also for categorical affect recognition. This was the first time that the

same deep neural architecture has been successfully trained for valence-arousal estimation (which is

a regression analysis problem) and then used for categorical affect analysis (which is a classification,

with seven basic expression categories, problem).

We extended AffWildNet by extracting low-, mid- and high-level latent information from it and

analysing this by multiple RNN subnets. Moreover, we used an ensemble approach so as to per-

form model-level fusion, which produced excellent results for visual affect recognition on the OMG-

Emotion Challenge.

In the following, we presented the extension of Aff-Wild and the generation of Aff-Wild2, which is

the largest in-the-wild, audiovisual, database, being annotated in terms of valence-arousal dimensions,

seven basic expressions and facial action units. We also presented the design of multi-task and multi-

modal deep neural architectures that extend AffWildNet, being trained on Aff-Wild2. We tested their

performance -in a cross-database setting- on ten other databases, illustrating that they beat all state-of-

the-art methods for affect recognition. We further trained new deep neural architectures on Aff-Wild2,

by adapting the ArcFace Loss Function. By using these as priors for expression recognition on all

existing databases, we improved the existing state-of-the art.

Moreover, we presented the development of a new deep neural architecture, named FaceBehavior-

Net, which is the first holistic framework for behaviour analysis in-the-wild. FaceBehaviorNet is an

end-to-end network trained for joint: basic expression recognition, action unit detection and valence-

arousal estimation, over all publicly available databases, containing over 5M images. Additionally we

developed a novel strategy for coupling all the tasks during training, based on co-annotation and on

distribution matching, consistently outperforming all existing methodologies. By exploring the fea-

ture representations learned through the joint training, we illustrated the good generalisation abilities

for recognition of compound expressions, under zero-shot or few-shot learning settings.
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A novel approach was then proposed so as to generate facial affect on faces. It leverages a dimen-

sional emotion model in terms of valence and arousal or the six basic expressions, and a large scale

4D face database, the 4DFAB. We performed dimensional annotation of the 4DFAB and used the

facial images with their respective annotations to generate mean faces on a discretised 2-D affect

space. A methodology has been proposed using these mean faces to synthesise faces with affect,

both categorical or dimensional, both static or dynamic. Using a given neutral image and the desired

affect, which can be a Valence Arousal pair of values, a path in the 2D VA space, or one of the basic

expression categories, the proposed approach performs face detection and landmark localization on

the input neutral image, fits a 3D Morphable Model on the resulting image, deforms the reconstructed

face, adds the input affect and blends the new face with the given affect into the original image.

An extensive experimental study has been conducted, providing both qualitative and quantitative eval-

uation of the proposed approach. The qualitative results showed the achieved higher quality of the

synthesised data compared to GAN-generated facial affect. The quantitative results were based on

using the synthesised facial images for data augmentation and training of Deep Neural Networks over

eight databases, annotated with either dimensional or categorical affect labels. It has been shown that,

over all databases, the achieved performance was much higher than i) the performance of the respec-

tive state-of-the-art methods, ii) the performance of the same DNNs with data augmentation provided

by the StarGAN and GANimation networks.

7.2 Applications

There are numerous applications of the technologies and data developed in this Thesis, in the areas of

human computer interaction, computer vision, robotics, security and biomedical, as well as consumer

applications. In all these fields, it is of great significance, if agents can, on the one hand, detect and

analyse the affect of their user, patient, or customer, and on the other hand, adapt their behaviour, e.g.,

their ‘facial expression’ to appropriately react to this affect.

Behaviour analysis is a main component in these applications. We have already developed systems

implementing our developments that are able to capture the facial affect of users and represent it in
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the 2-D affect space, analyse the main expression involved in it, as well as extract the active facial

action units. They are also possible to detect faces and extract this affect information from videos in

real time.

Using this technology for customer behaviour analysis is a feasible application that can be used, for

example in big supermarkets, or in banks, where the security system can be used for analysing the

affect in customers’ faces. Similarly, for surveillance, for example, in train stations, or in airports,

detection and analysis of travellers’ faces can be performed in real time. This can provide alerts when

some unusual behaviour, e.g., negative affect, or expression of anger or fear, are detected. We have

tested the technologies with images and image sequences from CCTV cameras and the results have

been very good. An issue that needs to be mentioned is that affect recognition can be performed with-

out the need for face recognition. It is well known that face recognition in surveillance applications

does not match persons’ privacy right. However, the anonymous affect recognition operation can be

set so as not to have conflict with person’s privacy requirement.

Through specific adaptations, the developed technology can be used by robots, so that they can suc-

cessfully operate in human robot interactions. It is essential that a ‘companion’ robot can understand

an elderly person’s behavioural state, to be able to assist them in a friendly and effective way.

Similarly, a robot, taking care of a child, should be able to understand its behaviour and treat it

accordingly. Other applications include detection of a driver’s behaviour for providing alert in case

of loss of attention, or tiredness. Similarly lie detection can take advantage of the rich facial affect

analysis capabilities produced by the developed technologies.

7.3 Future Work

Our future plans include further improvement of the generated state-of-the-art in the field, both related

to data generation, as well as to development of deep neural architectures that are able to learn over

the data and generalise well in other datasets or environments.

Our data generation plans include extending Aff-Wild2 with large numbers of high-quality 4K videos
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in-the-wild. The target is to produce a large testbed for developing new scalable architectures that can

learn to analyse affect, by extracting coarse-to-fine information from visual inputs in-the-wild. More-

over, focusing on specific types of affect, for example, related to negative or reluctant behaviours, or

on compound emotions, will require extending the databases, and/or performing domain adaptation

of the developed architectures in these frameworks.

Most of the approaches developed in this Thesis, and in the affect recognition field in general, are

based on supervised learning, by ensuring that experts in the field provide the required annotation

of the aggregated, or generated data. However, labeling large number of datasets can be infeasible

due to lack of experts in a continuous base. Unsupervised learning will be further investigated in

our future work for handling non-annotated data cases, while focusing on related problems, such as

uncertainty of the estimation procedure. Extending domain adaptation approaches by introducing and

using modified Loss Functions in training over non-annotated data constitutes our first step in this

direction [114].

Moreover, although it has been shown that deep neural architectures are capable of analysing large

datasets for affect recognition, they lack transparency in their decision making, in the sense that it

is not straightforward to justify their prediction. In this Thesis we have investigated the extraction

of latent variables, containing low-, medium- and high-level semantic information, from deep neural

architectures during training, and further exploring them through multiple networks, for improving

the performance in affect recognition.

In our future work we will further analyse this latent information, through unsupervised learning, so as

to develop respective representations, clusters, graphs. We will use the latter to provide transparency,

visualisation and explainability of the decision making procedure adopted by the deep neural architec-

tures. Moreover, we will be able to extend the zero-, or one-shot learning approaches we introduced

in the Thesis to provide effective and efficient training over the extracted representations.

Another future direction will be the exploitation of the analysis by synthesis approach that was pre-

sented in Chapter 5 in broader contexts and environments. The ability to generate dimensional, or

specific types of affect on faces and use them for training deep neural architectures can be applied in

a variety of contexts. Blending generation of dimensional affect with generation of facial action units



178 Chapter 7. Conclusions & Future Work

will be of major interest, since it can provide a local-to-global facial synthesis of affect.

Finally, our future work will include adaptation of the developed deep neural architectures and use

of them in other applications, including the ones described in the previous subsection. Of major

interest is healthcare prediction, through the analysis of medical images and image sequences. The

presented architectures can be adapted and used in analysis of both time varying and volumetric

medical information, such as Magnetic Resonance Images, or CT scan series, for early prediction of

diseases.
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