24 research outputs found

    Movement Generation with Circuits of Spiking Neurons

    Get PDF
    How can complex movements that take hundreds of milliseconds be generated by stereotypical neural microcircuits consisting of spiking neurons with a much faster dynamics? We show that linear readouts from generic neural microcircuit models can be trained to generate basic arm movements. Such movement generation is independent of the arm model used and the type of feedback that the circuit receives. We demonstrate this by considering two different models of a two-jointed arm, a standard model from robotics and a standard model from biology, that each generates different kinds of feedback. Feedback that arrives with biologically realistic delays of 50 to 280 ms turns out to give rise to the best performance. If a feedback with such desirable delay is not available, the neural microcircuit model also achieves good performance if it uses internally generated estimates of such feedback. Existing methods for movement generation in robotics that take the particular dynamics of sensors and actuators into account (embodiment of motor systems) are taken one step further with this approach, which provides methods for also using the embodiment of motion generation circuitry, that is, the inherent dynamics and spatial structure of neural circuits, for the generation of movement

    A Neuromorphic Motion Controller for a Biped Robot

    Get PDF
    Here we propose a neuromorphic control system for a medium size humanoid robot under development in the Robotics and Mechatronics Department at Nazarbayev University and in cooperation with Politecnico di Milano

    Design of a central pattern generator using reservoir computing for learning human motion

    Get PDF
    To generate coordinated periodic movements, robot locomotion demands mechanisms which are able to learn and produce stable rhythmic motion in a controllable way. Because systems based on biological central pattern generators (CPGs) can cope with these demands, these kind of systems are gaining in success. In this work we introduce a novel methodology that uses the dynamics of a randomly connected recurrent neural network for the design of CPGs. When a randomly connected recurrent neural network is excited with one or more useful signals, an output can be trained by learning an instantaneous linear mapping of the neuron states. This technique is known as reservoir computing (RC). We will show that RC has the necessary capabilities to be fruitful in designing a CPG that is able to learn human motion which is applicable for imitation learning in humanoid robots

    On computational power and the order-chaos phase transition in Reservoir Computing

    Get PDF
    Randomly connected recurrent neural circuits have proven to be very powerful models for online computations when a trained memoryless readout function is appended. Such Reservoir Computing (RC) systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work showed a fundamental difference between these two incarnations of the RC idea. The performance of a RC system built from binary neurons seems to depend strongly on the network connectivity structure. In networks of analog neurons such dependency has not been observed. In this article we investigate this apparent dichotomy in terms of the in-degree of the circuit nodes. Our analyses based amongst others on the Lyapunov exponent reveal that the phase transition between ordered and chaotic network behavior of binary circuits qualitatively differs from the one in analog circuits. This explains the observed decreased computational performance of binary circuits of high node in-degree. Furthermore, a novel mean-field predictor for computational performance is introduced and shown to accurately predict the numerically obtained results.

    Graceful degradation under noise on brain inspired robot controllers

    Get PDF
    How can we build robot controllers that are able to work under harsh conditions, but without experiencing catastrophic failures? As seen on the recent Fukushima’s nuclear disaster, standard robots break down when exposed to high radiation environments. Here we present the results from two arrangements of Spiking Neural Networks, based on the Liquid State Machine (LSM) framework, that were able to gracefully degrade under the effects of a noisy current injected directly into each simulated neuron. These noisy currents could be seen, in a simplified way, as the consequences of exposition to non-destructive radiation. The results show that not only can the systems withstand noise, but one of the configurations, the Modular Parallel LSM, actually improved its results, in a certain range, when the noise levels were increased. Also, the robot controllers implemented in this work are suitable to run on a modern, power efficient neuromorphic hardware such as SpiNNaker
    corecore