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Abstract How can we build robot controllers that are able to work un-
der harsh conditions, but without experiencing catastrophic failures? As
seen on the recent Fukushima’s nuclear disaster, standard robots break
down when exposed to high radiation environments. Here we present
the results from two arrangements of Spiking Neural Networks, based
on the Liquid State Machine (LSM) framework, that were able to grace-
fully degrade under the e↵ects of a noisy current injected directly into
each simulated neuron. These noisy currents could be seen, in a simpli-
fied way, as the consequences of exposition to non-destructive radiation.
The results show that not only can the systems withstand noise, but one
of the configurations, the Modular Parallel LSM, actually improved its
results, in a certain range, when the noise levels were increased. Also,
the robot controllers implemented in this work are suitable to run on a
modern, power e�cient neuromorphic hardware such as SpiNNaker.

Keywords: SNN, Liquid State Machines, robot control, noise, graceful
degradation, robustness

1 Introduction

Five years have passed since Fukushima’s nuclear disaster and current robot
technology is still not ready for such a big challenge. The high level of radiation
in areas close to the reactors was lethal for human beings and the robots sent to
the site have severely su↵ered from it, hence making clear the need for more re-
search. Modern computers, and therefore robot controllers, are designed around
digital circuits and, despite several advances in manufacturing processes, design
and simulation, they are still not immune to it. Digital systems also su↵er from
non-destructive radiation, since it can generate Single-Event Upsets (SEU) or
“soft-errors”. A SEU is an alteration in a logic state as a result of an energetic
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particle entering the microelectronic device [11]. In addition to man-made radi-
ation sources, space and terrestrial environments are also subjected to cosmic
rays and naturally available radioactive isotopes.

There is evolutionary pressure for natural information processing systems to
be fault tolerant. If damaged or malfunctioning neuronal cells were to change
drastically the overall behaviour of the organism, it would restrict chances of
survival. According to [16], graceful degradation is defined as “graded, prob-
abilistic deficits, with some sparing of function, and with performance strongly
influenced by the frequency or familiarity of the stimulus and/or its degree of
consistency with other items”. As such, we can identify graceful degradation in
a number of neural systems. For example, in motor control neurologic disorders,
Essential Tremor (characterised by periodic 4-12Hz low amplitude movements)
is among the most common (prevalence ⇡ 4.0% among aged 40 years or older),
while motor disorder with choreoathetotic and ballistic movements i.e. “excess-
ive, spontaneous, irregularly timed, non-repetitive, randomly distributed and
abrupt in character” has a prevalence ⇡ 0.01% [9,2,22]. As another example, in
memory encoding and consolidation, engram cells distribute learned information
so that no individual neuron is responsible for a particular information, but their
collective activation. Recent advances are being made in elucidating the biology
behind this [19,18].

E�ciency is another characteristic seen all around nature designs. The best
example is the human brain, since cortex and cerebellum together spend on
average around 15W [6]. On the other hand, the Human Brain Project expects
to simulate the whole brain, in the cellular level, using an exascale computer or
60MW [12].

In an attempt to start developing solutions for the current problems ro-
botic systems encounter when exposed to an environment with a high level of
radiation, we propose in this work the use of biologically inspired robot con-
trollers [1] for a more nature-like graceful degradation, instead of a catastrophic
failure, when exposed to it. Modular and Monolithic designs of a special type
of feedback enhanced parallel Liquid State Machines (LSM) [15,14] are exposed
to di↵erent noise levels, in a simulated environment, and the results analysed
with a robotic task as the benchmark. White Gaussian noise is injected dir-
ectly into the neuron model, which could be seen as an example of the result
from the non-destructive e↵ects of radiation. Additionally, LSM are modelled
based on Spiking Neural Networks (SNN), therefore power e�ciency could be
easily acchieved implementing the SNN in a neuromorphic hardware such as
SpiNNaker [5], BrainScaleS [21] or Silicon Neurons (SiN) [7] which could also
improve the reliability even further.

2 Materials and Methods

The investigation presented here was based on an earlier work3, where a new
humanoid robot control framework using parallel, diverse and noisy groups of

3 Source code available at github.com/ricardodeazambuja/IJCNN2016



biologically inspired LSM was introduced [1]. This robot controller was able to
reproduce trajectories (shapes) previously learned from a teacher, but the e↵ects
of varying noise levels were not studied.

In this new work, eleven di↵erent noise levels (100 trials each), starting from
the standard one defined in [8] and going up to 100% above that (see Sec-
tion 2.2), were employed to verify the noise e↵ect on two di↵erent parallel LSM
configurations: Modular and Monolithic (see Section 2.1). The final analysis was
done through the robot’s resultant movement performing the benchmark task of
drawing a square shape on a table (see Section 2.3).

2.1 Modular and Monolithic Parallel LSM

The idea of breaking an LSM into multiple liquids (or simplified models of
cortical columns) in parallel to increase the computational power was initialy
presented in [15], but only in [1] was an external feedback loop, as suggested
in [8,14], explored for this particular situation. Also the parallel system presented
in [15] had an external output layer (readout) shared among all neurons contrast-
ing with the one presented in [1] where each liquid was trained individually and
had its own readout resulting in a system with improved learning capabilities.
Those two approaches are called here the Monolithic Parallel LSM (Figure 1b)
and Modular Parallel LSM (Figure 1a), respectively. To facilitate comparisons,
the same random seeds from [1], therefore the same liquids, were employed here,
but the readout layers were trained again as the Monolithic approach has not
been tested before.

(a) (b)

Figure 1: The Modular approach (a) uses individual readout layers for each li-
quid. The Monolithic approach (b) has only one readout layer shared among all
its neurons. Both systems reuse the same five LSM (liquids) from [1], but with
retrained readouts.



2.2 Neuron Model and Noise Levels

The neuron model applied in this work, the Leaky Integrate and Fire (LIF) par-
tially represented by the Equation 1 (for more details see [1]), has its membrane
reset voltage (V

reset

) drawn from a uniform distribution ([13.8mV , 14.49mV ])
when the neural network is created and generates a spike when it reaches 15mV
(V

threshold

). On the algorithmic level, the membrane voltage is always clamped
between �15mV and +15mV , although its rest potential is 0mV and it is set
back to the reset value (V

reset

) after every spike. Consequently, most of the time,
the neuron membrane will fluctuate between V

reset

and V
threshold

or, in the worst
scenario, with �V ⇡ 1.2mV .

The simulation of a faulty system through the injection of noise (see Sec-
tion 1) is accomplished using the i

noise

variable from Equation 1. Its value is
drawn from a Gaussian distribution (µ = 0 and � = 1nA) multiplied accord-
ingly to what we call here noise level (A

noise

). Having a noise level of 100%,
110%, 120%, . . . , 200% means the multiplier value goes from 1.0 up to 2.0. The
parameters were defined according to what was presented in [15] and [8], hence
c
m

= 30nF and ⌧
m

= 30ms. This yields, ignoring other noise sources, a Signal-

to-noise ratio (SNR) of approximately
⇣

�V/mV

A

noise

⌘2
. Thus the system has its SNR

varied from 1.44 to 0.36 (see Figure 2).
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Figure 2: As an easy way to visualize the noise e↵ects, the photographs (top row)
had added to their greyscale values (0 to 255) noise proportional to how A

noise

a↵ects the membrane voltage, varying it from 0.0 (a) to 1.0 (f). On the bottom
row, noise is applied to a sinusoid whilst keeping the same scale.



2.3 Benchmark Task

The benchmark test consisted of the simultaneous control of four joints (Figure 3)
of a simulated BAXTER robot in order to draw a square shape on top of a
table (for more details see [1]). All analyses are done on the robot’s taskspace
(Cartesian space) instead of joint space. Although being a two dimentional shape
drawn on a surface, the system follows a human-inspired movement [4] and, for
that reason, must keep in control a total of four dimensions: X, Y, Z and time.

(a) (b)

Figure 3: Simulated BAXTER robot inside V-REP [17], with joint names indic-
ated on its right arm, drawing the square on top of a table (a). Joint curves
necessary to command the robot to generate the square shape (b).

Cost calculation Using the Dynamic Time Warping (DTW)[20] the total dis-
tance defined by the path formed with the minimum values of the accumulated
distance (Figure 4, right-hand side) can be easily applied to compare the quality
between di↵erent shapes. If the shapes are exactly the same, that distance is
minimal and forms a straight diagonal line. The use of this same algorithm in a
robotic task was already presented in [1].

3 Results and Discussion

Eleven distinct levels of noise were tested here for both, Modular and Monolithic,
approaches (Section 2.1) with A

noise

varying from 1.0 to 2.0 (Section 2.2). These
experiments resulted in a total of 2, 200 simulations, where each one consisted
of 3, 000 spiking neurons (five 600 neurons liquids in parallel). After every run,
the joint values produced were loaded into the simulated Baxter robot inside
V-REP to verify the final movement executed for the benchmark task and the
results processed by the DTW algorithm (Section 2.3).

The DTW path cost values generated from three di↵erent noise intensit-
ies (A

noise

equal to 1.0, 1.5 and 2.0) are presented in Figure 5 with all one
hundred trials (bottom) and ten examples of the final shapes generated (top).
Clearly as the noise is increased, the square shapes become strongly degraded,



(a) (b)

Figure 4: An example of how the DTW fits a very distorted square (green tri-
angles) against a perfect one (blue squares) (a). The path that minimises the
accumulated distance (b). The DTW path cost for the distorted square is 42.12.

(a) A
noise

= 1.0

(b) A
noise

= 1.5

(c) A
noise

= 2.0

Figure 5: Each plot shows the DTW path cost (bottom) for all trials and some of
the shape outcomes (top) comparing the Modular (blue, circles) and the Mono-
lithic approaches (red, triangles). The shapes (top) were selected based on the
sorted cost values of both configurations to show a more comprehensive set of
examples. Average values plotted as horizontal dashed lines (bottom).



but the Modular approach still can produce some rectangular forms even with
A

noise

= 2.0 or a noise level twice that injected during the readout training
phase (see Figure 2 for a visual hint about noise levels). However, when using
the standard noise level (A

noise

= 1.0), the Monolithic approach had a better
performance with an average cost value about 39% smaller than the Modular
one. This type of system, sometimes, get stuck into a value and needs noise to be
able to proceed, but the DTW algorithm penalises it as the trajectory it sees, al-
though with a nice quality, was not completed. Therefore the di↵erence between
Modular and Monolithic approaches, with A

noise

= 1.0, could be explained by
the limited number of simulated steps (2,000 steps).

(a) (b)

Figure 6: Modular (a) and Monolithic (b) approaches with A
noise

=2.0.

In Figure 6, all hundred trials with A
noise

= 2.0 were plotted together on 3D
Cartesian space (same scale for all views) to make it easier to evaluate them,
as mean values do not work well if there are time delays among trials. Despite
the fact that a strong e↵ect on the 2D square shape is clear, the Z axis (or the
height control) is barely a↵ected (top right).

The main question raised at the introduction was about the behaviour of
this kind of system when a↵ected by di↵erent noise levels and if it would have
a nature like graceful degradation. To analyse that, the DTW path cost average
and standard error values were calculated and are presented in Figure 7. The
same figure also presents what would be the evolution of the cost considering
the initial values incremented in steps of 10%.

Both approaches presented here, Modular and Monolithic parallel LSM, had
what is considered a graceful degradation, as with the increase of the noise the
systems did not catastrophically fail, but the DTW path cost grew in a well
behaved manner. Comparing both LSM configurations, the Modular approach
had an almost constant behaviour up to A

noise

=1.4 when it started growing
linearly with nearly the same slope as the Monolithic approach. Therefore, the



Figure 7: Average DTW path cost and its standard error for all trials (hundred in
total for each A

noise

level). The growth, considering the first value incremented
by 10%, 20% . . . 100%, is shown as a dashed line.

Modular system (between the A
noise

range of 1.0 to 1.4) was able to withstand
the noise better than a simple linear growth as showed by the dashed blue
line (Figure 7) whilst the Monolithic configuration always increased its DTW
path cost with the increase of noise.

4 Conclusions and Future Work

The robot controllers presented here were able to withstand, or at least gracefully
degrade, when exposed to di↵erent noise levels - modelled here as white Gaussian
noise based currents injected into the neuron model. These noisy currents could
be seen, in a simplified way, as the consequences of exposition to non-destructive
radiation. It is important to develop systems that are able to be implemented
using new technologies, such as neuromorphic hardware, as they seem to be
one of the possible ways to bypass the declining applicability of Moore’s law [23]
without having to expend huge amounts of energy [12]. Also, one of the strategies
to decrease energy consumption, in a quadratic way, is the reduction of the
voltage supplied to the digital circuits (near-threshold voltage [10]). However,
this naturally leads to a decrease in the noise immunity as the voltage margin
until a transistor changes its state is reduced. Another consequence of voltage
reduction is within the speed a transistor changes its state. Still, neural systems
are well known to be parallel, but relatively slow systems when compared to
modern digital circuits. Even if MEMS-based logic gates [3] evolve up to the
point of a final product, a digital system does not degrade gracefully in normal
conditions and always needs extra gates to implement error correction.

The Modular design presented here opens up the possibility for a hot-swap
hardware implementation, fitting SpiNNaker very well as it is able to turn on
and o↵ chips if necessary, and also decreasing the time and memory spent during
learning. Also, having smaller readout layers, the time spent during learning is
smaller than when using the Monolithic setup.



The Monolithic approach uses one big readout layer while the Modular one
has smaller individual output layers and a node producing the average among
them. In a future work, this simple average junction could be replaced by an extra
on-line learning layer with weights connecting the analogue readout outputs
directly to the neuron membrane, opening the possibility to vary the amount of
trust the system has to each individual LSM without the need of changing the
readout weights, thus saving energy and simplifying the design.

Additionally, to extend what was presented here, other parameters could be
checked to verify their influence on the robustness. One good example, easily
implemented, is the number of parallel liquids and the number of neurons used
with each one.

In some trials, the systems got stuck in the middle of a well defined trajectory
producing high DTW path cost values (see Figure 5a, trials 42 and 99). Our
experience, after several experiments have been done using this type of system,
together with the results presented in the Figure 7, suggests a certain minimum
background noise is actually necessary for this kind of system. This idea of a
“good” noise is not new [13] and will be left as another avenue for future works.

All the source code necessary to generate the results presented here will be
available at http://github.com/ricardodeazambuja/ICONIP2016.
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