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Abstract— To generate coordinated periodic movements, robot
locomotion demands mechanisms which are able to learn and
produce stable rhythmic motion in a controllable way. Because
systems based on biological central pattern generators (CPGs)
can cope with these demands, these kind of systems are gaining
in success. In this work we introduce a novel methodology that
uses the dynamics of a randomly connected recurrent neural
network for the design of CPGs. When a randomly connected
recurrent neural network is excited with one or more useful
signals, an output can be trained by learning an instantaneous
linear mapping of the neuron states. This technique is known
as reservoir computing (RC). We will show that RC has the
necessary capabilities to be fruitful in designing a CPG that is
able to learn human motion which is applicable for imitation
learning in humanoid robots.

I. INTRODUCTION

In all animals, vertebrates or invertebrates, neural circuits
that produces rhythmic patterns of neural activity can be
found [5]. These circuits are called central pattern generators
and they produce rhythmic motor patterns often even in the
absence of timing cues from sensory neurons or other extrinsic
inputs [14].
Techniques inspired by animal central pattern generators
(CPGs) are increasingly used for the generation of rhythmic
signals to control locomotion of autonomous robots such as
salamander robots [7], crawling humanoids [17], amphibious
snake robots [3] and biped locomotion control [16]. Although
their lack of a complete design methodology, motivation
for their success can be found in the interesting properties
that make CPGs useful for the control of locomotion as an
alternative to methods based on finite-state machines, sine-
generators, pre-recorded reference trajectories and other [6].
Models of CPGs have been implemented already by several
kinds of techniques such as connectionist models [2], vector
maps [15] and coupled oscillators [7].
Recently a novel technique for the fast training of large
recurrent neural networks has been introduced independently
as echo state networks [8] and liquid state machines [13], and
is unified as reservoir computing (RC) [19]. In RC, the output
is derived by an instantaneous, linear memory-less mapping
of a large untrained dynamical system, the reservoir, which
is excited with one or more inputs. The reservoir can be a
randomly connected recurrent neural network which has to be
rescaled so that it is operating at the edge of chaos where its
processing power is greatest [12]. RC has proven its qualities

in a broad range of applications such as robot localization [1],
speech recognition [18] and time series generation [10].
In this paper we introduce a new methodology for CPG design
based on reservoir computing (RC) which can be used for
learning rhythmic motor signals. With our approach we are
able to build CPG models which have interesting properties
which make them suited for realistic robot locomotion. A good
review of CPG models and their properties can be found in [6].
We now summarize the most important properties of a good
CPG model:
• CPG models generate rhythmic patterns. The trajectories

which will be performed by the joints of the robot
are determined by these rhythmic patterns. To produce
realistic motion patterns one can use imitation learning.

• Stable pattern generation and robustness against perturba-
tions is necessary. The generated patterns may not deform
after a time and when the state variables are perturbed the
system needs to turn to its normal behavior.

• CPG models fit in a hierarchical scheme: rhythmic pat-
terns are generated on low level, high level controllers
only deal with modulation of locomotion. Thus CPG
models have low dimensional inputs with which the shape
of the learned signals can be controlled.

• CPG models can cope with multidimensional pattern
generation. Apart from the patterns, the phase relation
between the generated patterns is determined.

In what follows, we first briefly describe reservoir computing
with special attention to its use as a CPG. Next, we will
show the capabilities of our system to learn human motion
and to exhibit rich motor skills. Therefore we trained our
system with human motion capture data obtained from the
CMU Graphics Lab Motion Capture Database. We perform
experiments showing our system’s ability to generate the
learned patterns in a stable, robust and controllable way.
Finally, further work will be discussed.

II. BUILDING CENTRAL PATTERN GENERATORS WITH
RESERVOIR COMPUTING

One of the main properties of a CPG is that it generates
stable rhythmic patterns, for that reason we will focus this
introduction on the use of RC in a generative setup. In this kind
of setup, the reservoir has output feedback with additionally
one or more control inputs. When using output feedback,
output nodes are connected to the input of the system so
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Fig. 1. Schematic overview of reservoir computing in a generative setup. This
system has one ore more generative outputs with output feedback. Additional
control inputs can be useful for modulation of the rhythmic signals. Only the
connections directed to the output are learned (denoted by dashed lines), the
other connections (in black) are fixed and initial randomly created.

that the system reacts on its outcome. A schematic overview
of this is given in Figure 1. In [11] one can find evidence
that feedback allows systems to generate certain movement
primitives and that it can generate a suitable slow dynamics
with high precision. The reservoir is composed of randomly
connected sigmoid neurons. All neuron states and output are
updated by use of following equations:

x[k + 1] =(1− λ)x[k]+

λf
(
W res

res x[k] +W res
inpu[k] +W res

outy[k] +W res
bias

)
ŷ[k + 1] =W out

res x[k + 1] +W out
bias,

The neuron states x[k+1] at time k+1 depends on the neuron
states x[k] at previous time step k, an additional (control) input
u[k], the teacher forced output y[k] and a bias. The system’s
dynamics can be effectively tuned by changing the leak-rate
λ [8]. The non-linearity f represents the sigmoid function. The
weights denoted by W res

? are fixed and randomly created. For
construction of the weight matrix W res

res weights are drawn
from a normal distribution with zero mean and variance 1
and a large part is set to zero according the used connection
fraction. The randomly connected matrix W res

res is rescaled such
that the largest eigenvalue (spectral radius) is smaller than 1.
This makes sure that the created system is stable and has a
fading memory [9]. During training all the weight matrices
denoted by W out

? are learned using standard linear regression
techniques. Because only the output weights are changed,
training is extremely fast which can be an additional benefit
in comparison with other methods. Additionally, reservoir
computing doesn’t suffer from local optima like other methods
based on neural networks do. When testing the system, the
teacher forced output feedback y[k] is replaced by the actual
output ŷ[k], this is also known as free-run mode.
In order to get good a good performance we use ridge
regression to train the output weights W out

? of our system.
This keeps the outputs weights small and regularizes the
trained trajectory in state-space [20] which gives our system
good generalization capabilities. Using ridge regression for
training introduces an additional parameter, the regularization

parameter, which needs to be optimalized. Therefore we need
to train and validate our system iteratively, each time using
an other value (chosen in a certain range) for the regular-
ization parameter. During validation the performance of the
system is tested on a dataset different from the training set
and under equal conditions as during testing. Through this
work the Normalized Mean Squared Error (NMSE) is used
for evaluating the performance on the validation set. Notice
that when performing generation tasks the training set and
validation set can be the same because the goal is to generate
the learned samples. When an optimal regularization parameter
is found the system is retrained using the optimal value. Finally
the system can be tested on an unseen test set.

III. MODELING AND CONTROL OF HUMAN MOTION

A. Data gathering and preprocessing

The data we used in this article was obtained from the
CMU Graphics Lab Motion Capture Database (see acknowl-
edgment). The data consists of the 3D joint angle evolution
for 30 markers. The data was recorded at 120 Hz and we used
it without any sub-sampling. Because we are only interested
in walking and running motion of humans we only used data
of subject 35 from the CMU database, this subject had most
walking and running example sets available. In order to avoid
saturation of the sigmoid neurons, data was normalized by
subtracting the mean and dividing by its variance.

B. Generation of learned rhythmic motion patterns

What makes a good candidate of RC for designing CPGs is
that much of the desired properties of CPGs can be realized
by use of RC. A CPG produces rhythmic patterns, in [8]
the ability to learn and generate time series has been shown.
Both stable output feedback and robustness can be seen in
generation tasks and is discussed in previous work [20], [4].
In the top graph of Figure 2 one can see that our system
is able to generate a learned periodical signal in form of an
angle joint evolution of the left femur (legs) from subject 35
in the CMU database. Only one set containing 358 samples
was used during training. In the top graph of Figure 2 the
reservoir output is shown in black while the desired outcome,
constructed by concatenating the training set multiple times,
is denoted by a gray dashed line.
The middle graph of Figure 2 illustrates that our system is
able to generate the learned signal over longer time spans.
Here evolution of the joint angle is shown in black after more
than 100, 000 samples have autonomously been generated by
the system. To achieve this stability it was necessary to use
ridge regression [21]. We used a small validation set of 500
samples (angle joint evolution of the left femur) during which
the reservoir ran in free-run mode and was perturbed with
noise sampled from a Gaussian distribution with zero mean
and variance 0.001 in order to validate for dynamical stability.
By adding noise during validation we are able to control the
smoothness of the learned signal: more noise during validation
simulates the effect of a long free-run trial and will cause
more stability but less accuracy (but high accuracy of learned
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Fig. 2. This figure shows the ability to stably generate rhythmic signals
after learning. In the top graph the joint angle evolution of the left femur is
shown in gray dashed lines. The system’s output during free-run is shown in
black. We see little difference between the reservoir output and the teacher
signal. In the middle graph we see a continuation of the system’s output after
900 seconds of running freely. This illustrates the stability capabilities of
our system. In the bottom graph we see the system’s capability to cope with
a large perturbation: after 2 seconds of generation the evolution of the joint
angle of the left femur, the output was forced to a random outlier value during
50 ms. We see that the network recovers well after such a perturbation.

signals is not needed in robot locomotion). The regularization
parameter was searched in the range 10[1:−0.1:−8].
Apart from the ability to generate stable rhythmic motor
patterns it’s also necessary for a CPG to recover from per-
turbations. In the bottom plot of Figure 2 this property is
illustrated. After 2 seconds the reservoir output was clamped
to an outlier value for 50 ms. We see that the system recovers
well after removing this perturbation. In order to have such
robustness we had to use ridge regression and to optimize the
regularization parameter. This was done in the same way as
described earlier.
For all of the previously described experiments we used a
reservoir of 300 randomly connected (connectivity of 50%)
leaky integrator neurons [8] with a leak rate of 0.3. The
spectral radius was 1 and each neuron had an auxiliary input
with a bias sampled from the uniform interval [0; 0.1]. Only
output feedback was used with a scaling factor sampled from
a binomial distribution with equal probability to have −0.05
or 0.05. These settings were chosen arbitrarily and none of
them is critical. In order to generate the plots in Figure 2 the
reservoir states were initialized before free-run mode starts.
This was done by updating the reservoir state with the update
equation given in equation 1 which uses the teacher forced
output as for feedback.
In order to reduce the dimensionality of the control problem,
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Fig. 3. This figure illustrates modulation capability of our system. The black
curve shows the evolution of the learned rhythmic signal which we are able
to modulate in frequency during free-run mode. The corresponding control
input, illustrated with a gray curve, was switched smoothly from a high value
to a low value and back to a high value again causing a smooth change in
frequency from high to low, to high again.

the CPG needs to modulatable such that high level controllers
only produce high level control signals [6]. One of the basic
signal properties that one wants to modulate is the frequency.
The black curve in Figure 3 shows that we are able to
modulate the frequency of the learned signal. This property
of RC has been previously illustrated on a sine wave in [10].
For modulation of a learned rhythmic pattern from mocap
data, we constructed a training set by concatenating the joint
evolution of the left femur from subject 35 until we had a
large dataset and subsample it in function of the values of an
additional control input. This input signal varied between 1 to
6 during training in a smooth way causing a maximal increase
of frequency by six times its original frequency. No abrupt
changes in frequency took place. During this experiment the
topology of the reservoir was similar to the one described
before with only one change: the described control input was
connected to 25% of the reservoir neurons. This was enough to
have the reservoir influenced by the input. Total training size
was 20, 000 samples. In order to have sufficient stability while
changing the input, it was necessary to use ridge regression.
The regularization parameter was optimized during validation
as we described earlier. The validation set was constructed the
same way as the training set and contained 1, 000 samples.
For testing, a different input signal was used to modulate the
learned signal. Both, the system’s output and the control input
can be seen in Figure 3 and are represented by a solid black
curve and a dashed gray line respectively.
If we want that robots show a rich motion repertoire, the

CPG has to be able to deal with multiple types of gait which
can be controlled by low dimensional control signals. The
bottom plot of Figure 4 shows that we are able to switch to
another learned gait. Because two patterns had to be learned,
we created a larger reservoir containing 600 neurons using
the previously described parameter settings. We added two to
additional control inputs, uwalk and urun, which were each
randomly connected to 50% of the neurons. The scaling of
these control inputs was drawn from a binomial distribution
with equal probability to have −0.2 or 0.2. During training
the system was trained with 1, 000 concatenated samples of
evolution of the left femur joint angle during walking (see left
top of Figure 4 for an example subset) while inputs uwalk
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Fig. 4. Shape transitions between two learned motion patterns is presented
here. The top left plot shows the evolution of the left femur joint angle
while walking, the top right plot shows joint angle evolution while running.
These two examples were used for training. During training the reservoir
had two additional inputs denoting whether the reservoir was excited with a
walking or running set. The bottom graph shows in black the evolution of the
systems output during free-run mode. After approximately 8 seconds, the two
control inputs (dashed gray lines) were switched which results in a transition
from walking to running. The inputs were switched again after 15 seconds
resulting in a transition from running to walking. It is important to notice the
smoothness of the transitions when inputs are changed.

and urun were set to 1 and 0 respectively. The system was
also trained with a set of 1, 000 concatenated samples of joint
angle evolution of left femur for running gait (an example
subset of this can be seen in the top right plot of Figure 4)
with input urun set to 1 and input uwalk set to 0. Validation
took place by letting our system run freely while input urun

was set to 1 causing the system generate the joint angle
evolution for a running gait. In order to get stable generation
of the desired patterns, the reservoir was perturbed with noise
sampled from a Gaussian distribution with zero mean and
variance 0.001 during validation. The validation set was equal
to the training set. After validation, our system was retrained
using the optimal regularization parameter and left running
freely. After approximately 8 seconds, the control inputs uwalk

and urun were switched smoothly from 1 to 0 and vica verse
causing a smooth transition from walking to running which can
be seen in black at the bottom graph of Figure 4, the control
inputs are represented by a dashed gray line. After 15 seconds,
the control inputs were switched again. Although we gave
our system no examples of transition between different gaits
during training, we are able to generate smooth transitions
which are necessary in robot locomotion control. This is partly
due to the validation process but also because of the two
inputs with which we control the chosen gait. The way we
choose these control inputs is important for the outcome we
have. Abrupt change of these control inputs will result in large
amplitude spikes of the system’s outcome which is not desired.

C. Generation of multiple patterns

In order to be suitable for robot locomotion the CPG has
to be able to generate motor signals for each joint of the
robot. It is crucial that all these signals are coupled, otherwise
desychronized movements of arms and legs will occur while
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Fig. 5. The twelve phase portraits show the evolution of several joint angles
in function of the left femur joint angle evolution. In light gray, the attractor
shows the phase coupling of the original data set gain from the CMU database.
Some plots are distorted due to noise in the original sets. The attractors in
black are derived from the free-run output of our system during 10 seconds
after running more than 500 seconds. One can see tight phase coupling causing
stable attractor generation.

walking, or even no walking will be realized when for example
all leg joints are in wrong phase. With our system based on
RC it is easy to learn multidimensional rhythmic patterns. And
because all these patterns are derived from the same dynamical
system (the reservoir), also the phase relation between the
desired patterns will be learned without any difficulty.
We illustrate the ability to learn multidimensional patterns and
their coupling by training our system with mocap data set 2
(walking) from subject 35. The degree of freedom (DOF) of
the training set was reduced from 62 to 22: only arms and
legs movement which can be mapped directly to the joints
of the Fujitsu Hoap-2 robot were considered. Because of the
amount of DOF we created a large reservoir consisting of
2, 000 neurons. Apart from the reservoir size and the increase
of the number of outputs which were each connected to 65%
of the neurons with a scaling factor sampled from a binomial
distribution with equal probability to have −0.11 or 0.11, we
used the same parameter settings as described in the previous
section.
Because stable generation of the learned multidimensional

patterns is desired, we used ridge regression and optimized



the regularization parameter during validation the same way as
described in the other experiments. Again, during validation,
the reservoir states were perturbed with Gaussian noise with
zero mean and a variance of 0.001. After validation, the system
ran in free-run mode for more than 60, 000 samples. In order
to illustrate the phase locking between the 22 outputs of our
system, the outputs are shown in a phase portrait were several
outputs (leg and arm joints evolution) are plotted against the
outcome for the left femur. In the nine plots in Figure 5 the
phase portraits constructed from the original (mocap) data are
shown in gray, the outcome of our system during 10 seconds
after running for more than 500 samples freely is plotted
in black. We see that phase relation remains intact. Notice
how the phase portraits derived from the original dataset are
deformed by noise caused by the noisy mocap data. Also, the
three phase portraits derived from the original dataset at the
bottom in Figure 5 are highly disturbed because arm joints
are plotted against the left femur which is in the leg and
one can imagine that arms are not moving in a strict rhythm
as the legs do while walking. One can see that our system’s
outcome doesn’t show these disturbances what illustrates that
our system is able to learn only the desired rhythmic patterns
and is not influenced by the noise in the mocap data.

IV. CONCLUSIONS AND FUTURE WORK

In this work we proposed a new methodology for the design
of central pattern generators based on reservoir computing. We
have shown that our system is capable of learning rhythmic
signal by example very efficiently. The resulting system is
able to stably generate the learned signals and to be robust
against perturbations. We showed the importance of using
good regularization by means of ridge regression, a method
which allows us to control the smoothness of the learned
signals.
By adding one or more control inputs we can tune the
frequency and shape of the learned patterns which reduces the
dimensionality of the control problem such that higher level
controllers only need to produce high level control signals and
not the rhythmic patterns themselves.
By experiment, we showed also that it becomes easy to learn
multiple signals and their phase relation which is of great
importance for controlling multi-DOF robots. The experiments
with multi-dimensional signals showed that reservoir size was
an important parameter. The scalability of our system will be
investigated in future work.
In future work we plan to use our system for stable walking
of a humanoid robot by tuning the low dimensional control
inputs of the CPG and to add an unsupervised learning to
extract different types of motion.
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