563 research outputs found

    Machine learning-based fault detection and diagnosis in electric motors

    Get PDF
    Fault diagnosis is critical to any maintenance industry, as early fault detection can prevent catastrophic failures as well as a waste of time and money. In view of these objectives, vibration analysis in the frequency domain is a mature technique. Although well established, traditional methods involve a high cost of time and people to identify failures, causing machine learning methods to grow in recent years. The Machine learning (ML) methods can be divided into two large learning groups: supervised and unsupervised, with the main difference between them being whether the dataset is labeled or not. This study presents a total of four different methods for fault detection and diagnosis. The frequency analysis of the vibration signal was the first approach employed. This analysis was chosen to validate the future results of the ML methods. The Gaussian Mixture model (GMM) was employed for the unsupervised technique. A GMM is a probabilistic model in which all data points are assumed to be generated by a finite number of Gaussian distributions with unknown parameters. For supervised learning, the Convolution neural network (CNN) was used. CNNs are feedforward networks that were inspired by biological pattern recognition processes. All methods were tested through a series of experiments with real electric motors. Results showed that all methods can detect and classify the motors in several induced operation conditions: healthy, unbalanced, mechanical looseness, misalignment, bent shaft, broken bar, and bearing fault condition. Although all approaches are able to identify the fault, each technique has benefits and limitations that make them better for certain types of applications, therefore, a comparison is also made between the methods.O diagnóstico de falhas é fundamental para qualquer indústria de manutenção, a detecção precoce de falhas pode evitar falhas catastróficas, bem como perda de tempo e dinheiro. Tendo em vista esses objetivos, a análise de vibração através do domínio da frequência é uma técnica madura. Embora bem estabelecidos, os métodos tradicionais envolvem um alto custo de tempo e pessoas para identificar falhas, fazendo com que os métodos de aprendizado de máquina cresçam nos últimos anos. Os métodos de Machine learning (ML) podem ser divididos em dois grandes grupos de aprendizagem: supervisionado e não supervisionado, sendo a principal diferença entre eles é o conjunto de dados que está rotulado ou não. Este estudo apresenta um total de quatro métodos diferentes para detecção e diagnóstico de falhas. A análise da frequência do sinal de vibração foi a primeira abordagem empregada. foi escolhida para validar os resultados futuros dos métodos de ML. O Gaussian Mixture Model (GMM) foi empregado para a técnica não supervisionada. O GMM é um modelo probabilístico em que todos os pontos de dados são considerados gerados por um número finito de distribuições gaussianas com parâmetros desconhecidos. Para a aprendizagem supervisionada, foi utilizada a Convolutional Neural Network (CNN). CNNs são redes feedforward que foram inspiradas por processos de reconhecimento de padrões biológicos. Todos os métodos foram testados por meio de uma série de experimentos com motores elétricos reais. Os resultados mostraram que todos os métodos podem detectar e classificar os motores em várias condições de operação induzida: íntegra, desequilibrado, folga mecânica, desalinhamento, eixo empenado, barra quebrada e condição de falha do rolamento. Embora todas as abordagens sejam capazes de identificar a falha, cada técnica tem benefícios e limitações que as tornam melhores para certos tipos de aplicações, por isso, também e feita uma comparação entre os métodos

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions.

    Get PDF
    Incipient fault diagnosis of a bearing requires robust feature representation for an accurate condition-based monitoring system. Existing fault diagnosis schemes are mostly confined to manual features and traditional machine learning approaches such as artificial neural networks (ANN) and support vector machines (SVM). These handcrafted features require substantial human expertise and domain knowledge. In addition, these feature characteristics vary with the bearing's rotational speed. Thus, such methods do not yield the best results under variable speed conditions. To address this issue, this paper presents a reliable fault diagnosis scheme based on acoustic spectral imaging (ASI) of acoustic emission (AE) signals as a precise health state. These health states are further utilized with transfer learning, which is a machine learning technique, which shares knowledge with convolutional neural networks (CNN) for accurate diagnosis under variable operating conditions. In ASI, the amplitudes of the spectral components of the windowed time-domain acoustic emission signal are transformed into spectrum imaging. ASI provides a visual representation of acoustic emission spectral features in images. This ensures enhanced spectral images for transfer learning (TL) testing and training, and thus provides a robust classifier technique with high diagnostic accuracy

    A multitask-aided transfer learning-based diagnostic framework for bearings under inconsistent working conditions.

    Get PDF
    Rolling element bearings are a vital part of rotating machines and their sudden failure can result in huge economic losses as well as physical causalities. Popular bearing fault diagnosis techniques include statistical feature analysis of time, frequency, or time-frequency domain data. These engineered features are susceptible to variations under inconsistent machine operation due to the non-stationary, non-linear, and complex nature of the recorded vibration signals. To address these issues, numerous deep learning-based frameworks have been proposed in the literature. However, the logical reasoning behind crack severities and the longer training times needed to identify multiple health characteristics at the same time still pose challenges. Therefore, in this work, a diagnosis framework is proposed that uses higher-order spectral analysis and multitask learning (MTL), while also incorporating transfer learning (TL). The idea is to first preprocess the vibration signals recorded from a bearing to look for distinct patterns for a given fault type under inconsistent working conditions, e.g., variable motor speeds and loads, multiple crack severities, compound faults, and ample noise. Later, these bispectra are provided as an input to the proposed MTL-based convolutional neural network (CNN) to identify the speed and the health conditions, simultaneously. Finally, the TL-based approach is adopted to identify bearing faults in the presence of multiple crack severities. The proposed diagnostic framework is evaluated on several datasets and the experimental results are compared with several state-of-the-art diagnostic techniques to validate the superiority of the proposed model under inconsistent working conditions
    • …
    corecore