66 research outputs found

    Novel Locomotion Methods in Magnetic Actuation and Pipe Inspection

    Get PDF
    There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5 outside diameter tubes. We developed a model of the Locomotion Vertebra in a tube. We defined the model\u27s coordinate system and its generalized coordinates. We studied the configuration space of the robot, which includes all possible orientations of the Locomotion Vertebra. We derived the expression for the elastic potential energy of the Vertebra\u27s suspensions and minimized it to find the natural settling orientation of the robot. We further explore the effect of the tractive wheel\u27s velocity constraint on locomotion dynamics. Finally, we develop a general model for aircraft tube networks and for a taut tether. Stabilizing bipedal walkers is a engineering target throughout the research community. In this paper, we develop an impulsively actuated walking robot. Through the use of magnetic actuation, for the first time, pure impulsive actuation has been achieved in bipedal walkers. In studying this locomotion technique, we built the world\u27s smallest walker: Big Foot. A dynamical model was developed for Big Foot. A Heel Strike and a Constant Pulse Wave Actuation Schemes were selected for testing. The schemes were validated through simulations and experiments. We showed that there exists two regimes for impulsive actuation. There is a regime for impact-like actuation and a regime for longer duration impulsive actuation

    Models for reinforcement learning and design of a soft robot inspired by Drosophila larvae

    Get PDF
    Designs for robots are often inspired by animals, as they are designed mimicking animals’ mechanics, motions, behaviours and learning. The Drosophila, known as the fruit fly, is a well-studied model animal. In this thesis, the Drosophila larva is studied and the results are applied to robots. More specifically: a part of the Drosophila larva’s neural circuit for operant learning is modelled, based on which a synaptic plasticity model and a neural circuit model for operant learning, as well as a dynamic neural network for robot reinforcement learning, are developed; then Drosophila larva’s motor system for locomotion is studied, and based on it a soft robot system is designed. Operant learning is a concept similar to reinforcement learning in computer science, i.e. learning by reward or punishment for behaviour. Experiments have shown that a wide range of animals is capable of operant learning, including animal with only a few neurons, such as Drosophila. The fact implies that operant learning can establish without a large number of neurons. With it as an assumption, the structure and dynamics of synapses are investigated, and a synaptic plasticity model is proposed. The model includes nonlinear dynamics of synapses, especially receptor trafficking which affects synaptic strength. Tests of this model show it can enable operant learning at the neuron level and apply to a broad range of NNs, including feedforward, recurrent and spiking NNs. The mushroom body is a learning centre of the insect brain known and modelled for associative learning, but not yet for operant learning. To investigate whether it participates in operant learning, Drosophila larvae are studied with a transgenic tool by my collaborators. Based on the experiment and the results, a mushroom body model capable of operant learning is modelled. The proposed neural circuit model can reproduce the operant learning of the turning behaviour of Drosophila larvae. Then the synaptic plasticity model is simplified for robot learning. With the simplified model, a recurrent neural network with internal neural dynamics can learn to control a planar bipedal robot in a benchmark reinforcement learning task which is called bipedal walker by OpenAI. Benefiting efficiency in parameter space exploration instead of action space exploration, it is the first known solution to the task with reinforcement learning approaches. Although existing pneumatic soft robots can have multiple muscles embedded in a component, it is far less than the muscles in the Drosophila larva, which are well-organised in a tiny space. A soft robot system is developed based on the muscle pattern of the Drosophila larva, to explore the possibility to embed a high density of muscles in a limited space. Three versions of the body wall with pneumatic muscles mimicking the muscle pattern are designed. A pneumatic control system and embedded control system are also developed for controlling the robot. With a bioinspired body wall will a large number of muscles, the robot performs lifelike motions in experiments

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Modeling, analysis and control of robot-object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives

    Get PDF
    International audienceSo-called robot-object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an "object" and a "robot". Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, robotic systems that manipulate objects, tapping, pushing systems, kinematic chains with joint clearance, crawling, climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot-object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article

    Locomation strategies for amphibious robots-a review

    Get PDF
    In the past two decades, unmanned amphibious robots have proven the most promising and efficient systems ranging from scientific, military, and commercial applications. The applications like monitoring, surveillance, reconnaissance, and military combat operations require platforms to maneuver on challenging, complex, rugged terrains and diverse environments. The recent technological advancements and development in aquatic robotics and mobile robotics have facilitated a more agile, robust, and efficient amphibious robots maneuvering in multiple environments and various terrain profiles. Amphibious robot locomotion inspired by nature, such as amphibians, offers augmented flexibility, improved adaptability, and higher mobility over terrestrial, aquatic, and aerial mediums. In this review, amphibious robots' locomotion mechanism designed and developed previously are consolidated, systematically The review also analyzes the literature on amphibious robot highlighting the limitations, open research areas, recent key development in this research field. Further development and contributions to amphibious robot locomotion, actuation, and control can be utilized to perform specific missions in sophisticated environments, where tasks are unsafe or hardly feasible for the divers or traditional aquatic and terrestrial robots

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information
    corecore