
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Models for reinforcement learning and design

of a soft robot inspired by Drosophila larvae

Tianqi Wei
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2019





Abstract
Designs for robots are often inspired by animals, as they are designed mimicking an-

imals’ mechanics, motions, behaviours and learning. The Drosophila, known as the

fruit fly, is a well-studied model animal. In this thesis, the Drosophila larva is studied

and the results are applied to robots. More specifically: a part of the Drosophila larva’s

neural circuit for operant learning is modelled, based on which a synaptic plasticity

model and a neural circuit model for operant learning, as well as a dynamic neural net-

work for robot reinforcement learning, are developed; then Drosophila larva’s motor

system for locomotion is studied, and based on it a soft robot system is designed.

Operant learning is a concept similar to reinforcement learning in computer sci-

ence, i.e. learning by reward or punishment for behaviour. Experiments have shown

that a wide range of animals is capable of operant learning, including animal with only

a few neurons, such as Drosophila. The fact implies that operant learning can establish

without a large number of neurons. With it as an assumption, the structure and dy-

namics of synapses are investigated, and a synaptic plasticity model is proposed. The

model includes nonlinear dynamics of synapses, especially receptor trafficking which

affects synaptic strength. Tests of this model show it can enable operant learning at the

neuron level and apply to a broad range of NNs, including feedforward, recurrent and

spiking NNs.

The mushroom body is a learning centre of the insect brain known and modelled

for associative learning, but not yet for operant learning. To investigate whether it par-

ticipates in operant learning, Drosophila larvae are studied with a transgenic tool by

my collaborators. Based on the experiment and the results, a mushroom body model

capable of operant learning is modelled. The proposed neural circuit model can repro-

duce the operant learning of the turning behaviour of Drosophila larvae.

Then the synaptic plasticity model is simplified for robot learning. With the sim-

plified model, a recurrent neural network with internal neural dynamics can learn to

control a planar bipedal robot in a benchmark reinforcement learning task which is

called bipedal walker by OpenAI. Benefiting efficiency in parameter space exploration

instead of action space exploration, it is the first known solution to the task with rein-

forcement learning approaches.

Although existing pneumatic soft robots can have multiple muscles embedded in

a component, it is far less than the muscles in the Drosophila larva, which are well-

organised in a tiny space. A soft robot system is developed based on the muscle pattern

of the Drosophila larva, to explore the possibility to embed a high density of muscles
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in a limited space. Three versions of the body wall with pneumatic muscles mimicking

the muscle pattern are designed. A pneumatic control system and embedded control

system are also developed for controlling the robot. With a bioinspired body wall will

a large number of muscles, the robot performs lifelike motions in experiments.
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Lay Summary

Understanding of animals can provide inspiration to the design of robots. Even

tiny animals can have impressive learning capability and motion capability that a robot

does not have. For example, a fruit fly larva can learn by trial and error with a tiny

brain as well as move flexibly without limbs in complex environments. The learning

by trial and error and the flexible motions are essential capabilities for a robot to work

in realistic situations.

Study of the brain of the fruitfly suggests that oscillation of synapses, which are the

connections between neurons, can help a fruit fly larva learn by trial and error. This

finding is applied to the training of neural networks and teaching a robot to run in a

2D-video-game-like environment. Study of the layout of muscles in the fruit fly larva

suggests how this contributes to its motion ability. A soft robot is designed with an

effort to reproduce the layout. With a simplified layout of muscles, the robot is capable

of life-like motions
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Chapter 1

Introduction

Animals provide abundant inspiration for robot design, from the structure, such as hu-

manoid robots and four-legged robots, to the approach of perceptions, such as vision

and tactile. This work studies Drosophila larvae (fruit fly maggots) for the develop-

ment of robot reinforcement learning algorithms and design of soft robots. They are

two fields in robot research that can contribute to each other. On the one hand, re-

inforcement learning requires action explorations which is dangerous for traditional

rigid-body robots, while soft robots are safer on in uncharted contacts. On the other

hand, soft robots are hard to control with traditional robot control approaches, while

robot reinforcement learning can provide potential alternatives. Drosophila larvae are

capable of operant learning and flexible in controlling their soft bodies. Hence they are

studied as reference models in this work for building reinforcement learning models

and designing a robot. The studies in this thesis cross multiple topics include synapse

modelling, neural circuit modelling, robot reinforcement learning and soft robotics.

For the convenience of understanding, this chapter is only an overview of the work.

Detailed literature reviews of the topics in more depth will be presented in later chap-

ters.

Robot learning can enhance the adaptability of robots to various tasks and reduce

the routines of users in deploying the robots (Sigaud and Peters, 2012; Arulkumaran

et al., 2017; Kober et al., 2015). Robot reinforcement, which is that robots learn by try-

ing, is a subset of robot learning. By reinforcement learning, robots can perform tasks

without prior knowledge. However, there are two significant challenges in robot rein-

forcement learning: low effectiveness of action exploration, such as action exploration

in continuous action space using discrete noise ; and dangerous in action exploration

during learning, such as interference among bodies and collision with objects.

1
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Existing mainstream robot learning models are introduced from machine learning.

However, the tasks of machine learning are usually different from the tasks of robot

learning. The former are time-invariant learning tasks, such as curve fitting and vector

classification, while the latter are dynamic tasks such as motion control and decision

making in varying situations(Sigaud and Peters, 2012). The difference impedes the

effectiveness of existing robot learning models.

Another trend in building robot learning models is to draw inspiration from animals

and base theory on neurophysiology, ethology or psychology, such as computational

neuroscience models (Chiel and Beer, 1997), evolutionary models (Weng, 2004; Bon-

gard, 2013), imitation learning (Hussein et al., 2017). As existing examples in nature

solve the problems we are facing in robot learning, by referencing them, robot learning

models can be more promising to achieve the targets.

Soft robots are a type of robots that are significantly safer than conventional rigid

robots(Lee et al., 2017). For conventional rigid robots in traditional robot application

scenarios and with conventional control approaches, safety to the environment or hu-

man is guaranteed by predefined working space and physical isolation, and safety to

objects and robot itself is by predefined functions of perception, path/motion planning,

and compliant control. However, in some scenarios, such as robots working in human

environments, robots cannot be isolated from environment and humans; during learn-

ing, especially reinforcement learning, those functions are not predefined, and motion

explorations are usually unpredictable, so collision is highly possible to happen. Prop-

erties of soft materials can avoid injury to robots or the environment during collision

(Lee et al., 2017), which makes soft robot ideal for robot reinforcement learning, even

in the same environment with humans.

This work is an effort to provide some solutions to meet the challenges. Compu-

tational neuroscience models are adopted and developed for reinforcement learning,

and a soft pneumatic robot inspired by larvae is developed as a soft robot with high

degree-of-freedoms and bionic muscle patterns. As Drosophila melanogaster is well

researched in both the neural system and the motor system, it is selected as the biolog-

ical prototype.

1.1 The model animal

Drosophila melanogaster is a model animal in biology and has been widely studied.

Of great convenience in studying Drosophila melanogaster is that people have devel-
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oped abundant transgenic toolkits for studying it (Olsen and Wilson, 2008). For exam-

ple, there are various genetic lines of Drosophila melanogaster with the GAL4/UAS

system, which is a biochemical method for studying gene expression and function in

organisms developed by Brand and Perrimon (1993). There are genetic lines with flu-

orescent muscles that show the muscle patterns and motions in live larvae (Heckscher

et al., 2012), and genetic lines in which their reward neurons can be activated by light

of specific wavelength(Hige et al., 2015). This convenience facilitates both studies of

their motor systems to design the soft robot and their learning behaviours to evaluate

neural circuit models. Another convenience in studying Drosophila melanogaster is

that they have a well-balanced complexity of behaviours and number of neurons. The

neural system of a Drosophila melanogaster larva only has about 105 neurons (Chiang

et al., 2011). For comparisons, a rat has about 2×108 neurons, and a human has about

8.6× 1010 neurons (Herculano-Houzel, 2009). However, Drosophila melanogaster

can have complex behaviours. Drosophila melanogaster adults have behaviours such

as courtship and navigation, and abilities to learn such as associative learning (Aso

et al., 2014a) and operant learning (Brembs, 2009), and motor controls such as walk-

ing and flying. Although a larva has less ability and a smaller brain than an adult, they

have a similar architecture of neural circuits and the ability to learn. Some findings in-

dicate that Drosophila larvae are capable of associative learning (Gerber and Stocker,

2007) and operant learning (Eschbach, 2011).

Although the size of a Drosophila larva brain is small, it has a complex structure,

which is similar to other insect brains. An essential component of their central neural

system is the mushroom body, which is known to be a ”learning centre” and has an

architecture similar to mammals’ cerebellum (Farris, 2011). With recently developed

technologies of observation, such as Two-photon excitation microscopy, the detailed

connections at the synapse level can be observed. Recent research has shown that the

architecture of the mushroom body provides a recurrent multilayer circuit for associa-

tive learning (Aso et al., 2014a). There are also some existing models of the mushroom

body, such as the work by Wessnitzer et al. (2012), showing the possible mechanics

and dynamics for associative learning, but not yet the potential role of the mushroom

body in operant learning.

Experiments have shown that Drosophila is capable of operant learning, such as

heat box experiment (Putz and Heisenberg, 2002) and fly torque experiment (Brembs

and Heisenberg, 2000). In the fly torque experiment, turning behaviour in one direction

is punished during training, and a significant decrease in the proportion of turns in that
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direction is observed. Because of its architecture and that it is known as a learning

centre, the mushroom body is a potential candidate for the basis of operant learning.

To prove it, a biological experiment was conducted by my colleagues using transgenic

Drosophila larvae, for whom the light of specific wavelength causes a reward signal

to be released in the mushroom body when the larva turns/runs. Operant learning

behaviours were observed, and the modelling of the learning capability is thus one

target of the work in the thesis.

1.2 Robot learning

Robots are successfully applied in various tasks, where robots are controlled with ap-

proaches based on classical control theories. However, these control approaches are

only suitable for process-specific tasks in invariant environments, such as work on as-

sembly lines, but not flexible tasks in dynamic environments, such as work at home.

This limitation constrains applications of robots.

Robot learning and robot artificial intelligence are the approaches people try to

break the limitations (Pierson and Gashler, 2017; Argall et al., 2009; Deisenroth et al.,

2011). There are efforts to introduce recent developments in machine learning to robot

control, such as supervised learning of image recognition and reinforcement learn-

ing of motion control (Arulkumaran et al., 2017; Kober et al., 2014). However, the

basis of algorithms used in the efforts, such artificial neural networks, are designed

for time-invariant learning tasks such as curve fitting and vector classification, but not

for dynamic tasks robots can encounter, such as motion control and decision mak-

ing in changing situations. Hence, lots of the effort to introduce these approaches to

robot control are spent on building adapters between static learning algorithms to dy-

namic tasks, and efficiency is lost. It is partly because those models were developed

to describe the results of higher-level intelligence activity (static abstract concepts) but

are applied to lower level dynamic activity (motor control). However, for animals,

responses for lower level dynamic activities are developed first to form the basis of

higher-level intelligence activities. Hence, to enable robots with animal-like intelli-

gence that have high efficiency in dynamic tasks, we need new approaches that are

directly for dynamic tasks based on lower level activities, then build the learning sys-

tem up suited to the level that able to process higher-level intelligence.

There are two ways that we can draw inspiration from animals to improve robot

learning: neural circuit architectures and learning rules.
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The feedforward neural networks in computer science, which form the majority of

applied neural networks, are static. They do not have computational abilities that dy-

namic systems have, such as differentiation and integration. As a comparison, classical

control systems and biological neural circuits have these abilities. Missing the abilities

is potentially a key reason why neural networks are less efficient in dynamic tasks than

in static tasks. If we can introduce those computational abilities to neural networks,

the efficiency can be significantly improved.

However, dynamics alone are not sufficient to make a neural architecture suitable

for dynamic tasks. Whether a type of architecture is practical in a specific task is also

constrained by the learning rules that can be applied. The most popular learning rule

for neural networks is gradient descent (GD) with error backpropagation (BP). These

require networks to be time-invariant, so the neural network architectures in which

they can be applied are constrained. For example, most recurrent neural networks (ex-

cept some special cases such as Long short-term memory) suffer from the gradient

vanish/explosion problem in which the tricks for deep feedforward neural networks

are not applicable, thus cannot been efficiently trained with GD and BP; and neural

networks with dynamical neuron models, such as the models in computational neu-

roscience, are time-variant, thus cannot been efficiently trained with GD and BP ei-

ther. There are some other biologically plausible or inspired learning rules, such as the

Hedonistic Synapse (Seung, 2003) and modulated spike-timing-dependent plasticity

(MSTDP) (for a review, see Fremaux et al. (2010)). However, these models only apply

to spiking neural networks, which need more computational resource than firing-rate

neural networks, and have to introduce some arbitrary mechanism, such as a random

number generator, to explore action space (i.e. generate random number sequences for

joint angles). Hence, if a new learning rule can remove those constraints and support

the training of neural networks with various architectures, proposing new neural net-

work architectures can be more straight forward and easier. Moreover, reinforcement

learning with existing learning rules is based on action exploration and uses the explo-

ration information to calculate the parameter updates of neural networks/circuits. If a

new learning rule can directly explore the parameters and evaluate the explored param-

eters according to the resulted actions, the learning process could be simplified. The

works in this thesis show that parameter exploration is possible based on the known

biophysical properties of synapses, which is detailed in chapter 2.
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1.3 Soft Robot

The soft robot is a type of robot being developed recently (Lee et al., 2017; Trivedi

et al., 2008). As the name implies, the most apparent difference between soft robots

and traditional robots is that they have soft bodies. An advantage of soft robots is

safety. They have less possibility to hurt the people or damage the objects they are

interacting with, and are resistant to mechanical Damage (Martinez et al., 2014). There

are various types of soft robots with different shapes or configurations(Marchese et al.,

2015), such as starfish-like grapes (Stokes et al., 2014), starfish-like walker (Shixin

Mao et al., 2013), finger with serial air chambers (Galloway et al., 2016) .

These types of soft robots usually have an external system for power supplies and

control. Compared with them, a tubular robot has more potential to provide internal

space for containing the external system, or for operating objects, such as convey and

grasp. Although the integration of a soft robot body and the external system requires

the external system to be generally soft which still needs further fundamental research,

exploration of soft tubular robots for the design, manufacture and control is still an

essential step.

Drosophila larvae can be a reference for the design of soft robots. The Drosophila

larva motor system has a large number of muscles distributed on a layer of their body

wall with patterns, harmonically driving the body for subtle and complex motions.

For example, the crawling forward motion is not merely a wave of contraction and

extension, but also includes sequentially lifting up and placing down of body segments,

hooking to ground with the mouth hooks, as well as the piston-like motion of viscera

inside the body. The motions need fine coordination of multiple muscles among several

body segments. There is no existing soft robot replicate the muscle patterns of a larva.

A robot designed based on the Drosophila larva is help for more accurate replication

of the motions and understanding of the motor system.

1.4 Contributions

The work presented in this thesis is inter-disciplinary, as are the hypotheses and contri-

butions. The related disciplines include computational neuroscience, operant learning,

robot learning and soft robotics.

Hypotheses:

1. the dynamics in synapses are non-linear so that chaos can exist;
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2. the chaotic dynamics support and facilitate operant learning, which is learning

by trial and error;

3. with synaptic dynamics, a mushroom body model is capable of operant learning;

4. a synapse model with the abstracted dynamics can train neural networks that are

unable to be trained with backpropagation, for robot reinforcement learning;

5. a soft robot with larval Drosophila muscle patterns can have the ability of life-

like motion.

Results:

1. Chaos appears in the mathematical model built upon known biological findings

of synapses, which supports the hypothesis that chaotic dynamics can exist in

synapses;

2. with the presence of the neural modulator, synapses with the chaotic dynamics

successfully enabled operant learning of a feedforward neuron, a central pattern

generator, and a spiking neural network;

3. with the synapse model, a mushroom body model is capable of operant learning;

4. with the simplified version of the synapse model a neural network outperformed

existing models in a bipedal locomotion reinforcement learning task;

5. applying the muscle patterns of Drosophila larvae to a soft robot without mod-

ification is not practical, while some adjustments, such as merging of adjacent

muscles that have similar functions and removal of materials that hinder the rel-

ative sliding between muscles, can improve the performance of the robot.

Highlights:

1. the potential chaos in synapses was ignored in previous models, and the proposed

model in this thesis is the first synapse model with chaos;

2. the learning rule with the synapse model is compatible with existing artificial

neural networks as well as biologically plausible neural architectures;

3. the mushroom body model agrees with a biological and behaviour experiment

of Drosophila larva operant learning, which was not captured by existing mush-

room body models;

4. the learning process with the simplified synapse model is a type of parameter

exploration, thus the action exploration of the agent is correlated with sensory

input, and the learning is more efficient and effective than existing algorithms;

5. simplified and abstracted from the Drsophila larva muscle pattern, the soft robot

has 24 compact muscles in a single layer.
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Outcomes:
1. A journal paper A model of operant learning based on chaotically varying synap-

tic strength was published in the Neural Networks (Wei and Webb, 2018a). It is

about hypotheses 1 and 2, results 1 and 2, as well as highlights 1 and 2. Barbara

Webb is the co-author of the paper, who advised on the work and the writing of

the paper. This paper is included in chapter 2.

2. A paper is in preparation for hypothesis 3, result 3, and highlight 3.

3. A conference paper A Bio-inspired Reinforcement Learning Rule to Optimise

Dynamical Neural Networks for Robot Control was published in the 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Wei and

Webb, 2018b). It is about hypothesis 4, result 4,and highlight 4. Barbara Webb

is the co-author of the paper, who advised on the work and the writing of the

paper. This paper is included in chapter 4.

4. A conference paper A soft pneumatic maggot robot was published in The 5th In-

ternational Conference on Biomimetic and Biohybrid Systems (Wei et al., 2016).

It is about hypotheses 5, result 5,and highlight 5. Adam Stokes and Barbara

Webb are the co-authors of the paper, who advised on the work and the writing

of the paper. This paper is included in chapter 5. A soft robot is designed and

built.

1.5 Structure of this thesis

For the convenience of understanding, this chapter is only an overview of the work.

More in-depth and detailed literature reviews of the topics will be presented in later

chapters.

Chapter 2 details the biologically plausible synapse model with chaotic dynamics

and the learning rule based on the model.

Chapter 3 shows the mushroom body model for operant learning with the synapse

model and the learning rule.

Chapter 4 provides an example for the application of the simplified model in a

reinforcement learning task about robot dynamic control.

Chapter 5 is about the soft pneumatic maggot robot system.

Chapter 6 discusses the work as a whole and future work.



Chapter 2

The “Dynamic Synapse” Learning

Model

2.1 Background

A synapse is a structure that conveys signals between neurons. It usually consists of an

axon terminal, a synaptic cleft and a dendrite spine. In the neural networks in the field

of computer science 1, a synapse is simplified as a static weight that can be adjusted

by learning. However, in fact, a synapse is very dynamic and complex, in aspects such

as its microscopic architectures maintaining its functions and its macroscopic effect on

the neural circuits.

For synapses that pass chemical signals between neurons, the processes that relate

to neurotransmitter release and reception contribute the majority of its dynamics. For

example, (1) because neurotransmitter is stored in synaptic vesicles at axon terminals

and the speed of producing and recycling is slower than releasing, the conduction of the

synapse can decrease after neurotransmitter is exhausted; (2) because neurotransmitter

moves between neurons by diffusion in the synaptic cleft, there is a delay during signal

transmission; and (3) because neurotransmitter receptors can move between the post-

synaptic regions where neurotransmitter are reachable or unreachable, the sensitivity

of the dendrite is not constant. The research presented in this chapter exploits the third

type of dynamics to form the basis of the plasticity of synapses, introducing a new

learning rule for neural circuits or networks.

1In this thesis, I use ’neural network’ to refer to the computational architecture in computer science
that is inspired by biological neural circuits, while ’neural circuit’ the actual biological structures.

9



10 Chapter 2. The “Dynamic Synapse” Learning Model

2.2 A model of operant learning based on chaotically

varying synaptic strength

The paper shown in the following pages is the journal paper A model of operant learn-

ing based on chaotically varying synaptic strength published on the Neural Networks

(Wei and Webb, 2018a). It is about Hypotheses 1 and 2, Results 1 and 2, as well as

Highlights 1 and 2 in Chapter 1. Barbara Webb is the co-author of the paper, who

advised on the work and writing of the paper.

The paper reviews related work and findings, including operant learning, existing

synaptic models, chaos, learning with chaos, the chaos in biological systems, the re-

ceptor dynamics and the effect of the neuromodulator on the receptor dynamics.

Based on the findings, the “dynamic synapse” model is built and presented. A

simulation result without neuromodulator shows that chaotic fluctuation emerged from

the model. Three toy experiments show that the “dynamic synapse model” is capable

of operant learning with a neuromodulator. The experiments are, respectively, a linear

summation neuron maximising its output with limited neurotransmitter receptors, a

central pattern generator approximating its output frequency to target frequency, and

a spiking neuron network learning to control an agent for foraging and avoiding a

predator.

The relation of the “dynamic synapse” model and existing models, as well as the

potential variations of the model, are discussed.

The mathematical equations are detailed in the method section. Some formation

problems of the equations are caused by typos and corrected in the following corrigen-

dum.
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a b s t r a c t

Operant learning is learning based on reinforcement of behaviours. We propose a new hypothesis for
operant learning at the single neuron level based on spontaneous fluctuations of synaptic strength caused
by receptor dynamics. These fluctuations allow the neural system to explore a space of outputs. If the
receptor dynamics are altered by a reinforcement signal the neural system settles to better states, i.e.,
to match the environmental dynamics that determine reward. Simulations show that this mechanism
can support operant learning in a feed-forward neural circuit, a recurrent neural circuit, and a spiking
neural circuit controlling an agent learning in a dynamic reward and punishment situation. We discuss
how the new principle relates to existing learning rules and observed phenomena of short and long-term
potentiation.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Operant learning (also called operant conditioning or instru-
mental conditioning) is a type of learning inwhich a newbehaviour
is increased, or an existing behaviour is suppressed, by pairing it
with reward or punishment. For example: (a) In a Skinner box,
when a rat occasionally presses a lever, it gets some food. After a
while, it increases the rate of lever pressing (Jensen, 1963). (b) In a
flight simulator, a fruit fly is heated when it generates yaw torque
to one side and released from heat when it generates yaw torque
to the other side. In minutes the fly learns to maintain its torque in
the range that is without punishment (Wolf & Heisenberg, 1991).
(c) When an Aplysia produces a bite, the esophageal nerve can
be stimulated in vivo to mimic the food signal. After training, it
produces more bites than a yoked control that has received the
same stimulation without the coupling to its own actions (Brembs,
2003; Cash & Carew, 1989).

Some of this research, e.g. in Aplysia (see review in Nargeot
& Simmers, 2011), implies that mechanisms at the single neuron
level can play important roles in operant learning. There are some
existing single neuron or synapse models intended to account
for operant learning. For example, the ‘Hedonistic Synapse’ is a

✩ The work is funded by European Commission under FP7-ICT (Project ID:
618045).

* Corresponding author at: School of Informatics, University of Edinburgh, 10
Crichton Street, Edinburgh, EH8 9AB, United Kingdom.

E-mail address: Tianqi-Wei@outlook.com (T. Wei).

spike-based synapse model with stochastic synaptic transmis-
sions, where the probability of transmitter release (the synaptic
strength) is updated continuously according to the correlation
between the transmitter fluctuation and a reward signal (Se-
ung, 2003). Learning models based on modulated spike-timing-
dependent plasticity (MSTDP) have also been applied to operant
learning, using a reward signal to alter the weight of synapses that
have been tagged by STDP as contributing to the output that pro-
duced the reward (for a review, see Frémaux, Sprekeler, &Gerstner,
2010). These models only apply to spiking neural networks, and
moreover, they have to introduce some arbitrary mechanism, such
as a random number generator, to explore output space (i.e. gen-
erate different actions). Use of random number generators leads
to the exploration of discrete output spaces with ever-present
unpredictability.

An alternative option for generating exploration of the output
space is chaos. Chaotic motion, which is a type of irregular motion
that can exist in simple systems, has very complex, unpredictable
and ergodic solutions (Eckmann & Ruelle, 1985; Tél, Gruiz, & Ku-
lacsy, 2006). Chaos is widely found in biological systems (for a
review, see Cavalieri & Koçak, 1994), including neurons and neural
circuits. In a neuron, the dynamics of membrane potential and ion
flows can be chaotic, as has been verified in several models, such
as Canavier, Clark, and Byrne (1990), Nobukawa, Nishimura, Ya-
manishi, and Liu (2014) and Storace, Linaro, and De Lange (2008),
and observed in the Nitella intermodal cell (Hayashi, Nakao, &
Hirakawa, 1983). Simulations of neural circuits also show chaos
can exist at the circuit level, e.g. Angulo-Garcia and Torcini (2014)
and Sussillo (2014). A chaotic system can be a source to generate

https://doi.org/10.1016/j.neunet.2018.08.006
0893-6080/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Basic concept of how operant learning works with a Dynamic Synapse. (Left): A neuron has multiple inputs, and its output is the sum of the inputs multiplied by the
synaptic strengths, passed through a non-linear function. Because the synapses are dynamic, their values continuously change, and thus the output will explore a space of
possible outputs. A value function on the output controls the release of a modulator which alters the synaptic strengths. (Right): Illustrating the dynamic synaptic strength
of one synapse. During learning, the centre of synaptic strength oscillation is shifted towards the instantaneous synaptic strength that coincides with increased modulator,
e.g., as illustrated, themodulator (red) is highwhen the instantaneous strength (green) is high, so the centre of synaptic strength is gradually increased (blue). Themodulator
also affects the damping of the oscillation, so the amplitude of oscillation decreases, and the learning can converge. An observer can infer the ‘effective’ synaptic strength by
low-pass filtering on the instantaneous synaptic strength (black) but note this is only an approximation of the actual centre of oscillation which cannot be directly observed.

unpredictable, continuous and ergodic actions for operant learning
or reinforcement learning. This idea has been applied to algorithms
for robot learning, such as a Fish-Catching Robot that uses a chaotic
generator for unpredictablemotion planning to avoid fishes adapt-
ing to repetitive motions (Inukai, Minami, & Yanou, 2015) and
a hexapod robot with a chaotic Central Pattern Generator (CPG)
that produces chaotic signals for exploration of new motions to
free its leg from a hole in the floor (Steingrube, Timme, Woer-
goetter, & Manoonpong, 2011). The signals generated by a chaotic
process are more continuous and more suitable for controlling
a robot’s (or animal’s) interaction with the physical world than
the signals generated by a random number generator, which are
usually discrete white noise. Chaos in a physical system usually
results in a more continuous and smooth variation of states than
a random system. This property allows a transient delay of reward
and modulator, which is common in learning in the real world. In
principle, continuous and smooth trajectories canbe obtained from
a random number generator using interpolation, but, unlike chaos,
the system will be predictable during the interpolation.

Although chaos is widely found in biological systems, the po-
tential for chaos in synaptic dynamics and how this could support
learning has not been previously considered. Here, we hypothesise
that the following ‘Dynamic Synapse’ mechanism could underlie
operant learning (Fig. 1). A neuron (Fig. 1(left)) has multiple input
synapses, forwhich the synaptic strengths spontaneously fluctuate
with uncorrelated phases (Fig. 1(right) green curve) around the
centre of oscillation (Fig. 1(right) blue curve). We argue in more
detail below that this could be caused by receptor trafficking. The
neuron receives inputs (e.g. from sensors or other neurons), and
the inputs are multiplied by the synaptic strengths, summed up
and passed through a non-linear function to determine the output.
The output of the neuron causes some outcome (e.g. for an agent in
an environment) which results in release of a neuromodulator ac-
cording to a value function (Fig. 1(right) red curve). The modulator
acts to bias the centre of the synaptic strength oscillation towards
the instantaneous synaptic strength, and to decrease the amplitude
of oscillation. Thus the synaptic strengths will converge to match
the input–output properties of the neuron to the value function.

Is there a plausible biological mechanism that could produce
the hypothesised synaptic strength fluctuation? The number of
neurotransmitter receptors (from now on we will refer simply to
receptors) embedded in themembrane of a post-synaptic dendritic
spine is a key factor in synaptic strength (Sheng & Hoogenraad,
2007). Enlargement of a dendritic spine increases its capacity for
anchoring structure, including scaffold proteins and cytoskeleton,
and thus the number of neurotransmitter receptors it can accom-
modate (Allison, Gelfand, Spector, & Craig, 1998). However, the size

and the capacity are not closely coupled (Cingolani & Goda, 2008).
As shown in Fig. 2, under certain conditions, synaptic strength can
change without changes in spine size, and spine size can change
without changes in synaptic strength.

The number of receptors in the membrane of a spine is also
affected by two broad types of movement between synaptic and
non-synaptic pools: lateral movement, which is mainly passive
diffusion on the cell membrane; and endosomal trafficking, which
is active transportation (Lau & Zukin, 2007). The lateral movement
is affected by the cytoskeleton, which restricts or guides the dif-
fusion (Jaqaman et al., 2011). In particular, the actin cytoskele-
ton has an active contribution to the regulation of postsynaptic
receptor mobility both in and out of synapses (Cingolani & Goda,
2008). The endosomal trafficking includes endocytosis of receptors
from cell membrane to endosome, intracellular transportation of
endosome, and exocytosis of receptors from endosome to the cell
membrane (Roth, Zhang, & Huganir, 2017). Endosomal traffick-
ing can recycle receptors, transporting them between different
regions (Petrini et al., 2009). There are also ongoing processes of
receptor synthesis and degradation (Triller & Choquet, 2005).

The timescale of these receptor dynamics can be relatively
fast. Receptors move from synaptic to extrasynaptic regions and
vice versa usually with periods of up to a few minutes (Triller
& Choquet, 2005). The size of a post-synaptic dendrite spine and
the amount of actins in it oscillate in a time scale from tens of
seconds (in immature dendrite spine) to a half hour (in a ma-
ture synapse) (Honkura, Matsuzaki, Noguchi, Ellis-Davies, & Kasai,
2008; Koskinen & Hotulainen, 2014). Receptors anchored to the
actin cytoskeleton (Hausrat et al., 2015) can move with the actin
flow (Sergé, Fourgeaud,Hémar, &Choquet, 2003). Post-synaptic re-
ceptor dynamics have beenmodelled at amesoscopic level treating
the regulation of numbers of the receptors and scaffold proteins
as quasi-equilibrium based on thermodynamic theory (Sekimoto
& Triller, 2009). The model proposed in Haselwandter, Calamai,
Kardar, Triller, and Azeredo Da Silveira (2011) describes formation
and stability of synaptic receptor domains as a reaction–diffusion
system. We note these models are dynamic, but not chaotic. We
propose (i) that the complexity of post-synaptic dynamics (Cho-
quet & Triller, 2013), especially receptor trafficking (Triller & Cho-
quet, 2005) can support chaos and (ii) that this can provide a
mechanism for operant learning as described in Fig. 1.

It is notable that dopamine has been shown to affect the same
receptor trafficking dynamics (Sun, Milovanovic, Zhao, & Wolf,
2008). This supports the possibility that, in an operant learning
paradigm, the relationship between the current synaptic strength
(changing chaotically due to receptor trafficking) and a reward
(signalled by neurotransmitter release) is a basis for learning. The
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Fig. 2. Decoupling between changes in spine size and synaptic strength under certain conditions. The membrane is formed mainly by the lipid bilayer and proteins.
Cytoskeleton supports the shape of the dendrite spine. There are two forms of receptor trafficking. Lateral movement of receptors is observed as Brownian motion on the
membrane. Endosomal trafficking carries receptors driven by motor protein along the cytoskeleton. Scaffold proteins can help receptors to anchor, increasing the capacity
of the dendrite spine to hold the receptors. On the left, the size of neural spine stays the same, but the synaptic strength (number of receptors) varies. On the right, the size
of dendrite spine varies, but the synaptic strength stays the same.
Source:Modified from Cingolani and Goda (2008).

Fig. 3. (Left) A dendrite tree consists of a dendrite (in dark brown) and multiple synapses (in light brown). (Right) A schematic diagram of the dendrite tree. Receptors can
move between dendrite and synapse to dynamically modify the synapse strength wi around some centreWci .

possible role of alteration in postsynaptic receptor distribution
and size of dendritic spines in learning (particularly in short-
term and long-term potentiation (STP & LTP) protocols) is well
established (Isaac, Nicoll, & Malenka, 1995; Kauer, Malenka, &
Nicoll, 1988; Shepherd & Huganir, 2007). In Shouval, Castellani,
Blais, Yeung, and Cooper (2002), Shouval et al. proposed a ther-
modynamic model of AMPA receptor endosomal trafficking to
explain bi-directional synaptic strength variation during LTP and
long-term depression (LTD). Xie, Liaw, Baudry, and Berger (1997)
proposed a synapse level model in which AMPA receptors are
attracted towards NMDA receptors during STP, and some of the
AMPA receptors become anchored near the NMDA receptors while
others diffuse again during LTP. The plausibility that such changes
in receptor distribution could alter synaptic efficiency has also
been demonstrated (Allam et al., 2015).

In the learning model presented here, we do not include
any Hebbian process (see discussion). Instead, we allow chaotic
synapses in a neuron to explore possible synaptic strengths; the
neuron thus becomes a function on its inputs with chaotic co-
efficients, generating unpredictable output signals to explore ac-
tion spaces. If the consequences of the action are reflected in a
reinforcement signal delivered to the synapses, the parameters of
the chaos can be altered to centre around synaptic strengths that
optimise the output. We show through simulation the learning
functionality of such a system in several different scenarios.

2. Result

Our model simplifies the structure of a neuron to consist of
multiple input synapses and a dendrite, which together comprise
the dendritic tree (Fig. 3). We do not model the soma and axon
of the neuron but simply calculate the soma’s input as the sum
(across the dendritic tree) of the synaptic inputsmultiplied by their
respective synaptic strengths, then calculate the soma’s output
by passing the input through a non-linear function. The number
of receptors in a synapse represents the synaptic strength of the
synapse. Receptors in the dendrite do not contribute any synaptic
strength. Because of the receptor trafficking dynamics, the synaptic
strength fluctuates spontaneously. In the methods we provide an
abstracted mathematical model for receptor trafficking, but sum-
marise here the key properties needed to support learning:

1. Spontaneously and smoothly varying synaptic strength wi
around an oscillation centre wci;

2. The phases of the oscillations are not locked
3. The oscillation centre wci and amplitude depend on prop-

erties of the dendrite tree that can be altered by a learning
signal.

When a neuron or network of neurons with such synapses
produces output in a way that meets a specific requirement (given
by a value function), modulator representing reward is released.



T. Wei, B. Webb / Neural Networks 108 (2018) 114–127 117

The modulator affects the centre of synaptic strength oscillation,
which shifts towards the instantaneous synaptic strength at the
time of the modulator release. The simplest way to implement
this is as a learning rule depends only on the current centre of
synaptic strength oscillation, the instantaneous synaptic strength
and amount of the modulator:

ẇci = kw(wi − wci)nM (1)

where nM is amount of the modulator, and kw is a coefficient
controlling the learning rate. By this learning rule, a circuit with
dynamic synapses can conduct operant learning, as the instan-
taneous synaptic strength is near or in the range that satisfy a
criterion when modulator is released (note in the experiments
that follow we use a slightly altered rule (Eq. (23) in Methods)
to compensate for a biased drift in synaptic strength). To allow
learning to converge, the learning rule should also reduce the
oscillation amplitude (Eq. (24)). Conceptually, we relate the centre
of oscillation to the capacity of a dendritic spine to hold receptors
(Fig. 2; and the amplitude of oscillation to the damping of the
receptor movement dynamics. We assume these can result from
changes in spine size or to the scaffold cyto-skeleton complex, but
do not model these explicitly.

2.1. Simulation of a dendrite tree

In Fig. 4, we show in simulation that our receptor trafficking
model produces apparently chaotic and unpredictable oscillation
of the synaptic weights. The simulated dynamic synapse system
has six synapses, and the trajectory of the first three is plotted:
it can be seen that it samples relatively evenly in the space of
synaptic weight values. Fig. 4(right) shows how the range of ex-
ploration can be controlled. If the damping factor of a synapse
increases, oscillation in the corresponding dimension of the plot
will be narrower. If the capacity of a synapse changes, the cen-
tre of oscillation of the corresponding dimension in the plot will
translate. These properties are the basis of the principle by which
the system can learn and converge. In this example, the periods
of the oscillations are from 10 s to 20 s. With different param-
eters, the periods can be in a different range, such as in tens of
minutes or hours, and the oscillations still appear chaotic after
the equivalent of several days of simulated time. It is important
for learning in our model that the synaptic dynamic timescale
matches the causal dynamics of the learning situation. That is,
when the reward is delivered, the state of the synapse should still
be near the state that caused the action that resulted in reward.
However, the timescale cannot be too long or else the generation
of new actions will be limited, and the learning might converge to
a local minimum.We note there may be other factors that produce
unpredictable synaptic strengths, such as Brownian movement of
receptors due to thermal noise, but suggest that these may be
subsumed within the higher level dynamics described above, and
it is not necessary to include them as a source of noise to support
learning.

2.2. Applying learning in a simple linear example

In this experiment we test learning in a single neuron with
reward provided when the output is higher than a threshold and
increasing. Theneuron is a linear neuron, i.e. its output is the sumof
the product of input values and their synaptic strengths. During the
simulation, the input values of the neuron are constants ranging
from 0 to 5 as shown in Fig. 5. The reward function is:

nm =

{
km1 ẏ(y − y0) if ẏ > 0 ∧ y − y0 > 0
0 otherwise (2)

where nm is the amount of modulator, km1 a coefficient, y the
output of the neuron, and y0 a threshold of y to trigger the release
of modulator.

Fig. 6(a) shows the instantaneous synaptic strengths, and the
labels of lines show the constant input value of corresponding
synapses. The equilibrium synaptic strengths, which are also av-
erage synaptic strengths, are shown in Fig. 6(b). Note that the
later equilibrium synaptic strengths have the same ordering from
highest to lowest as input strengths. The neuron has a fixed total
of receptors, for which it finds an efficient distribution across the
synapses to maximise. Fig. 6(c) shows the output of the neuron. In
the first half of the learning process, the output decreased a little
because the initial value is high but not stable. In the second half,
the output gradually increased. Fig. 6(d) shows the trajectory of
first three synaptic strengths. The trajectory starts by exploring a
large volume then gradually converges.

2.3. Tuning the period of a central pattern generator

A Central Pattern Generator (CPG) is a type of Recurrent Neural
Network (RNN) which exists in many animals to control rhythmic
motions, such as walking and heartbeat. It is also applied in legged
robot control as an alternative to explicitmotionplanning (Ijspeert,
2008; Xia et al., 2017). However, online training of a CPG is difficult.
People often have to tune it by hand or by offline parameter
optimisation, such as brute force search or Genetic Algorithms.
Our approach has a potential advantage in tuning or training a
CPG because it can train a CPG online. This experiment shows an
example of tuning a CPG to change its period. The CPG model is
modified from the model described in Mori, Nakamura, Sato, and
Ishii (2004). The CPG is symmetric, and the synapses are replaced
by Dynamic Synapses (as shown in Fig. 7). The initial values of
dynamic synaptic strengths were set to be the original synap-
tic strengths, and the initial amplitude of oscillation of synaptic
strengths are scaled by an exponential function to be in the nearby
order of magnitude of the original synaptic strengths.

wicpg = wi0β
wi−0.5 (3)

where wiCPG is CPG synapses’ weights, wi0 the ith initial synap-
tic weight of the CPG, β is a base of exponentiation that scales
the weights. As the CPG is symmetric, in the model, the state of
dynamic synapses of one neuron is a mirror of the other one.
When the output of the CPG crosses zero, the error between the
target period and the actual period is calculated, and themodulator
is released at a speed that is proportional to the decline of the
error compared with the previous error. If the error increased, no
modulator is released:

ϵi = ωi − ωobj (4)

nmi =

{
km2 (|ϵi−1| − |ϵ|) if |ϵi−1| − |ϵ| > 0
0 otherwise (5)

where ωi is the period of the CPG from ith to i + 1th zero crossing,
ωobj the target period, ϵi is the error between them, nmI the amount
of modulator released.

The CPG originally had a period of about 0.5 s. The target of
training is to alter the period to be 2 s by tuning the synaptic
strengths. The results are shown in Fig. 8. Using the same operant
learning rule as before, the period of the CPG converges to the
target period. The period of the output of CPG and the synaptic
strength is nonlinear and dynamic synapses have no prior knowl-
edge of the CPG, but the simple neural circuit still finds and learns
the parameters of the target effectively. The experiment shows that
the Dynamic Synapse can be applied to an RNN without requiring
any specific analysis of the properties of the network.
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Fig. 4. Trajectories of synaptic strengths. (Left): all synapses have the same damping factors. (Right): synapse one has a higher damping factor than others. (a) & (b) show
the change over time of the synaptic strengths (the proportional number of receptors in each synapse); (c) & (d) plot the trajectory formed by the first three synapses (for (d)
the synapse on the X-axis has higher damping); (e) & (f) are Poincaré maps, i.e., sections of (c) and (d) when the instantaneous synaptic strength passes the plane defined by
the centre of oscillation for one synapse (blue and green are for two different directions, and time of intersection is indicated by the intensity). It can be seen that synaptic
strength oscillates chaotically and unpredictably, tracing out a search space. With higher damping factors, the amplitude of the oscillation for that synapse is decreased,
reducing the search space. The periods of the oscillations can be different with different parameters.

2.4. Reinforcement learning in Puckworld

The Dynamic Synapse model was tested in a game named
PuckWorld, available as part of the Python Learning Environment.
The game has a planar environment with three agents (Fig. 9): a
player that is controlled by a reinforcement learning algorithm,
a reward source that changes its location after a specific period,
and a punishment source that chases the player and decreases the

reward if the player is within a specific range of the punishment
source.

In the game, the player can move in 4 directions: left, right,
down and up. The states of the player and the environment can
be observed (Fig. 10). The states are the velocity of the player, the
locations of the player, the position of the reward source and the
position of the punishment source. The states are pre-processed
then used as sensor input. In this instance, the sensory inputs are
the velocity of the player, the distance to the reward source, and
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Fig. 5. A linear neuron with dynamic synapses and several constant inputs. Its
output is the sum of the inputs, each weighted by the respective synaptic strength.

the shortest distance the player is from the edge of the range of
the punishment source (the distance to escape). As the game codes
the states using an absolute coordinate system, the player does
not have orientation. To transform the potentially negative values
and direction of distance information in absolute coordinates into
positive sensor values, the player is assumed to have sensors in 4
directions that correspond to the positive and negative directions
of the x- and y-axis of the coordinate system, and the sensor on
the side of the agent information coming from is positive, while the
other side is zero (Fig. 10). As the player has a symmetric structure,
the neural circuits are designed in a symmetric structure: four

Fig. 7. A CPG with the learning rule. Two neurons with spontaneous firing inhibit
each other’s firing alternately. The simulation aims to tune the period of oscillation,
using the same operant learning rule to alter the synaptic strengths.

integrate-and-fire motor neurons control the motion in the four
directions, respectively. Each neuron gets three types of sensory
inputs (as outlined above) in the four directions. Each sensory input
feeds into the neuron through a dynamic synapse. Also because of
the symmetry of the structures and motions, to simplify and ac-
celerate the training, the dynamic synapses of each motor neuron
from sensors in the same direction relative to that motor neuron
are treated as the same (have the same dynamics and parameters
during the learning).

The function of the motor neurons is:

v̇ =

n∑
i=1

wisi (6)

Fig. 6. Simulation results of the simple linear example. The value function determining modulator release is that the output is higher than a threshold and increasing. (a)
The instantaneous synaptic strengths, the labels of lines show the input value of corresponding synapses (b) the central synaptic strengths (c) the output value of the neuron
(d) trajectory of the first three synaptic strengths. Note that the statistical output value starts to increase after unstable initial fluctuation. At the end of the learning, the
centre of the oscillation of the synaptic strength shifts so that the order of strengths is the same as the order of the input values, and the synaptic strength of the synapse
with highest input value increased while the others declined, which is the most efficient way to get higher output with conservation of the total number of receptors.
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Fig. 8. Results of tuning CPGwith Dynamic Synapse. (a) Before learning the period of oscillation is about 500ms. (b) After learning the period of oscillation is about 2000ms.
(c) The instantaneous synaptic strengths before scaling by the exponential function. As the model is symmetric, the two neurons share same states of dynamic synapses.
Hence, only two synapses are plotted. Same in (d) and (e). (d) The centre of synaptic strength oscillation before scaling by the exponential function. (e) The error between
the period of the output of the CPG and the target period during simulation. (f) The trajectory of chaotic exploration of the synaptic strength, which converged on the bottom
left.

if v > vthreshold v = vrest (7)

where v is membrane potential, si the ith sensory input, vrest the
rest membrane potential and vthreshold the threshold of firing.

The reward of the game is the weighted sum of the normalised
distance to the reward source and the normalised distance into the
range of the punishment source:

R =

{
−(dr + 2de) if player is in punishment range
−dr otherwise (8)

where R is reward, dr the distance between player and reward
source, de the distance between player and the edge of punishment
range.

The reward is fed into a firing rate neuron with an adaptive
current, which releases the modulator. With the adaptive current,
the neuron is sensitive to the change of the reward but insensitive
to the value of the reward. The adaptation speed factor from low to
high is higher than the adaption speed factor fromhigh to low, thus

Fig. 9. The environment of PuckWorld. The green point is the reward source, the
blue point is the player, the red point is the punishment source, and the dark
magenta circle is the range the punishment source effects.

the neuron has a trend to increase the expectation of the reward:

˙Iadapt =

{(
krR + Iadapt

)
kadapt1 if R > Iadapt(

krR + Iadapt
)
kadapt2 if R < Iadapt

(9)
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Fig. 10. Sensors and neural circuits model for PuckWorld. (a) Velocity (v) sensors, distance to reward source (dr ) sensors and distance to escape (de) sensors get input from
four directions; a motor neuron gets all of the sensory inputs by Dynamic Synapses. (b) There are four sets of neural circuits in the player; because the neural circuits, agents
and the environment are symmetric, all homologous synapses are assumed to share the same dynamics and synaptic strengths to accelerate the learning. (c) The sensors
indicate distances by orthogonal decomposition; when a measured object is in the direction that can be projected to the positive direction of a sensor, the sensory value is
positive, otherwise 0.

where Iadapt is the current intensity, kR a factor from reward to
current intensity, kadapt1 and kadapt2 are factors of adaption speed.
Thus modulator amount nm is given by:

nm = 2/(1 + e−kmI (kRR−Iadapt )) − 1 (10)

where kmI is a factor to map the current after adaption to an
appropriate range.

As this is a single layer circuit, the ability of a player controlled
by the circuit is simple and limited. Hence, we can analyse the
possible best solution of the synaptic strengths and compare itwith
the solution obtained by operant training with dynamic synapses.
Treating the single layer circuit as a linear function, the whole sys-
tem can be interpreted as a second-order system. For an appropri-
ate solution, the interactions of the elements in the system should
work as though (1) there is an extension spring connecting the
player and reward source; (2) the punishment range is an elastic
ball that pushes the player away; and (3) the elastic coefficient of
the elastic ball is higher than the elastic coefficient of the spring
so the player will avoid punishment even when the reward is
inside the punishment range. Because of (1), the synaptic strengths
of positive y distance to reward input should be higher than the
synaptic strengths of negative y distance to reward input; because
of (2), the synaptic strengths of positive y distance to escape input
should be higher than the synaptic strengths of negative y distance
to escape input; and because of (3) the synaptic strengths of pos-
itive escape input should be higher than the synaptic strengths of
positive reward input.

The simulation results are shown in Fig. 11. The simulation
result was largely consistent with the analysis above, as shown
in Fig. 11(a) and (c). However, surprisingly the highest synaptic
strength is for negative x distance to reward input (line 4 in
Fig. 11(a)) are higher than other lines, which means the agent
would go forward when the reward source is on its left side. The
positive y velocity (line 3) is also higher than negative y velocity
(line 2), which means the agent tends to accelerate. These appear
to be two strategies to avoid chasing by the punishment source.

In addition, Fig. 11(b) shows the exploration of 3 instantaneous
synaptic strengths. Fig. 11(d) shows the damping factor of the
oscillation of the instantaneous synaptic strengths. Fig. 11(e) is a
Poincare map of the Dynamic synapse, i.e. the section of (b) when
the instantaneous synaptic strengths 0 passed the centre of synap-
tic strength oscillation. It shows that the exploration is chaotic
and unpredictable, and that the region of sampling shrinks during
learning and the density of sampling increases during learning. (f)
The line labelled Reward is the value R returned by the simulation
environment by the reward function; The line labelled Filtered
Reward is the low-pass-filtered R which shows the overall trend;
the line labelled Reward Adaption is the adaption current Iadapt ;
the line labelled Reward after Adaption is the value of kRR − Iadapt ,
which determines the modulator release and is more sensitive to
variations of the reward than to the absolute value of the reward.

The source code for simulations of the model and experiments
is available online https://github.com/InsectRobotics/DynamicSyn
apsePublic.

3. Discussion

Wehave proposed amodel of operant learning based on contin-
uous unpredictable synaptic strength fluctuations, with dynamics
that are altered in response to a reinforcement signal.We illustrate
the application of this principle to optimise the output, for given
inputs, first in a simple linear neuron model, then to tune a recur-
rent CPG network to a target period, and finally to enable a spiking
neural circuit embedded in an agent to improve performance in a
continuous environment with dynamic reward and punishment.

An important property of our approach is that the source of
variation that supports operant learning is continuous, unlike rein-
forcement learning algorithms that are based on random number
generators, which have either discrete random outputs, or are
partially predictable because of interpolation. By defining a system
that has chaotic dynamics we can generate continuous motion
without interpolation, so the unpredictability is continuous on any
scale. An additional advantage over alternative synapse-levelmod-
els for operant learning, such as the Hedonistic Synapse (Seung,
2003), is that the applications are not limited to a specific type of
neural circuit or neural network. We have shown we can use our
Dynamic synapse in both spiking and firing rate neural circuits,
and the method can also be suitable for general online parameter
optimisation, as it acts to scale the synaptic strength value to
the suitable ranges. It can also be applied to discrete systems by
adjusting the time step to an appropriate range or by sampling.We
plan to further explore the application of this model to a range of
problems in robot learning and reinforcement learning.

A key difference between our model and previous models is
that our model learns in parameter space but not action space.
Previous models usually alter the synaptic strength based on the
pattern of synapse activities (i.e. those conveying signals that led
to reward), but our model directly learns the synaptic strengths
that led to reward. As the synapse dynamics reflect recent states
of the synapse, exploring parameter space enables our model to
solve the credit assignment problem without an eligibility trace,
which is necessary for some previous models, such as extended
STDP models by Gurney, Humphries, and Redgrave (2015) and
Izhikevich (2007). As the time scale of synaptic strength fluctua-
tions is longer than synapse activity dynamics, themodel can func-
tion with temporally distant reward. Exploring parameter space
means that the learning concerns the overall function instead of
the specific outputs of the neural circuits, so our model allows
remodelling of synaptic connections independently from action
potentials of neurons, which is a potentially powerful tool for
neural computation.
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Fig. 11. The simulation results of Dynamic Synapse in PuckWorld. The relationships between the labelled number of synapses and the sensor a synapse connects to are:
0,1: x-velocity; 2,3 y-velocity; 4,5 dr in x; 6,7 dr in y; 8,9 de in x; 10,11 dein y; in each case odd numbers are the inputs in the positive direction as explained in the text.
(a) Instantaneous synaptic strength of 12 synapses. (b) The trajectory of the first 3 synaptic weights; the explored range gradually converges. (c) The centres of synaptic
strength oscillations; (d) The damping factors of instantaneous synaptic strength oscillation. All lines overlap. (e) A Poincaré map of Dynamic Synapse. It is a section of (b)
when instantaneous synaptic strength passes its centre of oscillation. Each point is an intersection of the trajectory and the plane defined by the centre of oscillation. The blue
and green points show the intersections from two different directions. The intensity of colour indicates the time of intersections. (f) shows the reward R, adaption current
Iadapt and Reward after adaption.

We have proposed a possible grounding for the chaotic dynam-
ics in the phenomena of receptor movement in dendritic spines.
The model is inspired by recent evidence concerning the extent
and mechanisms of these dynamics, but abstracted from the level
of individual proteins to the level of the receptor flows between
a dendrite and synapses as an integrated system. By focusing
on postsynaptic receptor dynamics, our model can be related to
synaptic mechanisms of short and long-term potentiation and
depression (STP/LTP, STD/LTD). For example, the relations between

STP and LTP as well as STD and LTD are similar to the relation in
our model between the instantaneous synaptic strength and the
centre of synaptic strength oscillation. Themodel can be expanded
to explicitly explain some phenomena during STP, LTP, STD or LTD.
For example, in STP–LTPmodel proposed in Xie et al. (1997), AMPA
receptors are attracted towards the activated NMDA receptors
when neurotransmitter is released, then a proportion of AMPA
receptors diffuse again. This learning rule can be implemented by
adding kw1nT into the functiondescribing the change of the amount
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of receptors in a synapse:

ẇi =

⎧⎨⎩(vi + kw1nT ) cd if vi > 0

(vi + kw1nT )
wi

Vi
if vi < 0

(11)

where nT is amount of the synaptic transmitter, kw1 is a coefficient.
In this extended model, when neurotransmitter is released, the
instantaneous synaptic strength (the number of receptors) will
tend to increase, resulting in STP.When the instantaneous synaptic
strength is higher than the centre of the oscillation, if modulator
is released, the capacity of the synapse to contain receptors will
increase. Because of the oscillation of the amount of receptors
in the synapse, some of the receptors diffuse again. Because the
capacity is increased, more receptors are held in the synapse,
resulting in LTP.

The model in this paper represents postsynaptic dynamics in
a simplified form, at the statistical level of receptor trafficking,
allowing it to emulate some features of receptor flow dynamics
and synapse dynamics. Modelling individual receptors is out of
the scope of this study because it would not be relevant at the
level of learning. However, the mathematical functions for the
receptor dynamics in our model are not exclusive. As long as the
receptor dynamics have the features of chaotic oscillation, and
the centre of oscillation is controllable by our learning rule, our
learning rule could work for alternative formulations. The model
could be extended to include more detail. For example, the recep-
tor trafficking within the dendrite is assumed to be fast enough
(compared to dendrite to synapse trafficking) to ignore its time
constant. In reality, variations of AMPA receptor numbers onneigh-
bouring dendrite spines are usually in the same direction (Zhang,
Cudmore, Lin, Linden, & Huganir, 2015). This phenomenon could
be modelled by taking account of the speed of receptor trafficking
in the dendrite, which would have the consequence that neigh-
bouring synapses would tend to have a similar concentration of
receptors in the dendrite. Hence the receptor oscillation in neigh-
bouring synapses would have a higher probability to be in similar
phases than in distant synapses. Our model depends on several
hypothetical assumptions, such as the form of the dynamics of
receptor trafficking, dynamics of capacity to contain receptors, and
the equilibrium point of receptor oscillation, which are not yet
directly supportable from biological research. To understand the
dynamics of receptor trafficking requires continuous observation
of the collective motion of receptors and concentration change of
receptors in dendrites and synapses on timescales from seconds
to hours. Similarly, understanding the dynamics of capacity to
contain receptors requires continuous observation of actin flow
between synapses and dendrites, size change of synapses and size
change of postsynaptic density on similar timescales. Both types
of observations are difficult but becoming experimentally more
plausible, e.g. approaches of video microscopy in Esteves da Silva
et al. (2015) and Zhang et al. (2015) continuously recorded the
motions of proteins that can be observed as a group enabling the
concentrations and flows to be understood. Observation of the
phase relations between the oscillation of the receptors or struc-
tural componentswould be helpful for validating ourmodel. In our
model, we assume that the instantaneous weight leads the change
of equilibrium point of receptor oscillation when the modulator
is present. This could be tested by transplanting receptors to or
from a synapse and giving modulator treatment, then observing
if the synapse size or postsynaptic density changes. Thus several
predictions arise from our model which we hope may be tested in
future experiments.

However, the key concept presentedhere is not crucially depen-
dent on the details of receptor trafficking. Other models of chaotic
neurons or neural circuits suggest chaos exists in the membrane
potential, and alternative chaotic processes in an animal could

also possibly contribute to the generation of actions and learning
with the same desirable properties of continuous unpredictability.
Rather, the key properties are that the learning mechanism is
entirely local to the synapse, and does not require an explicit ‘tag’
for the Hebbian correlation of pre- and post-synaptic activity but
rather allows this property to emerge from the behavioural or
output consequences caused by the recent state of the circuit. That
is, synapses that contribute to obtaining reward are strengthened;
but this does not depend on the firing of either the pre- or post-
synaptic neuron, except insofar as this is necessary to cause be-
havioural outputs that result in reward.

It is nevertheless interesting to consider a simple variation on
the learning rule we have used to make synapses with active
presynaptic neurons (neurons that have released neurotransmit-
ter, indicating they have fired) learn actively (cf. Eqs. (1) and (24)):

ẇci = kw2 (wi − wci) nMnT (12)

ḃ = kbbnMnT (13)

where nT is amount of the synaptic transmitter. With nT , variation
of synaptic strength of a synapse is proportional to the presynaptic
neuron activity, which can help to improve the pertinence of learn-
ing to the inputs. For example, a neuron gets multiple inputs but
only a small set of them is activated by a specific stimulus, andwith
this rule, the synaptic plasticity only applies between the neuron
and these activated inputs. Note this is a 3-factor learning rule,
depending on the correlation between the amount of the synaptic
transmitter, the amount of modulator, and the difference between
instantaneous synaptic strength and the centre of the oscillation.
When the absolute value of the correlation is higher, the variation
of the centre of the oscillation is more significant.

However, another possible learning rule could use theweighted
average, rather than the product, of the synaptic transmitter and
instantaneous synaptic strength:

ẇci = kw3 (q(kw4nT − wci + α) + (1 − q) (wi − wci)) nM (14)

where kw4 is a coefficient to fit the amount of transmitter to
synaptic strength, q a proportion representing the relative weight-
ing of these two factors, and α a constant. Notably, this rule can
potentially account for Pavlovian classical conditioning, where the
stimulus and reinforcer (neuromodulator) are presented together
irrespective of the output. When q = 1, the learning rule is
Pavlovian learning; when q = 0, the learning rule is operant
learning. When q is close to 1, the learning process might look
like classical conditioning with noise. Thus, classical and operant
learning may coexist in the same neuron and even in the same
synapse.

4. Methods

4.1. Overview

We first present a verbal description of how our model repre-
sents the alteration of synaptic strength in terms of the dynamic
movement of receptors, and then provide a precise mathematical
formulation of the principle.

Two forms of receptor trafficking can move receptors between
the synapses and the dendrite. Lateral diffusion creates a passive
flow along a gradient from a high concentration region to lower
concentration region. Endosomal trafficking acts as an active flow
that can move receptors against the gradient. The active flow is
formed by endosome transportation which carries numbers of re-
ceptors. Ourmodel has aminimal form to capture the key phenom-
ena. Endosomal trafficking is active transportation and ismodelled
with a positive feedback term which provides motive force, and
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Table 1
Symbols in the equations.

Symbol Explanation Typical value

N Number of synapses on a dendrite tree An integer, > 3
Vd Capacity of a dendrite NVs
Vs Average capacity of a dendrite per synapse 1
Vi Capacity of the ith synapse
wtotal Total amount of receptors in the dendritic tree
Di Occupation of a receptor in ith synapse 0 to 1
p The constant coefficient for dimension conversion of the amount of

receptors
wi Instantaneous Synaptic strength of ith synapse Usually from 0.01 to 1
wci Balance point of ith synapse Usually from 0.01 to 1
cdi Concentration of the receptors in ith dendrite region
wi
Vi

Concentration of the receptors of the ith synapse
vi Bidirectional movement rate from dendrite to synapse
r Movement rate inertia 3.5 × 106 to 2.5 × 107

a The positive feedback coefficient of movement rate 170 to 850
b The damping factor of movement rate 14000 to 2.6 × 107

qd The coefficient from concentration difference between neighbouring
dendrite regions to receptor diffusion flux

nM Amount of the modulator Usually from 0 to 1.5
kw A coefficient of balance point update speed Usually from 0.0003 to 0.002
kwc A constant factor to compensate the bias 0.4
kb A coefficient of damping factor update speed Usually from 10−7 to 10−8

two negative feedback terms which limit the speed of transporta-
tion. The negative feedback are the receptor concentration gradi-
ent, which is proportional to the concentration difference between
a synapse and dendrite, and ‘friction’ of endosome transportation,
which is proportional to the endosome transportation speed. These
properties together produce dynamic oscillation of the number of
receptors in each synapse. Because of the concentration gradient,
the equilibrium point of the dynamics of endosome transportation
of a single synapse is when the concentration of receptor in the
synapse is same as the concentration in the dendrite. It is also the
equilibrium point of lateral diffusion. Note that because effects of
receptor synthesis and degradation on receptor concentration are
slower than receptor trafficking, they are assumed to have a negli-
gible contribution to the dynamics. The proportion of receptors in
endosomes is also ignored. Hence, in our model the total number
of receptors in a dendritic tree is constant.

There are two factors in addition to receptor trafficking that
could affect the concentration of receptors in each synapse: the
size of the synapse and the number of receptors per unit area
the synapse can accommodate. The size of the synapse is affected
by the activity of actin. The number of receptors per unit area
a synapse can accommodate is affected by scaffold–cytoskeleton
complex. The two factors are not distinguished in themodel but are
jointly represented as the ‘capacity’ of the region to hold receptors.
Thus, the equilibrium point of receptor motion can be altered by
altering the capacity. The mechanism of learning in our model is
to alter the capacity according to the following rule: whenever a
neuromodulator signalling reinforcement is present, the instanta-
neous number of receptors in a synapse determines a change in its
effective capacity, establishing a new equilibrium point nearer to
that instantaneous value.

4.2. Mathematical model

When the number of receptors per synapse is sufficiently large,
their dynamics can be modelled statistically using differential
equations (Holcman & Triller, 2006), e.g. like gas, which consists
of free-moving molecules and uncertain intermolecular distance.
However, even for a smaller number of receptors per synapse, we
note their contribution to synaptic strength can be proportional to
their distance from the centre of the synaptic cleft, due to diffusion
of neurotransmitter (Fig. 13). Thus, rather than explicitly represent
discrete receptors and their positions, we represent the number

of receptors in a synapse that currently contribute to its synaptic
strength as a continuous ‘amount’.

In the following equations, constants are represented by normal
font and variables by italics (except v for membrane potential
of integrate-and-fire neurons). The meanings of the symbols are
shown in Table 1. The unit of time is millisecond.

The model assumes that the capacity of the dendrite to contain
receptors is proportional to the number of synapses:

Vd = N Vs (15)

where Vd is the capacity of a dendrite, N the number of synapses,
and Vs a constant factor, which is the average capacity of a dendrite
per synapse.

The concentration of receptors in the dendrite, cd, is given by:

Cd = Wtotal −

n∑
i=1

wi/Vd (16)

where wtotal is the (fixed) total amount of receptors in the dendrite
tree; wi is the amount of the receptors in the ith synapse; and Vd is
the capacity of the dendrite.

We model the continuous flow of receptors between synapses
and dendrite as amovement rate times the concentration of recep-
tors on the source side:

ẇi =

⎧⎨⎩vicd if vi > 0

vi
wi

Vi
if vi < 0

(17)

where wi is the amount of receptors of the ith synapse, wi/Vi is
concentration of receptors of the ith synapse, cd the concentration
of receptors in the dendrite, and vi is the bidirectional movement
rate, which is affected by lateral diffusion, endosomal trafficking
and friction as described in the overview:

v̇i = 1/r
(
cd − wi/Vi + a sign(Vi) ×

2
√

|Vi| − bvi

)
(18)

where vi is bidirectional movement rate from dendrite to synapse
(the direction from dendrite to synapse is positive); r is movement
rate inertia, which represents factors (e.g. properties of actin) that
drive receptors to keep their direction of flow; Vi is the capacity of
ith synapse, which is affected bywci; cd−wi/Vi is a term that repre-
sents the concentration difference between synapse and dendrite,
which causesmotion of receptors by diffusion; a sign(Vi)× 2√

|Vi| is
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Fig. 12. Schematic Diagram and Symbols of Dynamic Synapse. A schematic diagram
of the dendrite tree; the main variables and parameters of the model are indicated.
For the meaning of the symbols, see Table 1.

positive feedback term of the movement, with positive feedback
coefficient a; −bvi is a damping term with represents friction
during the motion, with damping factor b.

As shown in Fig. 12, the receptors also move between neigh-
bouring dendrite regions by diffusion:

ċdi = qd
(
cdi−1 + cdi+1 − 2cdi+1

)
(19)

where qd is a coefficient from concentration difference to concen-
tration variation rate. In practice, we found that when the number
of synapses is less than 33, modelling this diffusive process has
little effect. Hence, in the simulations in this paper, the diffusion
is treated as instantaneous. For larger numbers of synapses, ne-
glecting the dendritic diffusion can result in collapse of the chaotic
dynamics, but these can be recovered if we run simulations with
limited diffusion (results not included here).

As receptors diffuse in the dendrite tree, there is an equi-
librium point when the concentration of receptors in a synapse
and its neighbouring dendrite region are same. The equilibrium
point forms the centre of synaptic strength oscillation, while the
instantaneous synaptic strength oscillates around this point. We
consider the effective strength of the synapse to be its equilibrium
point, which can be established as follows. We assume that the
receptors take a shorter time to diffuse between a synapse and its
neighbouring region of the dendrite than to diffuse to regions in
the neighbourhood of other synapses. Thus, in a short time interval,
there is conservation of the amount of receptors in a synapse and
its neighbourhood, and the equilibrium point is given by:

cciVi/cciVi + cciVs = wci/wi + cdiVs (20)

where cci is the equilibrium concentration of receptors in ith
synapse, wci is the equilibrium amount of receptors in ith synapse,
wi is the instantaneous amount of receptors in ith synapse, Vi is
capacity of the ith synapse, cdi is concentration of the receptors in
ith dendrite region and Vs is average dendrite capacity per synapse.

To set or alter the strength of a synapse, we alter wci. Solving
the above equation for Vi, we get:

Vi = Vswci/cdVs + wi − wci (21)

By updating Vi according to this function, the amount of receptors
will converge to the given equilibrium value. Thus, we can define

(or alter) the centre of synaptic strength oscillation. We can also
alter the amplitude of oscillation around this centre by changing
the damping factor b in (18).

These equations describe a system which contains multiple
coupled second-order systems. A second-order system, such as a
spring–mass–damper system, usually has the property of oscil-
lation. When coupled together, they usually end in phase-locked
oscillations, which means they have a fixed trajectory of oscilla-
tion. However, when the second-order systems include appropri-
ate nonlinear functions, the system oscillates chaotically. In the
model, the receptor trafficking between a synapse and dendrite is a
second-order system.Multiple synapses are coupled by a dendrite,
and updating of Vi is a nonlinear function. As we illustrate, the
resulting oscillation appears to be chaotic. Because chaotic motion
has a very complex, unpredictable and ergodic solution, the chaotic
changes in synaptic strength can explore an output space for a
neuron or neural circuit. Simulations are shown in the Results
section.

As described in the Results section, a simple learning rule for
this system is:

ẇci = kw(wi − wci)nM (22)

where nM is amount of a neuromodulator that represents reward,
and kw is a coefficient controlling the learning rate. In practice we
need to slightly modify this rule to compensate for a biased drift
in synaptic strength. If, during an oscillation period, the integrated
values of the differences between instantaneous synaptic strength
and the centre of oscillation on each side are not equal (as shown
in Fig. 14, the sizes of adjacent yellow and blue coloured areas),
uncorrelated modulator release (e.g. the release experienced by a
synapse that is not making any useful contribution to satisfying
the value function) can cause the centre of oscillation to become
biased during long training times. During learning, if the centre
of oscillation changes in a small range, the rate of bias can be
approximated as a constant. To compensate it, a learning rule with
compensation can be applied:

ẇci =

{
kw (wi − wci) nM (1 + kwc) if wi > wci
kw (wi − wci) nM else (23)

where kwc is a constant factor to compensate the bias. However,
if the centre of oscillation changes in a larger range, the bias is
variable, and cannot be compensated using the above rule. In our
model, this bias is towards positive values for a centre of oscillation
above 0.5, and negative values below 0.5. As a consequence there
can be a positive feedback effect that accelerates learning.

To allow learning to converge, the learning rule should also
reduce the oscillation amplitude. When the modulator is present,
damping factors also increase:

ḃ = kbbnM (24)

where b is the damping factors, kb a coefficient.
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Fig. 13. Justification for a continuous representation of the effects of receptor location between dendrite and synapse. The boundary between a synapse and dendrite can
be considered wide and smooth, and as a receptor approaches the synapse, it can receive more neurotransmitters and contribute more to the synaptic strength. Rather than
model the boundary area explicitly, we associate synaptic strength with the ‘amount’ of receptors a synapse contains, treated as a continuous variable.
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Fig. 14. The bias of oscillation at different centre of oscillation. The curves are in-
stantaneous synaptic strength, which oscillate around centres of synaptic strength
oscillation (shown as straight lines). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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2.3 Discussion

In the paper, a synaptic plasticity model based on potential chaotic dynamics in the

dendritic tree is proposed. The chaotic dynamics causes the chaotic synaptic strength

exploration, searching the parameter space of synaptic strength for operant learning

of a neural circuit. In the tests, the model and the learning rule based on the model

trained three different types of neural networks in three different tasks, and the chaotic

explorations converge to the points in the parameter space with the higher possibility

to obtain rewards. The training of neural networks/circuits with large scale is yet to be

tested, in which case the “curse of dimensionality” could impact the learning efficiency.

However, as the learning rule is a local learning rule, a neural network/circuit with

large scale can be divided into smaller networks/circuits to attenuate the impact of

dimensionality.

2.3.1 Chaotic exploration and stochastic exploration

As detailed in the above paper, chaos emerges from the “dynamic synapse” model and

contributes to the exploration of synaptic strength, which is a type of parameter ex-

ploration for the neural circuits. It is different from the reinforcement learning models

in computer science, which uses stochastic processes for action explorations. Chaotic

exploration and stochastic exploration have their pros and cons.

Chaos can emerge from a smooth non-linear process. Hence the exploration based

on the chaos can be perfectly smooth. The smoothness is conducive to real-world tasks,

such as reinforcement learning with a physical robot. The exploration based on random

number generators (RNGs), however, introduces stepped number sequences which af-

fect the smoothness, although there are some tricks to improve the smoothness, such

as integrating the sequences.

Chaos can have arbitrarily small steps without changing the dynamics of generated

sequence with respect to time, while an RNG with smaller step moves the spectrum

of the generated sequence to higher frequency respect to time. Hence, the sample

sequence of chaotic exploration can conveniently adjust for matching the sample se-

quences in computation and control.

Chaotic exploration needs stricter conditions for exploration than RNGs. The tra-

jectory of a chaotic exploration evolves toward the corresponding strange attractor,

which could be with limited range and limited volume, even zero volume. The chaotic

exploration should be well conditioned so the attractor is (1) in an adequate range,
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which covers the maximum and minimum, (2) with reasonable distribution, which

should not introduce unnecessary bias, and (3) with sufficient decency sampling, by

which the adjacent samples result in undistinguishable behaviours. In practice, a

chaotic exploration is usually hard to tune, and the difficulty varies with different dy-

namics. Without the limitation of biological plausibility, a chaotic exploration process

is ideal to be built based on chaotic dynamics with a wide window of parameters that

chaos can exist.

In existing practices, RNGs are widely used, because of their accessibility and

adjustability. With APIs provided in various programming libraries, random numbers

with user-specified distribution can be generated. The random numbers can also be

easily adjusted by passing them to mathematical functions. However, there are no

libraries with similar functions for generating chaos, so it is not straight forward in

applications. In fact, the mainstream RNGs are pseudo random number generators.

They are functions either with very long periods or with chaotic processes. In the latter

case, it supports that chaos can be used in exploration. If a well-conditioned chaotic

process can be implemented and packaged in a library, chaotic exploration can be more

convenient in practice.

2.3.2 Comparison with Rescorla-Wagner model

The mathematical expression of the dynamic synapse learning rule (DSL) proposed in

this chapter shares some similarities with the mathematical expression of the Rescorla-

Wagner model (RWM). RWM is a theory for explaining a variety of phenomena in-

volving associative learning (Rescorla et al., 1972). The mathematical expression of

RWM is as follows (please note the notation in this subsection is not same with the

notation in the rest of this thesis):

When AX , which is a compound of conditional stimulations (CS), A and X , is

followed by an unconditional stimulation (US), such as US1, the changes in associative

strength of the respective components may be represented as:

∆VA = αAβ1 (λ1−VAX) (2.1)

and

∆VX = αX β1 (λ1−VAX) (2.2)

where ∆VX is the change in the strength of the association between CS X and the US1,

αA the salience of X, β1 the learning rate parameter for the US1, λ1 the maximum
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conditioning possible for the US1, VAX the associative strength of the compound A and

X .

If AX is followed by a differently valued US, such as US2, the changes in associa-

tive strength of the respective components may be represented as:

∆VA = αAβ2 (λ2−VAX) (2.3)

and

∆VX = αX β2 (λ2−VAX) (2.4)

The similarities are that, (a) the update of strength is the product of two scalars and

a result of the subtraction, (b) one of the scalars is the factor for learning rate, (c) the

other scalar is the strength of the US, (d) the overall weights are bounded.

However, DSL and RWM are very different in various aspects.

The target for the weights (synaptic strength) to approximate is different. The first

term in the subtraction of DSL is the instantaneous strength of a synapse. Thus the

second term, the balance point of a single synaptic strength, approaches the instanta-

neous strength with the presence of rewards (US). While the first term in the RWM

is the maximum conditioning possible for the US, shared by all of the CSs. Thus the

second term, the total associate strength of all CSs, approaches the maximum possible

conditioning.

The overall weights (synaptic strength) are bounded with a different mechanism.

In the DSL, the synaptic strength of all the synapses on the same dendritic tree is

limited by the amount of synaptic receptors; while in the RWM, the overall weights

associating with the US, which are not on the same dendrite, are controlled by the

parameter λ. Hence, for DSL, there is competition between synapses in the same

dendrite; for RWM, there is competition between different neurons.

The two models are for different types of conditioning. The DSL is for operant

learning, while RWM is for classical conditioning.

2.3.3 Chaotic pattern generator and chaotic function generator

Reinforcement learning with chaos can be classified into two types according to the

role of chaotic sources. The first type is the chaotic pattern generator, which utilises

chaos for exploring actions and a learner for associative learning of the emerged actions

and sensory inputs. The second type is the chaotic function generator, which utilises

chaos to explore functions from sensory inputs to actions directly.
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2.3.3.1 Chaotic pattern generator

Some existing works of robot learning that are based on neural networks utilise chaos

for robotic motion exploration by using chaotic pattern generators (ChaoticPG) as the

chaos sources. ChaoticPGs are similar to central pattern generators (CentralPG), but

their outputs can be chaotic with some specific parameters. This approach is straight-

forward in applications, as it can replace random number generators in previous rein-

forcement learning approaches. For example, as reviewed in the paper above, Stein-

grube et al. (2011) utilise neuron networks with ChaoticPG to generate new motions

for a robot to escape from a hole which trapped one of its legs. The ChaoticPG can

switch between chaotic state and several periodic states. However, the ChaoticPG are

usually not controllable or tunable during learning. The learning happens in neural

networks that can work independently from the ChaoticPG. General functions of this

type of networks can be:

XG = G(t) (2.5)

Xπ = π(s;θ) (2.6)

C=





B(XG) if exploring

B(Xπ) if not exploring
(2.7)

M= H(C) (2.8)

r =V (M,s) (2.9)

θ← θ+A(θ,XG,Xπ,s,r) (2.10)

Where G is a chaotic pattern generator, t the time, XG the output of G, π the sensory

processing function, s the sensory input, θ the parameters of π, Xπ the output of π, B

the motor controller, C the motor control signal, H the physical system dynamics, M
the motion of robot or animal, V the function to calculate rewards, r the rewards of

decisions or motions, A the function to update parameters θ.
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2.3.3.2 Chaotic function generator

A Chaotic Function Generator (ChaoticFG) combines the chaotic process and learn-

ing process in the same neural network. In this case, the chaotic process provides

chaotic parameters to the neural network, thus the neural network explores the pa-

rameter space. The learning system generates new functions and tests these functions

continuously and chaotically. The learning rule proposed in this chapter belongs to this

category. General functions of this type of networks can be:

XG = G(t;θG) (2.11)

Xπ = π(XG,s, t;θπ) (2.12)

C= B(Xπ) (2.13)

M= H(C) (2.14)

r =V (M,s) (2.15)

θπ← θπ +Aπ(θπ,XG,Xπ,s,r) (2.16)

θG← θG +AG(θG,XG,Xπ,s,r) (2.17)

Where G is chaotic pattern generator, t the time, XG the output of G, θG the parameters

of πG, π the sensory processing function, s the sensory input, θπ the parameters of π,

Xπ the output of π, B the motor controller, C the motor control signal, H the physical

system dynamics, M the motion of robot or animal, V the function to calculate rewards,

r the reward of decisions or motions, Aπ the function to update parameters θπ, AG the

function to update parameters θG.

The main differences between these two type of approaches are in Equations 2.6

and 2.12, 2.7 and 2.13, and 2.17. In chaoticPG approaches, the outputs of a chaoticPG

do not feed into the learning network, whereas in chaoticFG approaches, they do. In

chaoticPG approaches, the input source of the motor controller switches between the

chaoticPG and learning network, whereas in chaoticFG approaches the input source is

the learning network. In chaoticPG approaches, the parameters of a chaoticPG usually

are not be tuned, whereas in chaoticFG approaches they are.



Chapter 3

Maggot Operant Learning

3.1 Introduction

Based on the dynamic synapse model proposed in chapter 2, a model for the mushroom

body, which is a learning centre in insects, is built to reproduce an operant learning

behaviour of Drosophila larvae.

Drosophila adults are capable of operant learning, as observed in the heat box

experiment(Brembs, 2003) and fly torque experiment(Brembs and Heisenberg, 2000).

Drosophila larvae have immature brains, but the essential structures are similar to those

of adults. Hence, Drosophila larvae are also believed to be capable of operant learn-

ing. There are also experiments support that Drosophila larvae are capable of operant

learning (Eschbach, 2011).

To further investigate the operant learning capacity of Drosophila larvae, espe-

cially the role of the mushroom body during operant learning, an experiment about

operant learning of turning behaviour has been conducted by my collaborators. The

line of Drosophila larva is transgenic that a dopaminergic neuron in the mushroom

body, which represent reward, can be activated with a specific wavelength of light. In

this experiment, when a Drosophila larva bends its body exceeding the threshold of

body bending angle, the light is shined over it as a reward. The data is recorded and

analysed. Base on the experiment, a mushroom body model with dynamic synapse for

operant learning of Drosophila larval turning behaviour, is proposed and tested based

on existing research on the mushroom body. The simulation result agrees with the

biological experiments.

31



32 Chapter 3. Maggot Operant Learning

3.1.1 Mushroom body

A mushroom body is a part of a Drosophila brain as a learning and memory cen-

tre (Takemura et al., 2017) with neural circuit architecture similar to the cerebel-

lum. The mushroom body receives signals from multiple primary sensory centres and

processes multiple sensory modalities, such as chemosensory, hygrosensory, or ther-

mosensory(Yagi et al., 2016). The outputs of the mushroom body can guide memory-

based action selection (Aso et al., 2014b). The Kenyon cells are neurons intrinsic in

the mushroom body and receive signals from other regions of the brain. Kenyon cells

represent the sensory signals with sparse coding, which enhances the discrimination

difference between sensory signals (Lin et al., 2014). An adult Drosophila has about

2200 Kenyon cells (Aso et al., 2009). Kenyon cells (KCs) have long parallel axons

across the mushroom body, along with which are multiple compartments. Each of the

compartments has at least a mushroom body output neuron (MBON) and a Dopamin-

ergic neuron (DAN). There are mutual connections among the MBON, the DAN and

KCs (Eichler et al., 2017). DANs and MBONs from different compartment nerves to

different regions, suggesting different compartments have different functions. DANs

can be activated by unconditioned stimuli, such as sugar or quinine, which can be re-

ward or punishment for the learning of conditioned stimulus. That is, when a DAN

spikes, it release Dopamine to the compartment where the DAN locates, modulating

the synaptic plasticity between the KCs and the MBONs. These characteristics of the

mushroom body provide a basis for operant learning of turns.

3.2 Experiments and observation

The set-up of the experiments is shown in Figure 3.1. The base is a platform on which

a Drosophila larva can crawl freely. Above that, a Cartesian robot holds a camera

and light for observing and rewarding a larva. A software system controls the robot to

track a moving maggot, calculates the body bending angle of the larva, and controls the

Light-emitting Diode (LED) to reward the larva with light when the larva is turning.

The larvae in the experiments are of the following genotype: R58E02-Gal4xUAS-

CsChrimson (R58E02>CsChrimson). For more information about the GAL4/UAS

system in Drosophila, please see the review by Duffy (2002). On the Drosophila with

the genotype, the red-shifted light-gated ion channels CsChrimson are expressed in

dopaminergic neurons innervating the mushroom body. Activation of the neuron has
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previously been shown to substitute for reward in classical conditioning experiments.

The body bending angle of the maggot is defined by taking a line from the body

middle point to the tail and a line from head point to body middle point (Figure 3.2).

There are three groups of experiments, with different protocols to control the light.

The first protocol is to activate the light if the maximum turn (bending angle) within

a time period exceeds a threshold; the second protocol is similar to the first one but

only reward every second turn; the third protocol is also similar to the first one but

only turning to one side (either left or right) activates the light. The body bending

angle data of these experiments are recorded and analysed. Other information of the

locomotion, such as the speed, is observed and recorded, but not used in the analysing

and modelling.

For each group of experiments, there are 200 larvae observed successively. Among

them, the first 100 larvae are the experimental group, who get light as the reward ac-

cording to the protocols. The second 100 larvae are the yoked control group, each

of which gets the same sequence of light with the corresponding one in the experi-

ment group. The yoked control group is to eliminate possible direct effects on turning

behaviour from experiencing light or reward, by providing the same experience but

uncoupled from the animals’ behaviour. For each larva, there are five phases of obser-

vation. The light is switched on according to the body bending angle in phase 2 and 4.

The time length of each phase is 45, 210, 45, 210 and 90 seconds, respectively.

A key observation object is the proportion of time spent in turns for each phase. A

turn motion is defined as the motions with a maximum angle larger than ±30 °, and the

beginning and end of a turn are when the maggot body is straight. Figure 3.3 shows

four turns in green.

3.3 Models and Methods

The objective of our model is to qualitatively reproduce the statistical results of Drosophila

larvae’s turning behaviours before and after learning under the control of the light. As

the study is to investigate the learning with the mushroom body, the change of the

behaviours is more important than the behaviours themselves. As the learning of mo-

tions is in a behavioural level instead of an action level, our model does not intend

to reproduce the motions accurately, such as the turning trajectory. The motions are

reproduced qualitatively on a simplified body model.
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Figure 3.1: The experiment set-up for operant learning of turning behaviour. The base

is a platform on which a Drosophila larva can crawl freely. Above that a Cartesian robot

holds a camera and light for observing and rewarding the larva.

θ

Figure 3.2: The measurement of a Drosophila larva’s body bending angle.

Figure 3.3: The illustration of turns. The horizontal direction is time. The The dash lines

are the body bending angle threshold defining turns. The curve is body bending angle.

The green regions represent four turns.
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Figure 3.4: Trace of a Drosophila larva’s body bending angle (blue) and the state of

light for reward (red). When the body bending angle exceeds the threshold, the LED is

turned on. When the angle smaller than the threshold, the LED is turned off. The LED

is not functional during the phase 1,3 and 5 of every experiment.

3.3.1 Analysis of relations between observed behaviours and mush-

room body

The traces of larvae body bending angle has multiple randomnesses. For the model,

we considered the time when a turn starts, the maximum body bending angle and the

time length of a turn. Fig 3.4 shows a recording trace of a larva body bending angle.

The larva body bending angle has a range from -150°to 150°, and turning time range

from about 1 second to about 10 seconds.

In the experiments, there was no typical olfactory stimulus to the larvae. Because

of the low-level olfactory stimulus, the sensitivity of the olfactory system increased,

and signal-to-noise ratio (SNR) of odour signal decreased, hence their KCs activities

could interpret as random signals. Therefore the strengthen synaptic connections from

KCs to MBONs increases the possibility of MBON’s firing.

If the MBON, which is in the same compartment with the light controlled DAN,

modulates turning, firings of the MBON should be able to modulate its downstream

neural circuit for turning control. The time when a turn starts could be caused by when

MBON fires. As MBONs integrates outputs of KCs, and the noisy KCs activities cause

random outputs, hence when MBONs fires are uncertain.

The direction of turning could be influenced by the coupled dynamics of the MBONs,

the downstream neural circuit for motor control, and the larval body. If the coupled

dynamics could be disturbed asymmetrically, larval head during locomotion can result
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Figure 3.5: Schematic diagram of the model

in asymmetric oscillation. The coupled dynamics could also determine the maximum

body bending angle and the time length of a turn.

In the experiment, we also notice there was a decline of turning time in the total

time. It could be caused by the decrease of ’patience’ of searching for food nearby

which could be a result of decreasing internal energy substance such as sugar or nega-

tive phototaxis of Drosophila larvae Kane et al. (2013). Hence, we assume that at least

one of the KCs represents the information, which is modelled by Equation 3.5.

3.3.2 Neural circuit model and larval body model

The model consists of KCs, a DAN, an MBON, a CPG and a larva body model (Fig

3.5). KCs are implemented with Izhikevich neuron model (Izhikevich, 2007), and the

MBON is implemented with a Leaky integrate-and-fire (LIF) neuron model. Other

neurons are firing-rate models. The downstream neural circuit of the MBON is a CPG

model by Wystrach et al. (2016) which control. The larval body is modelled as two

rigid sticks connected by a joint and actuated by muscles.

As analysed above, the KCs are fed with time-correlated random noise, which

mimics sensitive sensors in low SNR environment and other complex internal sig-

nals. One of the KCs represents the decaying internal sugar level for modelling the
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behaviour of decreasing turning intentions during observations. MBONs integrates the

KC outputs, hence when MBONs start to fire is uncertain, and the synaptic strength

between KCs and the MBON can affect the possibility of firing. Hence the time when

a turn starts is uncertain, and the possibility of turning is correlated with the synaptic

strength. For simplification of our model, only the necessary MBON for turning is

modelled. Each fire of the MBON causes the release of neurotransmitter which sends

a turning signal to its downstream neural circuit.

The downstream neural circuit is a central pattern generator (CPG) by Wystrach

et al. (2016). The MBON outputs modulate the CPG by feed neurotransmitter signal to

the input of the CPG and controlling the amplifying of the output of CPG proportional

to the amount of neurotransmitter. The CPG is modelled according to Drosophila larva

taxis behaviours, controls turning during locomotion. It has internal variables with

periodic dynamics, and its output control Drosophila larva’s ”head” oscillate continu-

ously. The dynamics could be disturbed by inputs and results in asymmetric oscillation.

Hence a spike from the MBON can cause different turning amplitude depending on the

internal state of the CPG when the signal arrives. A noise signal is also modelled for

representing other inputs of the CPG, which causes a more significant variation of the

turning amplitude.

There are two outputs of the CPG which controls the contraction of muscles turn-

ing to different directions. The muscles and body were modelled as a second-order

dynamic system with springs and dampers. The muscles drive the relative turning be-

tween the two segments of the body model. The body model has mass and inertia, and

each segment has the same fixed length. The head half turns around the tail half when

the muscles apply force around the joint connecting them. The direction of the head

leads the direction of crawling which is the direction of the joint’s motion. The tail

half gradually follows the direction of the head during crawling. The relative turning

between ”head” and ”tail” is modified from (Fung, 2013). The dynamics of the body

model also contributes to the variation of turning amplitude.

The KC neurons are based on Izhikevich neuron model with parameters from work

by Wessnitzer et al. (2012). Izhikevich neuron model has a good balance between

biological plausible and computational expense for large-scale simulation. It has 2

continuous dynamics and one discrete dynamics:

CKv̇K = k(vK−vrK)(v−vtK) (3.1)

u̇ = a{b(vK−vrK)−u} (3.2)
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if vK ≥ vpeakK , then vK ← c,u← u+d (3.3)

where vK is the membrane potential, u the recovery current, the membrane capaci-

tance CK = 4, the rheobase k = 0.015, the resting membrane potential vrK =−85, the

instantaneous threshold potential vtK =−25, the recovery time constant a = 0.01, the

input resistance b=−0.3, the voltage reset value c=−65, the total amount of outward

minus inward currents activated during a spike d = 8. Time unit is millisecond.

There are 2 KCs in the model representing the two major types of inputs: noise and

interest of turning.

The noise is time correlated continuous random numbers to mimic the time corre-

lated neuron activities:

ρi = αXα−βXβ(ρi−1−ρc) (3.4)

where X ∼U([−1,1]), the uniform distribution from -1 to 1, α the slope coefficient

with value 3, β the pull back coefficient with value 0.001, ρc the centre of the random

value ρi the ith random number.

The decreasing of interest in turning is tuned to fit the experimental result:

s(t) = 34+20/(1+ exp(3(
t
T
−0.1))) (3.5)

where t is the time of the calculation and T is the total time of simulation.

When a KC fires, the corresponding neurotransmitter is released. The amount of

neurotransmitter decays after being released :

ṅt =−kntd
n (3.6)

if neuron fires, nt ← nt +ntr (3.7)

where n is the amount of neurotransmitter released in a synapses between a KC and

a MBON, the amount of neurotransmitter released in during a spike ntr = 0.4, the

neurotransmitter decay speed factor kntd
= 0.02.

The MBON is modelled based on LIF neuron. The input current of the neuron is:

IMI = ∑kρIWi(nt)i (3.8)

where IMI is input current of the MBON, Wi the synaptic strength of ith h input synapse

of MBON, kρI a factor of input conductive, nt the amount of neurotransmitter in the

ith synapse. kρI = 0.22.

The leak current of the MBON is:

IML = ρL (vrM− v) (3.9)
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where IML is leak current of the MBON, ρL leak conductive, nt the amount of neuro-

transmitter in the ith synapse. ρL = 0.002.

The dynamics of the MBON is:

CMv̇M = IMI + IML (3.10)

If vM ≥ vtM, vM← vrM (3.11)

where the membrane capacitance CM = 4.5, the threshold potential vtM = 30, the rest-

ing membrane potential vrK =−60.

When the MBON fires, neurotransmitter is release and affects the downstream cir-

cuits. The dynamics of the amount of the neurotransmitter is same as Equation 3.6 and

3.7, whereas ntr = 1, kntd
= 0.0003.

For the detail of the CPG model, please see work by Wystrach et al. (2016). The

noise signal inputs to the CPG is the same as the noise signal for the KC. The overall

input of CPG is:

A = 18+ρ−15nMBON (3.12)

where ρ is the noise signal and nMBON the amount of neurotransmitter released by the

MBON.

There are two outputs of CPG controlling the force of two muscles, respectively,

which drive the turning motions of the maggot body model. The outputs are modulated

by the MBON output signals:

EL = 0.22 ELO nMBON +0.02 (3.13)

ER = 0.22 ERO nMBON +0.02 (3.14)

where ELO and ERO are original CPG outputs on two sides, respectively; nMBON the

amount of neurotransmitter released by the MBON; EL and ER are muscle control

signals after modulation.

The body model for the turning angle:

θ̈r =−2ξθ̇r−kB tanθr +(EL−ER) (3.15)

where θr is the relative angle of head from its straight direction and with anticlockwise

the positive direction, ξ the damping ratio, kB the stiffness coefficient, EL and ER the

forces to left and to right,respectively. ξ = 3, kB = 10 .
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Figure 3.6: Schematic diagram of the dynamics of the synaptic plasticity model. With

the presence of the modulator, the synaptic strength fluctuation centre bias to the side

of instantaneous synaptic strength. The learning is bidirectional depending on the rela-

tive position of the instantaneous synaptic strength and the synaptic strength fluctuation

centre. The amplitude of the fluctuation decreases with the presentation of the modu-

lator.

3.3.3 Synaptic plasticity model

Synaptic plasticity models can be divided into two classes: phenomenological mod-

els, which are very simplified to capture the effect on neural circuits, and biophysical

models, which are more detailed including internal biophysics. The former is usually

based on the theoretical analysis, and the latter is usually based on controlled synaptic

plasticity experiment. The synapse model we used is the former inspired by the lat-

ter. It is inspired by the dynamics of internal biophysics, especially neurotransmitter

trafficking which causes spontaneous variation of synaptic strength. The variation of

the synaptic strengths is a continuous exploration of the parameter space of a neural

network. When the output of the neural network causes reward, the neural modulator

is released. The exploration range approaches the transient synaptic strength when a

synapse gets the modulator, hence gradually to a more optimised state. As shown in

Fig 3.6, synaptic strength fluctuates around its fluctuation centre with a specific am-

plitude. With the presence of the modulator, the fluctuation centre is biased to the

instantaneous synaptic strength, and the fluctuation amplitude decreases. The learning

is bidirectional.



3.4. Results 41

Different from most phenomenological synaptic plasticity models which have to

be specified for either firing rate based or spike time-based neurons, our model can be

applied to both. It is a post-synaptic learning rule controls the sensitivity of the post-

synaptic region to neurotransmitters. The biophysical basis of the model is the varia-

tion of the number of neurotransmitter receptors in the post-synaptic region (Cingolani

and Goda, 2008), which is a key factor in synaptic strength (Sheng and Hoogenraad,

2007). The average amount of the receptor in the region depends on the capacity of

the region to contain them. However, because of dynamical receptors trafficking, the

instantaneous amount fluctuates. With modulator, synapse with receptor more than its

average capacity increases the capacity, synapses with receptor less than its average

capacity decrease the capacity. At the same time, the resistance of receptor trafficking

increase. Hence the synapse strength is gradually optimised. For more detail, please

see section 2.

3.4 Results

The neural circuit model and body model are tested with the training protocols used for

the real larvae. Overall, the simulation results agree with the experiments. For compre-

hensive comparisons, the results are analysed in different aspects. We analysed, firstly,

the proportion of time spent in turns for each phase. The expected phenomenon is

that the experimental group will have a higher proportion of time than the observation

group as the experimental group learns to turn. Then we analysed the accumulative

distribution of run duration. The expected phenomenon is that the runs would be bro-

ken into shorter runs because larvae learn to turn more frequently. In the following,

results are organised according to the experimental protocols.

3.4.1 All turns rewarded

In this group of experiments, a larva in the experiment group got reward whenever its

body was bending angle reaching the outside of ±30 °.

Figure 3.7 shows the proportion of time spend in turns for each phase time. Figure

3.7a shows the result of biological experiment and Figure 3.7b shows the result of

simulation. The biological results show overall decreases of both experimental group

(blue) and the yoked control group(grey). It could be a result of lost patience due to

the decreasing internal energy substance or negative phototaxis. There is an increasing



42 Chapter 3. Maggot Operant Learning

(a) Biological experiment
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Figure 3.7: Fraction time of turns in all-cast-rewarded condition. The experiment group

is in blue, and the yoked control group is in grey.

difference between the experimental group and the yoked control group showing the

experimental group learns to spend more time in turns. The simulation reproduces both

of the phenomena with a quantitative agreement.

Figure 3.8 shows the distribution of time spent in each runs in the final phase. In

the biological experimental results, the experimental group has more runs distributed

in a shorter time. The accumulated distribution plot more clearly shows the results.

The model simulation qualitatively reproduced the results (please note the scales are

different between Figure 3.8a left and Figure 3.8b left).

Figure 3.9 shows the box plot of average duration of turns per larva. Although dis-

tributions in simulation results are more concentrated than the biological experimental

results, the middle values and distributions reproduced by simulation are close to the

biological observation, such as the overall decreasing of the turn duration and the ex-

periment group has higher middle value than the yoked control group (please note the

difference in the scale of the figures).

Figure 3.10 shows the box plot of average duration of runs per larva. There is an

overall increase in the average run duration, which could be a result of lost ”patience”

or negative phototaxis. In the first phase, the experiment group and the control group

are similar. After learning, the distribution and middle values of the control group are

significantly wider and higher than those of the experiment group. It may be caused

by that the yoked control group receives light rewards uncorrelated to their motions

so that they could get more random rewards for runs. The simulation reproduced the

result (please note the difference in the scale of the figures).
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Figure 3.8: The distribution of runs in the final phase after training by rewarding turnings

in both sides. Blue is the experiment group, and grey is the yoked control group.
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Figure 3.9: The average duration of turns before and after training by rewarding turnings

in both sides. (a) Biological experiment. Only phase 1 and phase 5 are shown. (b)

Model simulation. All phases are shown. Blue is the experiment group, and grey is the

yoked control group.
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Figure 3.10: The distribution of runs before and after training by rewarding turnings in

both side. (a) Biological experiment. Only phase 1 and phase 5 are shown. (b) Model

simulation. All phases are shown. Blue is the experiment group, and grey is the yoked

control group.
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(a) Biological experiment
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Figure 3.11: Fraction time of turns of the larvae after training by rewarding every other

turn. The experiment group is in blue, and the yoked control group is in grey. Please

notice the difference in the scales.

3.4.2 Every second turn rewarded

In this group of experiments, every other turn is rewarded. Because light rewards in

this group are less than those in the all-turns-rewarded group, the effects of rewards are

expected to be weaker in this group. As shown in Figure 3.11a, the proportion of time

spend in turns decrease less then that in Figure 3.7a. Besides, the differences between

experiment group and yoked control group is smaller than those in Section 3.4.1, such

as the distance of middle values in phase 5 between experimental and yoked control

group. The model simulation reproduced these differences, as shown in Figure 3.11b.

Figure 3.12 shows the distribution of time spent in each runs in the final phase. As

excerpted, the experimental group have shorter run durations than the control group,

and the model simulation reproduced the results.

3.4.3 One side rewarded

In this group of experiments, the larvae only got rewards when they turn to a spe-

cific side (relative to their body axis), to test if larvae can learn to turn to one side

preferentially. Two features are observed in this group. The first is that, as shown in

Figure 3.13, the biological results show a small difference between the reward side (the

right side of a larva) and non-reward side (the left side of a larva). That is, the differ-

ences between the proportional time of the experiment group and yolked control group

are higher on the reward side than those on the non-reward side. The difference is a

(weak) evidence for side specific learning. The second feature is that, compared with
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Figure 3.12: The distribution of runs in the final phase after training by rewarding turns

in both side. Blue is the experiment group, and grey is the yoked control group.
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(a) Biological experiment
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Figure 3.13: Fraction time of turns in one-side-rewarded condition. The experiment

group is in blue, and the yoked control group is in grey. Figure (a) shows the results of

the biological experiment and the figure (b) are the results of the model simulation. The

top plots of Figure (a) and (b) are the results of the reward side, and the bottom plots

are the results of the non-reward side.

the both-side-rewarded group, the differences between experiment and yolked control

in this group are small, which can be explained by that the overall rewards are less in

this group.

The model simulation reproduces the second feature but not the first feature. It is

because the model does not include the mechanisms, such as sensory of turning angle

feeding to KC, for the learning of differences between two sides. To capture the first

feature, a model should include more factors that modulate the learning in Drosophila

larvae.

Figure 3.14 shows the distribution of run duration in the final phase. Similar to the

group that every other turn is rewarded, the difference between the run duration of the

experimental group and the control group is smaller than that of the all-turn-rewarded

group. The model simulation also reproduced the features.
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Figure 3.14: The distribution of runs in the final phase after training by rewarding turn-

ings in one side. Blue is the experiment group, and grey is the yoked control group.
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3.5 Discussion

In this chapter, an operant learning model based on the mushroom body (MB) and the

dynamic synapse is proposed and tested. The previous mushroom body models are for

associative learning of sensory inputs, such as olfactory information and vision infor-

mation, with the presence of unconditional stimulations, but not for operant learning.

The mushroom body model presented in this chapter is the first mushroom body model

for operant learning, based on the results of biological experiments with optogenetic

Drosophila larvae, whose dopaminergic neurons (DANs) in MB are controlled with

light. In the simulation, the DANs in the MB model are controlled by the light se-

quences identical with the biological experiments. The model simulation results agree

with the biological experimental results, which supports the hypothesis that the MB is

capable of operant learning and the dynamic synapses model presented in chapter 2 is

plausible for realistic operant learning behaviours.

The MB model is simplified in comparison to the real MB in insects. The parts

of MB that are not essential to reproduce the learning behaviours are ignored. For a

real MB in an L1 Drosophila larva, there are more than 200 KCs, 23 MBONs and 7

DANs Eichler et al. (2017). In the model, only two KCs, one MBON and one DAN

are modelled. Only 2 KCs are modelled for two different types of inputs to MB, the

inputs to decrease the interests of turning behaviours, which are observed in both the

experimental group and control group, and other signals, which are noisy as the larvae

were in an environment lacking sensory stimuli with patterns. One MBON is modelled

because an MBON is capable of high-level motion control, which is adequate to control

the only observed learning behaviour, changing of turning. One DAN is modelled

because there is usually one pair of MBON and DAN in a compartment of MB and

that DANs of larvae in the experiments got the same stimulation carrying the same

information. It is a level of simplification such that the key structure of the MB is kept,

whereas any further simplification cannot keep the structure.

The “other signals” which is fed to one of the KC, provides noise that affects when

the MBON spikes. Each spike indicts an intention to turn in the high level, then the

dynamic of CPG is disturbed by the spike, resulting in a higher possibility for turning.

Hence, the “other signals” results in a random interval between turns. Without the

“other signals”, the model turns when the total dynamic synaptic strength is higher

than a specific level. There is another noise signal that feeds to CPG, which simulates

unknown inputs to the CPG. This noise affects the size of turning. Without the noise,
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the model turns with very similar sizes.

The MB model can be measured with seven dimensions proposed by Webb (2001)

for differing simulation models:

1. Relevance: The MB model is closely relevant to the biology, as the tests use the

same protocol with biological experiment, and the generated hypotheses, such

as additional rewards during running can attenuate synaptic strength between the

KCs and the MBON, are applicable to biology.

2. Level: The MB model is a model on the level of synapse and neurons.

3. Generality: As insects have MB, so the model, including the MB, CPG and the

body, can be generalised to all insects with the larval stage.

4. Abstraction: The KCs and MBON in the MB model are modelled with spiking

neuron models, hence the model has spikes that indicate when to turn like the real

MB. The CPG is a firing-rate model as it is adequate to reproduce the dynamic

of CPG. The larval body model has two segments as the turning behaviour can

be represented with the segments.

5. Structure accuracy: The model has three levels, the behaviour level MB model,

the action level CPG model and the agent level body model. The levels are

similar to real larvae, who have MB lobe nerves to ventral nerve cord, where

CPG is located (Berni, 2015; Clark et al., 2018), then the motor neurons in the

VNC control the muscle contraction. The structure of the MB model also keeps

the fundamental structure of MB.

6. Performance match: The model captured the decrease of the turning ratio and the

increase of differences between experimental groups and yoked control groups

which are observed in the Drosophila larvae turning experiment. The simulation

result qualitatively reproduced the motions and behaviours, supporting the hy-

pothesis that the mushroom body with dynamic synapses can play a key roles in

the operant learning of turning behaviour.

7. Medium: The model is implemented as a numerical simulation of differential

equations, based on the published neuron, CPG and larval body models.

The model is open to adding further neurons for more functions. In this version

of the model, we only considered spontaneous turning behaviours and modulation for
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them. In real larval, however, behaviours and motions also depend on the inputs of

their proprioceptors (Hughes and Thomas, 2007), which sense the states of their body

and provide feedback for motion neurons. It could explain the difference between

the biological experimental results and model simulation results with the protocol that

only those turns in one side are rewarded, during which proprioceptors provide the

information with the directions the larvae turn. Integrating feedback neurons into the

model, such as the connections from proprioceptors to the KCs, can be the next step.





Chapter 4

Reinforcement learning for Bipedal

Robot locomotion

4.1 Background

In chapter 2, a synaptic plasticity model based on neurotransmitter receptor trafficking

was proposed. Using the learning rule based on the model, which is called dynamic

synapse learning rule in this chapter, neural circuits can explore synaptic strength and

be optimised with reinforcement signals. In this chapter, the synaptic plasticity model

is abstracted and simplified for engineering application while the principle of learning

rule is kept. The simplification is for reducing computation amount by avoiding nu-

merical integration and for a wider range of exploration including negative numbers.

The simplified model is applied to a dynamic neural network to control a planar bipedal

robot, and then the result is compared with other reinforcement learning algorithms.

The learning rule outperforms previous reinforcement learning rules in the task.

4.1.1 Robot learning

Controlling a robot to conduct a task with classical approaches requires a human pro-

grammer or controller who understands the robot system, the environment that the

robot works in, and detailed procedures of the task. However, in some cases, it is

not practical for a human to know the details. For example, (a) the movements of

soft robots exists across the body which introduces infinite degree of freedoms(DoFs)

hence they are hard to bemodelled accurately (Rus and Tolley, 2015); (b) The informa-

tion of some environments cannot be fully acquired before the robot enter the situation,

53
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and the communication delay can impact real-time remote control for human-in-loop

decision making, thus robot learning by itself became a valuable option; (c) service

robots may be expected to manipulate various non-standard objects, hence it is not

practical to program all possibilities (Kemp et al., 2007).

Robot learning is an interdisciplinary research field aiming to endow robots with

learning capabilities (Sigaud and Peters, 2012). With robot learning, robots could

be programmed to conduct tasks without specific knowledge for them. It is closely

related to reinforcement learning (Kober et al., 2015; Wiering and Van Otterlo, 2012),

learning from demonstration (Argall et al., 2009; Zhu and Hu, 2018; Hussein et al.,

2017), and cognitive developmental robotics (Asada et al., 2009; Lungarella et al.,

2003), and so on. The approach presented in this chapter belongs to the category of

robot reinforcement learning, especially those using neural networks. Related works

are reviewed in the next section. Other types of robot learning applied to bipedal robot

control are also reviewed in the following section.

4.1.2 Reinforcement learning with neural networks

4.1.2.1 Reinforcement learning

Reinforcement learning is based on the psychological concept of Instrumental Learn-

ing or Operant Learning (Saksida et al., 1997), which is learning of actions or be-

haviours according to their consequences (Skinner, 1938; Hull, 1943; Staddon and

Cerutti, 2003).

In computer sciences, reinforcement learning is defined using the frameworks of

Markov decision processes(Sutton and Barto, 1998), which are discrete stochastic pro-

cesses (Puterman, 2014). With this definition, for a reinforcement learning task, there

is an agent in an environment executing actions and receiving information of states of

the world and values of actions. At each time step, an agent chooses and excuse an

action from a set of finite actions according to a policy; as a result, the states of the

environment change, and a value is calculated according to the new states and the goal

of the task; based on the value, the policy is updated. The policy is probabilities to

choose actions according to the states.

Existing reinforcement learning models based on discrete stochastic process has

achieved excellent performance in simple and discrete tasks, such as a robot in a grid

world. However, it is not suitable for robot control tasks, which are dynamic, continu-

ous, sophisticated and with a set of infinite actions. Given dimension and discrete state
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and action spaces, the learning challenge is polynomial scaling in the size of the spaces

(Kearns and Singh, 2002), while with continuous state and action spaces, the learning

challenge scales exponentially in the dimensions of the spaces, which is also known as

the curse of dimensionality (Bellman, 1957).

There are existing efforts to control continuous systems, including robots, with re-

inforcement learning. Significant progress has been made by combining reinforcement

learning with neural networks, which have excellent performance in fitting continuous

functions. The approach is also known as deep reinforcement learning.

4.1.2.2 Deep reinforcement learning

Deep reinforcement learning is an interdisciplinary research field combining deep

learning and reinforcement learning. Deep learning(Lecun et al., 2015), which rises

in recent years, has powerful function approximation abilities, proving new tools for

reinforcement learning(Arulkumaran et al., 2017).

Deep learning is a sub-field of Artificial Neural Networks (ANNs). ANNs branched

from computational neuroscience in the middle of the last century toward to machine

learning and statistics. They are performance-oriented and free from following the

biological neural circuits. Neural networks with many layers were believed hard to

be trained with error back-propagation. In this century, because the development of

computational ability and some efforts in training tricks, training neural networks with

multiple layers become possible (Schmidhuber, 2015) and people start to use ’Deep

neural networks’ as the name of the type of neural networks.

Deep Q-learning (DQN) is the first successful combination of deep learning and

reinforcement learning(Mnih et al., 2013). DQN uses a feedforward neural network

to replace the look-up table for Q value, which indicates the anticipation of values

in the future given current states and action. The non-linear function approximation

ability of FNN provide convergence guarantees. It also uses experiments reply, which

smooths the training distribution by randomly samples previous transitions. The ap-

proach solved seven Atari 2600 games with the same architecture, among them six

outperforms previous approaches, and three of then surpasses human experts. The

algorithm is improved by introducing target Q as a stabilising method, and achieve

human experts level performance in 39 Atari games (Schmidhuber, 2015). Although

DQN has outstanding performance in playing video games, it requires a discrete and

low-dimensional action space (Lillicrap et al., 2015), which is not suitable for robot

control in a continuous space.
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Deep deterministic policy gradient (DDPG) is an actor-critic algorithm (Silver

et al., 2014) that uses an actor network to generate actions instead of searching the

action with the highest Q value. Because action searching in continuous space, which

has infinite possible actions, is expensive in time, DDPG is more efficient in these

tasks than DQN. DDPG has been applied to continuous control tasks such as a cart-

pole swing-up task and bipedal locomotion tasks (Lillicrap et al., 2015).

Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016) is an actor-critic

algorithm different from DDPG in that A3C does not use experience replay but asyn-

chronously execute multiple agents in parallel. The multiple independent agents de-

crease the possibility to converge in local minima. A2C is the version that the data of

the agents collected and processed together (Schulman et al., 2017).

There is also a type of DRL use trust region, in which the step size of optimisation

is limited. Trust region helps to avoid oversized update of weight and increase the sta-

bility during learning (Arulkumaran et al., 2017). The step size of optimisation can be

measured by Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951), which

also known as the relative entropy measuring the difference of one probability distri-

bution from a reference probability distribution. This type of algorithms include Trust

region policy optimisation (TRPO)(Schulman et al., 2015) and proximal policy opti-

misation (PPO)(Schulman et al., 2017; Heess et al., 2017). PPO can generate complex

parkour-like motions in rich environment (Heess et al., 2017).

Deep reinforcement learning is the type of RL approach in computer sciences closet

to computational neuroscience. Algorithms of the approach have able to solve some

continuous control tasks. However, there are still limitations.

The action exploration is based on action space noise from random number gener-

ators, which is not time correlated and different from continuous physical movement.

Although some effort for generating temporally correlated exploration has been made,

such as the Ornstein-Uhlenbeck process (Lillicrap et al., 2015) and a method to gen-

erate autocorrelated noise by (Wawrzyński, 2015), the generated signals are still not

as smooth as the typical motions of robots or animals. Robot reinforcement learning

based on jittering actions is not efficient.

The actions exploration is based on action space noise, with which the generated

actions during exploration are not correlated to sensory inputs. Recent research by

Plappert et al. (2018) shows that introduced parameter space noise generate actions

more effectively and achieve higher scores than those with action space noise. With

the parameter space noise, action exploration is based on the sensory inputs by chang-
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ing the functions of response to the sensory input, so the state-action pairs are highly

correlated. The generated actions are also based on the information of neural networks,

so the state-action pairs are easy to learn by the same neural network. Parameter space

noise is thus worth to be applied to new algorithms for robot reinforcement learning.

Learning from action explorations needs extra works for solving the ’credit as-

signment’ problem. Training a neural network with gradient descent (GD) and error

backpropagation (BP) needs a large amount of data while finding a suitable action by

action exploration needs luck. The two factors together result in long time exploration

for collecting enough suitable state-actions pairs to train a neural network. Although

parameter space noise is introduced Plappert et al. (2018) for action exploration, it does

not directly contribute to learning. Existing deep learning algorithms still need the cal-

culation to speculate the updating of parameter space according to the actions space.

If the parameter noise can be utilised to indicate the direction of updating parameter

space directly, learning could be more efficient.

Deep reinforcement learning algorithms based on GD and BP cannot efficiently

utilise the neural networks with internal dynamics, such as Central Pattern Generator

(CPG) or biological plausible neural models. These are some other efforts to apply

CPG with neural networks in bipedal robot control. For example, Mori et al. (2004)

developed a neural network called CPG-actor-critic model for a planar Biped Robot.

However, the approach takes CPGs out from the networks and treat them as part of

the environment and does not directly address the problem of training neural networks

with internal dynamics. If a new learning rule can enable reinforcement learning to

utilise neural networks with internal dynamics, computational models in existing robot

control approaches and computational neural science can be available for robot rein-

forcement learning.

By abstracting and simplify the learning rule presented in chapter 2, the learning

rule presented in this chapter aims to generate smooth actions that correlated to sen-

sory inputs by directly exploring the parameter space which indicates the direction

of updating during learning and avoids the credit assignment problems. The learning

rule also aims to have a similar advantage of trust region by constraining the size of

parameter exploration.

The implementation of the work reviewed above is substantially based on feedfor-

ward neural networks (FNNs) instead of recurrent neural networks (RNNs). FNNs are

more commonly used than RNNs because FNNs are more robust during optimisation

with backpropagation (BP) and gradient descent (GD) than RNNs, which suffers from
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error vanishing or exploration while the error is recurrently passed throughout the net-

work during optimisation. Long short term memory (LSTM), in which a memory cell

has an input gate, a forget gate and an output gate to control the recurrent flow and the

memorised values in the cell, is a special case of RNN that largely avoids the problem

noted above (Hochreiter and Schmidhuber, 1997). LSTM has been applied to rein-

forcement learning, for instances Mnih et al. (2016) implemented A3C with LSTM for

Atari games, Heess et al. (2017) used distributed proximal policy optimization (DPPO)

with LSTM for a random-target reaching task with a simple 2 DoF robotic arm, Song

et al. (2017) applied LSTM in the bipedal walker task same to the one in section, Peng

et al. (2018b) applied Hindsight Experience Replay (HER) (Andrychowicz et al., 2017)

and Recurrent Deterministic Policy Gradient (RDPG) (Heess et al., 2015) with LSTM

to the fetch arm task.

DRL with RNN can achieve better performance than DRL with FNN in tasks for

which the states cannot be fully observed every time, such as exploration in a maze.

In the real world, full observation of every state is not practical, in which case the

Markov property no longer keeps, thus with only the observed states at one step are

not sufficient for prediction of latter states. The information from earlier observations

can be kept in RNN but not in FNN. Hence, RNN has more potential in real-world

tasks.

Although LSTM facilitates the training of RNN, LSTM is only a special case.

LSTM does not solve the problem of how to train RNNs generally, such as RNNs

with simpler cells or biochemically plausible neurons. Hence, existing robot control

models, such as CPG, and biologically plausible neural networks, which reference the

successful neural circuits in the nature, need further approaches for training.

4.1.2.3 Other Robot Learning methods used in bipedal robot control

Imitation learning, or learning from demonstration, is relatively well developed and

straightforward alternative to direct programming. It has a demonstrator providing ex-

amples for robots to learning. To teach a robot, the demonstrator can show his motion

to motion observation system (Hwang et al., 2016), operate a robot by remote con-

trol (Teleoperated Demonstration) (Kukliński et al., 2014), or interact with the robot

in the same environment(such as Kinesthetic Demonstration (Li and Fritz, 2015)). As

this type of learning needs labelled training data and learning to fit them, it can be

seen as a subset of supervised learning (Argall et al., 2009). The problems or imita-

tion learning can be broken down into who, what, when and how to imitate (Billard



4.2. Optimising dynamical neural networks for robot control 59

et al., 2008). Two types of approaches that are popular in solving how to imitate are

Neural Networks and Statistical Learning (such as (Calandra et al., 2014) ). Nakanishi

et al. (2004a) presented the idea of using the rhythmic movement primitives based on

phase oscillators as a CPG to learn biped locomotion from demonstrations. Duan et al.

(2017) proposed a framework based on neural networks for one-shot imitation learning

in manipulation tasks. Calandra et al. (2014) used Rhythmic Motor Primitives (RMPs)

to generate trajectories for control of an under-actuated three link bipedal robot and

used Bayesian optimisation to solve trajectory imitation and optimise trajectory.

The combination of reinforcement learning and imitation learning, sometimes termed

as adversarial imitation learning or apprenticeship learning (Abbeel and Ng, 2004;

Kober et al., 2015), emphasises the need for learning both from a teacher and by prac-

tice. It can provide prior knowledge to achieve appropriate behaviour in fewer trials

than pure reinforcement learning (Kober et al., 2015), which is important for robot

learning as a robot wears after a long time of operation. It also helps in producing

more natural motions in reinforcement learning and using demonstration data more

efficiently in imitation learning. For example the neural network GAIL(Generative

adversarial imitation learning) (Ho and Ermon, 2016), Hwang et al. (2016) reproduce

human-like motion using partially observed state features. Schaal et al. (2005) trained

a planar bipedal robot to walk using a framework based on Dynamic Movement Prim-

itives, by which the robot initialised trajectory pattern by imitation learning of hu-

man motion data and optimised the locomotion by reinforcement learning. Peng et al.

(2018a) proposed a deep neural network named DeepMimic which utilising motion

capture data as part of target function in reinforcement learning and demonstrated it

with simulations of several models including a humanoid model and an Atlas robot

model.

4.2 Optimising dynamical neural networks for robot con-

trol

This section details the simplified dynamic synapse learning rule, the neural network

with intrinsic dynamics and the experiments with the bipedal locomotion task.

The task involves applying reinforcement learning in a planar bipedal robot that

has locomotion on terrain with slight slopes. The robot has four degrees of freedom

with torque control. Its sensors are for the joint angles, the joint angular velocity, the
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ground contact, the angle and the angular velocity of the body to the world, as well as

the horizontal and vertical velocity of the body.

The neural network is dynamic because it has two sets of recurrent connections and

two central pattern generators. It is hard to be trained with the error back propagation

and gradient descent algorithm. The dynamic synapse learning rule proposed in chap-

ter 2 is simplified and applied to the training of the neural network. In the experiment,

the neural network successfully learned to control the bipedal robot for locomotion.

It is the first known algorithm that achieves the learning target using reinforcement

learning.

For more details of the neural network, the experiments and results, please see the

following paper, A Bio-inspired Reinforcement Learning Rule to Optimise Dynamical

Neural Networks for Robot Control(Wei and Webb, 2018b), which was published at

the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2018). It is about hypothesis 4, result 4,and highlight 4 mentioned in Chapter 1. The

co-author, Barbara Webb, advised on the work and the writing of the paper.



A Bio-inspired Reinforcement Learning Rule to Optimise Dynamical
Neural Networks for Robot Control*

Tianqi Wei1 and Barbara Webb2

Abstract— Most approaches for optimisation of neural net-
works are based on variants of back-propagation. This requires
the network to be time invariant and differentiable; neural
networks with dynamics are thus generally outside the scope of
these methods. Biological neural circuits are highly dynamic yet
clearly able to support learning. We propose a reinforcement
learning approach inspired by the mechanisms and dynamics of
biological synapses. The network weights undergo spontaneous
fluctuations, and a reward signal modulates the centre and
amplitude of fluctuations to converge to a desired network be-
haviour. We test the new learning rule on a 2D bipedal walking
simulation, using a control system that combines a recurrent
neural network, a bio-inspired central pattern generator layer
and proportional-integral control, and demonstrate the first
successful solution to this benchmark task.

I. INTRODUCTION

Neural networks have been applied to robot control long
before the development of deep learning, e.g., the learning
of inverse kinematics [1] [2], and bio-inspired central pattern
generators (CPGs) [3]. Recent developments demonstrate
many application in robotics [4] such as supervised learning
for robot vision and reinforcement learning in robot motion
control [5][6]. Due to these successes, and the ability of
deep learning to fit “arbitrary” functions, we might expect
the approach should also be applicable for motor learning.
However, the neural control of motor systems is essentially
dynamic, which can pose problems. For example, the learn-
ing rules we have for deep learning are yet not suitable
for learning of neural networks with CPGs, which are
undifferentiable. Yet CPGs are found widely in animals [7]
and have been productively adopted for robot motion control.
Although some reinforcement learning models include both
CPGs and neural networks [8], the CPG is placed between
the neural network and the physical model of the robot and
is treated as part of the physical model, so that the neural
network is differentiable.

Obviously, animals are able to learn with undifferentiable
neural circuits. If such learning rules could be introduced
to robot learning, there will be more options for the rein-
forcement learning of robot motion control. In particular, a
bridge can be built between learning methods and previous
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research into neural network dynamics, such as CPGs, for
robot control. The learning rule proposed in this paper is
aimed at learning of continuous motion in an single robot
using neural network architectures that are beyond the scope
of backpropagation methods.

In most neural network models, both the activation func-
tions (mimicking the processing in the soma of a neuron)
and weights (mimicking input synapses) are static. Although
some of the parameters are updated during training, they are
time invariant during calculations. However, biological neu-
ral networks are always dynamic [9], even without learning.
Neural spiking codes information in a complex hybrid of dis-
crete and analog electrical dynamics. When the information
passes between neurons through synapses, neurotransmitter
is released from the pre-synaptic regions and received by
receptors in the post-synaptic regions. Both regions have
inherent dynamics that alter the effective synaptic strengths
[10].

The model presented here is inspired by the dynamics in
post-synaptic regions, which includes the motion of neuro-
transmitter receptors. A receptor can be transported between
different regions by thermodynamics or active transportation
by the neuron [11]. As receptors contribute differently to
synaptic strengths (or weights) according to their locations,
the transportation causes spontaneous fluctuations of the
weights [12]. Because the dynamics of transportation in-
cludes random and chaotic processes, the weights are not
accurately predictable and not phase-locked. Hence, weights
in a real neural circuit always explore adjacent values [13].
Here we propose that if the exploration is controllable, the
neural network weights could be optimised. Specifically, ex-
ploration should become wider with punishment but narrower
with reward; and the centre of the exploration should move
towards values that coincide with rewards. Fig 1 shows the
concept with an example.

In the following sections we first introduce the proposed
learning mechanism, and then describe its application to a
complex, hybrid neural circuit to control a bipedal walking
simulation.

II. MODELS AND METHODS
A. Learning rule

The neural network learning rule consists of 2 parts: a
mechanism to produce spontaneous synapse dynamics that
result in exploration of the weight space; and an updating rule
to control these dynamics according to the rewards obtained.
In other work [14] we have considered a biologically plau-
sible model of the synaptic receptor transport mechanisms



Fig. 1. Principle of the learning rule. A synaptic weight (green) fluctuates
around a centre (red). When reward is received (blue) the centre is shifted in
the direction of the ongoing fluctuation. The fluctuation amplitude decreases
with positive reward for convergence of learning.

that could produce suitable dynamics, but here we present
a simple version that is sufficient to provide the following
properties:

• Spontaneous fluctuation should be free from the direct
effect of information the synapse conveys, so that the
input information does not limit the exploration in the
synapse;

• Phases of the fluctuations in different synapses should
not be locked, to avoid periodic exploration and instead
help to sample the weight space densely;

• The fluctuation should be locally symmetric to be
resistant to random biases, so that only rewards that
correlate to the weight explorations contribute to the
learning; and

• The periods of the fluctuations should be much longer
than the periods of the learning objectives, such that
when the new weights cause an effect and the reward
arrives later, the weights should still be near the region
that produced a reward.

1) Spontaneous Dynamics: Weight fluctuation is based
on a sinusoid function with variable periods. For a single
synapse:

W (t) = A sin(2π
t−∑i

0 Ti
Ti

) + C if Ti < t < Ti+1 (1)

where t is time, A the amplitude of fluctuation, Ti the ith
period, and C is the centre of fluctuation.

When a fluctuation crosses its centre from a specific
direction, a new period is calculated by a Gaussian process:

Ti ∼ N (µ, σ2) (2)

where µ is the centre of the distribution periods and the σ2

the variance.
The fluctuations of weights in different synapses are

independent. Hence, the weight space can be well explored.
Fig 2 and Fig 3 show the exploration driven by the fluctuation
in 2D and 3D weight spaces respectively.

2) Control of the dynamics: In this approach, learning
consists in controlling the spontaneous dynamics according
to the rewards generated. Given the use of a sinusoid function

Fig. 2. Exploration Trajectory of 2 synapses

Fig. 3. Exploration Trajectory of 3 synapses

as the basis of the dynamics, we want to modulate two
variables as a function of the reward (which could be positive
or negative): the centre of fluctuation C which changes the
average weight of the synapse; and the fluctuation amplitude
A which balances exploration and convergence.

The fluctuation centre C is updated according to the
reward and the current value of the fluctuating weight:

Ċ = α(W (t)− C)R(t) (3)

where α is learning rate, (here 1.2 × 10−5ms−1), R the
reward. When the reward is positive, the fluctuation centre
shifts in the same direction as the on-going fluctuation. If
the reward is negative, the fluctuation centre shifts in the
opposite direction.

The fluctuation amplitude A, which is positive, is updated
according to the reward only:

Ȧ = −βR(t) (4)

where β is the convergence rate (here 1×10−9ms−1). When
the reward is positive, the fluctuation converges; when the
reward is negative, the fluctuation expands to explore a wider
space.

B. Experiment

1) Simulation Environment: The experiment is based on
the continuous robot motion control tasks BipedalWalker-
v2 and BipedalWalkerHardcore-v2 available within the rein-
forcement learning environment OpenAI Gym [15]. The first
task is a side-scrolling video game style environment with a



Fig. 4. BipedalWalker-v2 screenshot

2D bipedal robot moving on terrain with small slopes (Fig
4), the second task is the same type of robot but on terrain
with stairs, boxes and trenches. OpenAI Gym provides the
control API to the robot, which is torque that is applied
to 4 joints of the robot (the values feed to the API are
called Actions). The API also provides step by step states
of the robot and a 10-point Lidar input, and reward values
according to the robot’s motions. In the experiments, we
adopted the original reward provided by the API, which
favours the robot’s moving forward, keeping its head straight
and decreasing the motors’ torque. The reward is -100 when
the robot falls down. The criterion of solving the task is
getting average rewards of 300 over 100 consecutive trials.

For the details of the robot and tasks, please
see https://github.com/openai/gym/
wiki/BipedalWalker-v2, https://gym.
openai.com/envs/BipedalWalker-v2/
and https://gym.openai.com/envs/
BipedalWalkerHardcore-v2/.

2) Control system: The architecture of the control system
consists of a recurrent neural network (RNN) with multiple
layers including FitzHugh-Nagumo Oscillators (Fig 5). There
are two types of connections between layers as shown in Fig
5: buses of one-to-one connections with fixed weights; or
full all-to-all connectivity where the learning rule is applied.
Each neuron has one weighted sum input and one output,
but different activation functions are used in different layers.
Exceptionally, a Fitzhugh-Nagumo Oscillator has two states
and we use both of them as outputs.

Fig. 5. The architecture of the control network (see text)

There are 5 major parts in the architecture: preprocessing

and Layers 1 to 4.
In the preprocessing, each of the robot’s 14 states provides

two inputs: [value, 0] for positive values and [0,−value] for
negative values. These are combined with ten Lidar values, a
constant and a feedback signal of the 4 output actions. They
are individually normalized according to their possible range
and fed into Layer 1. Layer 1 thus has 43 neurons and uses
Hyperbolic Tangent as the activation function.

The outputs of Layer 1 are fed into Layer 2 with full
connectivity. The connections have uniformly distributed
U(−0.1, 0.1) random initial weights and are changed by the
learning rule. Layer 2 has 8 neurons and serially uses Hy-
perbolic Tangent and Rectified Linear Unit as the activation
function. To let the neurons in this layer remain sensitive
to input changes, it has a slow adaptive gain to control the
neuron sensitivity:

ġj = (0.3− |oj |)γ (5)

pj(t) = gj
∑

oi(t)Wij (6)

where i is the index of neurons in the Layer 1, j the
index of neurons in the Layer 2, g the neuron sensitivity, γ
the update rate, which is 1×10−6ms−1, p the input to Layer
2, o the output of Layer 1, Wij the weights from neurons i
in Layer 1 to neuron j in Layer 2 (please note we use W
instead of w for weights to avoid confusing with the state w
in FitzHugh-Nagumo oscillators).

The outputs of Layer 2 are fed into Layer 3 with full
connectivity. The connections have uniformly distributed
U(−0.1, 0.1) random initial weights and are changed by the
learning rule. The 2 neurons in this Layer are FitzHugh-
Nagumo oscillators [16], a simplified model of spiking
neuron dynamics, widely applied in CPGs for robot control
[3]. However, unlike a typical CPG, the 2 neurons are not
coupled but get input from Layer 2 individually, hence their
phases are adjusted individually by the upstream layers. In
our model, the dynamics are scaled to an appropriate period
by τ to fit the period of the walk.

τ v̇ = v − v3 − w + I (7)

τẇ = a(bv − cw) (8)

where τ is the time constant for scaling, which is 0.02; w
and v are 2 states; I is the input; a, b, and c are constants,
among them a = 0.08, b = 0.2 and c = 0.8. v and w are
used as outputs to the next layer. Fig 6 shows the dynamics
of the oscillator with increasing input from -2 to 2, and Fig
7 shows the phase portrait of the oscillator. With low or high
input, the oscillator is stable; with input from about -0.6 to
1.1, the oscillator is unstable.

The outputs of Layer 3 are combined with the 14 states
of the robot and fed into Layer 4 with full connectivity
and application of the learning rule. Layer 4 has 4 neurons
without activation functions (i.e. output is just weighted sum
of the input). Their outputs are used as torque of the 4
joints of the robot respectively. The initial weights for the



Fig. 6. A FitzHugh-Nagumo oscillator with increasing input

Fig. 7. Phase Portait of the FitzHugh-Nagumo oscillator

layer use the state inputs v and −w to control knee and hip
respectively, and take the joint speed and joint angle as the
feedback for PI control. The weight values do not need to be
carefully selected but depend on the learning rule for tuning.
The 4 outputs of Layer 4 also feedback as inputs to Layer
1.

III. RESULTS

The control system is trained with the learning rule on a
computer with Intel R©CoreTMi5-5200U CPU. It took about
11 hours wall clock time, corresponding to 47956 Episodes
to solve the BipedalWalker-v2 (see the associated video
https://youtu.be/B7mLVY1NKgI). We note that
according to the official Leaderboard of the task (https:
//github.com/openai/gym/wiki/Leaderboard)
on Feb. 27, 2018, no previous solution has been obtained.
The source code of the model and experiment are available
online: https://github.com/InsectRobotics/
DynamicSynapseSimplifiedPublic.git.

As shown in Fig 8, the average episode reward had a
quick increase from -100 to 200 during episodes 2000 to
14000, then gradually reached up to more than 300 after
Episode 47956. As getting average rewards of 300 over 100
consecutive trials is the threshold of solving the task, our
approach solved the task. Fig 9 shows a Poincare Map of
the exploration, which gradually converges to smaller space
and became denser. With negative reward more than positive
reward, the fluctuation amplitude increases for the first 30
hours of simulated time, which leads to broader exploration

Fig. 8. Episode reward and its average in every 100 episodes. Success on
the task is defined as an average above 300.

Fig. 9. A Poincare Map of the exploration. The points are intersections of
the exploration trajectory and a section of the weight space. Two colours
mark the side the trajectory came from, and the gradients of the colours
indicate the time of intersection.

of weights. Then it gradually decreases approaching zero,
which leads to convergence of the learning. As shown in Fig
10, the weight fluctuations generally explore wider around
their centres at the beginning than later. The fluctuation
centres moved to optimized values after the training.

The control system and learning rule were also tested
on the BipedalWalkerHardcore-v2. The robot learnt to walk
up and down stairs, stride over small boxes but was not
successful in striding over large boxes and trenches. Striding
over large boxes requires the robot to jump, so the control
system might not able to support the two distinguished gaits.
Striding over trenches requires the robot to control the feet to

Fig. 10. Fluctuation of the weights: the amplitude and centre of fluctuation
is altered by reward and converges on a solution.



correct footholds accurately, so the control system is either
unable to accurately control the feet to a specific point
or unable to find the correct footholds. Overcoming these
limitations may require a change to the architecture of the
control system.

We additionally tested whether successful learning can
occur if the learning rule is only ‘attractive’, that is, the
fluctuation centre is shifted towards the current value of
the fluctuation when positive reward is received, but there
is no ‘repulsion’, i.e., shifting away from the current value
with negative reward. We also examined the contribution of
the CPG input weight adaptation, using either no adaptation,
linear adaption or non-linear adaption. The combined results
of these two manipulations are summarised in (Figure 11).

Note that (as for other reinforcement learning algorithms),
random seeds of the simulator can affect the process of
learning (Figure 11 (A) without control of random seeds;
(B) and (C) with control of random seeds, which show the
difference between different configurations more clearly).
We also notice random seeds also affect various learning
configurations differently (see figure 11 (B) and (C)). Hence,
we did multiple groups of experiments and show some
typical results here.

Among all the experiments, those with both repulsive
learning and nonlinear CPG adaptation have the highest
possibility to solve the tasks, providing the only solution
in Figure 11 (B, green line), and the first solution in Figure
11 (C, green line). The experiments lacking either repulsive
learning or adaptation have the smallest possibility to solve
the tasks. In Figure 11 (B), the configuration lacking both
never reached 200 (red line). In Figure 11 (C), the configu-
ration without repulsive learning and with linear adaptation
(purple line) failed to solve the task.

Normally, with same neural network configuration and
random seeds, the learning rule without repulsive learning
works less well than the learning rule with it (see Figure 11
(B) and (C), respectively). A possible reason is that repulsive
learning provides disturbances to push the exploration centre
away from the region of weight space that leads to negative
rewards. When the weight fluctuation reaches the region of
weight space that leads to positive rewards, the attractive
learning provides an attractor to higher reward region. With-
out repulsive learning, if the system under training initialised
in a punishment region and cannot reach the reward region
with fluctuation, the system is not able to learn.

IV. DISCUSSION

Inspired by the dynamics of biological synapses, a new
learning rule is developed. With this learning rule, we trained
a hybrid control system for a bipedal 2D walker travers-
ing terrain with small-slopes, stairs and small boxes. The
architecture of the control system is different from typical
reinforcement learning using neural networks that it includes
not only feed-forward connections, but also feedback con-
nections in different levels, a CPG, and a layer that work
as a complex PI control. In summary, it is a mix of neural
networks and classical robot control that cannot be optimised

TABLE I
HIGHEST AVERAGE SCORES REPORTED

Algorithm Highest average score Window size Source
NEAT 54 50 [17]
NES -23 50 [17]
CMA -75 50 [17]
P3O 161 50 [17]

CA3C 129 50 [17]
D3PG 90 50 [17]
PPO 251 100 [18]

PPO(8 actors) 221 100 [18]
PPO-ER 270 100 [18]

PPO-ER(8 actors) 285 100 [18]
TRPO 238 100 [18]

with backpropagation. Our learning mechanism instead uses
spontaneous weight fluctuations which are modulated by re-
ward to converge to the region of state space that maximises
reward. We show that this can produce successful robot
control.

Our approach exceeds the performance of previous at-
tempts at solving the bipedalWalker-v2 (see Table I). Meth-
ods that have been explored include deep reinforcement
learning methods such as Continuous Asynchronous Advan-
tage Actor-Critic, Parallelized Proximal Policy Optimization,
and Distributed Deep Deterministic Policy Gradient; and
evolutionary methods such as Covariance Matrix Adaptation
Evolution Strategy, NeuroEvolution of Augmenting Topolo-
gies, and Natural Evolution Strategy[17]. Our approach also
exceeds the performance of the proximal policy optimization
algorithm with multi-batch experience replay scheme [18].
We believe there are three main reasons for the improvement
in performance:

• Typical neural networks and existing robot control
approaches cannot be optimised using the same rule
continuously, but this is possible with our learning rule,
thus our architecture can take advantage of existing
robot control approaches (such as CPG and PI control)
in a hybrid network.

• The sampling happens in the parameter space instead
of the action space, which decreases the complexity
of the optimized generated random numbers, which
become a fixed-length vectors instead of unfixed-length
sequences.

• For the same reason as above, the output actions are
continuous and smooth during exploration, while previ-
ous approaches typically use random number generators
to explore the action space, which introduces noise and
impacts the quality of actions.

The main existing alternative approach to this kind of
problem is based on genetic algorithms. However, they
require transient changes of variables, which is less suitable
than our learning rule when applied to cases in which a robot
is hard to reset, such as an actual physical robot.

The gait produced by our learning method for the Bipedal-
Walker is successful for locomotion, but does not resemble a
typical bipedal walking gait, i.e., the legs do not swing past



Fig. 11. Comparison between trainings with/without repulsive learning or CPG input weight adaptation. (A) Without control of random seeds. (B) and
(C) With control of random seeds, each group of experiments have the same random seed.

each other in alternation. We believe this is due to the fact
that the robot is planar, and as such does not need to maintain
lateral balance. Keeping one leg always in front and the
other at the rear is the most stable configuration for forward-
backward balance, particularly in early stages, and the robot
then optimises its gait for this configuration. The same gait
is often found as a solution in this task. Alternatively, the
observed movement can be compared to the bounding gait
naturally exhibited by some quadrapeds, where the two front
and two hind legs are moving in unison.

Our learning rule can be applied to more complex and
dynamical neural networks than backpropagation, because
it can be applied to a wider range of architectures and
dynamics. This could be particularly valuable in scaling to
more complex tasks, as the curse of dimensionality might
be addressed by introducing richer internal structures, e.g.,
internal rewards that structure learning towards distant final
rewards. Other applications system identification, dynamic
model based robot control and so on. Moreover, it can
be used in hybrid systems that combine classical robot
control approaches and neural networks, thus facilitating the
introduction of neural networks into robot control tasks.
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4.3 Further discussion

The above paper presents a learning rule abstracted from the synaptic plasticity model

proposed in chapter 2. The learning rule trained a neural network with internal dy-

namics and recurrent connections, which is hard to be trained with backpropagation

because of vanishing / exploding gradients during error back-propagation through time

(Sato, 1990).

The result supports that the learning rule can be applied to reinforcement learning

(RL) with neural networks for robot control tasks. It is the first reinforcement learning

model that solved the benchmark test, which is hard since the robot should perform

energy efficiently without any faulty action, such as falling down, in 100 successive

tests. The perfect performance in the task requires fine-tuning of the neural network

by RL to minimise the possibility of entering faulty actions. The learning rule perform

better than other algorithms at the time of writing this thesis). Although the resulting

gait is different from human, it can be interpreted as the bounding gait, as described in

the discussion of the inserted paper.

4.3.1 Parameter Space Exploration and Action Space Exploration

Parameter space exploration (PSE), a key characteristic of the learning rule, contributes

to the outstanding performance by improving the exploration efficiency. PSE, as dis-

cussed in the above paper, changes the mapping from the sensory inputs to the actions,

generating actions correlated to the sensory input. It is different from action space

exploration (ASE), by which new actions are generated without sensory information.

As the right actions always correlate to the sensory inputs, PSE can have a higher

possibility than ASE to find the correct action if the neural network is adequate for

the task. ASE, however, can generate random actions that the neural network is never

able to output, which are unnecessary explorations. In other words, for continuous

tasks, parameter space can be smaller and less complicated than the action space, thus

parameter space exploration can be more effective than action space exploration. Con-

sidering a neural network with N parameters, which controls a robot with D degrees

of freedoms, for action with time length T and resolution R per unit time, the com-

plexity of parameter space is N, and the complexity of the action space is DT R. Hence,

the complexity of action space is sensitive to the time length and the resolution. Al-

though, in general, N >> D, with sufficiently large T and R, the action space can be

more complicated than the parameter space. For the learning tasks targeting at fine
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action tuning, such as the benchmark task, which needs high resolution, parameter

exploration is more feasible than action space exploration.

This learning rule has similarities with the parameter space noise for action ex-

ploration (Plappert et al., 2018), which is mentioned in section 4.1.2.2, in that they are

explorations in parameter space. However, they are different in that the former explores

in the region neighbouring the point the neural network is at, while the latter does not

constrain the region of exploration. The exploration in the neighbour region has sim-

ilar advantages with the trust region in parameter updating (Schulman et al., 2017;

Heess et al., 2017), which improves the learning stability by limiting the step size op-

timisation. This learning rule is also different to the parameter space noise for action

exploration, in that the latter needs an extra step to map the action back to the param-

eters by backpropagation, while the former directly updates the centres of parameters

according to the instantaneous explorations of parameters. As the backpropagation can

lead to parameters different from the parameters that generate the action, this learning

rule is more robust in learning.

PSE generates actions with the coupled dynamics between the neural network

robot, so the generated actions are correlated to the dynamics. For continuous sys-

tems with non-linear dynamics, chaos can exist. With chaos, the distribution of actions

from the dynamics is fractal. PSE generates actions correlated to the dynamics, thus

the actions can be fractal, too, and feasible to be learned by the neural networks. As

a comparison, ASE is based on a stochastic process, which does not have the corre-

sponding fractal structure which increases the difficulty in fitting the mapping with the

neural network.

4.3.2 Comparison of this work with some bipedal robot control

models

Although the work presented in this chapter proves that the proposed learning rule

can be applied to robot control with dynamic neural networks, it is nevertheless to

compare the neural network with other bipedal robot control models, especially those

for learning to control robots who have similar configurations.

The Runbot Geng et al. (2006a,b) is a physical bipedal robot that has a similar con-

figuration with the bipedal walker of the benchmark task. The robot is controlled by a

biologically inspired sensor- and motor neuron models, which form a neural network

that drives the motors with reflex. It is different from the dynamic neural network
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proposed in this chapter in that it does not have any CPG and recurrent connections.

There is neither an algorithm for generating gait trajectory, nor position or speed con-

trol for tracking a trajectory. Hence, the controller only relies on reflex to control the

robot, by which the motor output, action, sensory input, and the neural network form-

ing a control loop. There is no internal feedback to pass downstream information to

upstream neurons, thus any failure in the only loop can cause a fault. The number

of neurons in the Runbot is 18 (Geng et al., 2006b) or 28 (Geng et al., 2006a), less

than the neurons in the dynamic neural network. The connections between neurons in

the Runbot is pre-designed and there is no full connection between layers, hence the

learning complexity is reduced compared to the dynamic neural network. The learning

rule of the Runbot is Isotropic Sequence Order Learning (ISO) (Porr and Wörgötter,

2003; Porr et al., 2003), which is based on a differential Hebb rule, learning to use

the predictor sensory input to minimise the disturbance of the reflex sensory input to

the outputs. This learning rule is different from the dynamic synapse learning rule in

that the former does not need reward whilst the latter does, and that the former calcu-

lates the correlation between the inputs and the derivative of the output while the latter

calculates the correlation between synaptic strength and rewards.

Nakanishi et al. (2004b) proposed a framework for learning biped locomotion with

a central pattern generator, whose dynamic is decorated by locally weighted learning

(Schaal and Atkeson, 1998) to be used as Rhythmic dynamical movement primitives.

This framework is similar to the dynamic neural network in that they use CPGs. How-

ever, the “CPG” the former uses are very artificial, in that the learning of the CPG is

done by adding numbers of local models to the CPG. As a comparison, a biologically

plausible CPG does not change its output by adding local models, but by changing its

parameters or inputs. The dynamic synapse learning rule can enable the learning of

CPGs in a similar way, as shown in chapter 2 and this chapter.





Chapter 5

Soft Maggot Robot

5.1 Background

5.1.1 Motor system and motion of larvae

5.1.1.1 Motion of larvae

Motions of Drosophila larvae include forward, backwards, sweep, turn, and roll. The

motion that has been the focus of most research is forward motion. Heckscher et al.

(2012) studied characters of larvae crawling forward and backwards and tried to link

muscle contraction patterns to the motions. Motion of crawling forward can be divided

into 2 phases: (1) visceral piston phase, when tail, head, and viscera pushed forward

by gut suspension muscles, but body walls of middle body segments keep the position;

and (2) wave phase, tip of head hook substrate, body wall peristalsis forward. Figure

5.1 shows the motions of the body wall and visceral during crawling forward.

Figure 5.2 shows similar graphs for backward motion. It is based on a video by

Heckscher in 2013 (https://www.youtube.com/watch?v=S6TOJJeOtoY). The original

pictures are captured from the video. Muscle contractions, body wall without relative

displacement with the substrate, and position of the gut are signed.

5.1.1.2 Muscle of larvae

Muscles of Drosophila larvae are in three kinds of orientations: dorso-ventral, anterior-

posterior and oblique. Antero-posterior muscles are located more inner than Dorso-

ventral muscles. During locomotion, fluids in a larval body facilitate deformation of

the body. Lahiri et al. (2011) studied muscle contraction during larval locomotion.

71
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Figure 5.1: Motions of body wall and visceral during crawling forward (schematic dia-

grams). Adopt from Heckscher et al. (2012), with permission.
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Figure 5.2: Motions of the body wall and visceral during crawling backwards (GFP

photos). Amended from Heckscher (2013). Short red horizontal lines mark contracting

body segment, long red vertical lines mark relaxed body segment, yellow horizontal

lines mark the body walls without relative displacement with the substrate, violet arrows

are the original position of the gut, and white arrows a new position of the gut. (M) and

(A) to (F) are wave phase; and (G) to (K) are visceral piston phase

Figure 5.3: Muscle contraction during larval locomotion. In (A), (B) and (C), the middle

is head, above the middle are fluorescence on the left side from head to tail, and below

the middle are fluorescence on the right side from head to tail. (D) and (E) shows

fluorescence on left side subtract fluorescence on the right side. (A) shows fluorescence

in crawling forward, (B) and (D) show fluorescence with small head sweeps, (C) and (E)

shows fluorescence with large crawling forward. Adopt from Lahiri et al. (2011), with

permission.



74 Chapter 5. Soft Maggot Robot

Figure 5.4: A C. elegans inspired robot. Adopt from Boyle et al. (2013), with permission.

They observed transgenic larvae with fluorescent muscle fibres. The fluorescence in-

tensity is relevant to the intensity of contraction. Figure 5.3 shows results of observa-

tion. In Figure 5.3 (A), (B) and (C), the middle is head, above middle are fluorescence

on the left side from head to tail, and below the middle are fluorescence on the right

side from head to tail. Figure 5.3 (D) and (E) shows fluorescence on left side subtract

fluorescence on right side. Figure 5.3 (A) shows fluorescence in crawling forward,

Figure 5.3 (B) and (D) show fluorescence with small head sweeps, Figure 5.3 (C) and

(E) shows fluorescence with large crawling forward. During crawling forward, peri-

stalsis waves that travel from tail to head on two sides symmetrically. During a small

head sweep, a peristalsis wave travels from head to tail superpose on crawling for-

ward peristalsis waves. The peristalsis wave travels from head to tail is asymmetric,

as Figure 5.3 (D) shows. During a large head sweep, continuous peristalsis waves that

travel from tail to head are interrupted. New waves start from the body segments that

backward wave have travelled.

5.1.2 Existing worm-like robots

Worm-like Robots, which have serial multi-body segments without no leg in general,

can move in the ways similar to Drosophila larvae. For example, C. Elegans inspired

Robot (Figure 5.4 (A) and (B)) made by Boyle et al. (2013) can locomote and avoid

obstacles by bending the body. The control system (Figure 5.4 (C)) of the robot is

inspired by the C. Elegans nervous system.

Conradt and Varshavskaya (2003) designed a worm-like robot (Figure 5.5) which is

controlled based on Central Pattern Generator. The robot can behave planar horizon-
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Figure 5.5: The WormBot. Adopt from Conradt and Varshavskaya (2003).

Figure 5.6: The hydrostatic robot. Adopt from Vaidyanathan et al. (2000), with permis-

sion.

tal locomotion contacting ground by venter or planar vertical locomotion contacting

ground by lateral. The robot is actuated by DC motors. The control method of the

robot is a distributed central pattern generator control. Every body segment is pro-

vided with a microcontroller Atmel Mega 8 which runs a local CPG and actuate the

corresponding motor using PWM. The CPG is biased by current position and torque.

Sensor readings are shared by all controllers.

Vaidyanathan et al. (2000) designed a hydrostatic robot with a hydrostatic skeleton

that locomotes underwater (Figure 5.6). The robot consisted of three-segment. Fluid-

filled bladder and wooden discs are alternately arranged. Four Shape-memory alloy

(SMA) tension springs attached to two adjacent wood discs. The robot can crawl at a

speed of 0.6 cm/s and capable of locomotion in straight or curved paths. The robot is

controlled by four binary controllers, which switched manually.

A similar robot (Figure 5.7) was developed by Menciassi et al. (2006). Its locomo-

tion is inspired by the peristaltic motion of Annelids, and earthworm. Its body consists
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Figure 5.7: The Biomimetic Miniature Robotic Crawler. Adopt from Menciassi et al.

(2006), with permission.

Figure 5.8: The GoQBot. Adopt from Lin et al. (2011), with permission.

of 4 modules, five brass disks and a silicone shell. SMA wire is inside the body. The

robot locomotes on the ground, with miniature hooks that offer anisotropic friction

coefficients.

Lin et al. (2011) studied an escape repertoire of some caterpillars that curl their

body into a wheel and roll away, then designed a robot named GoQBot (Figure 5.8)

that able to mimic the unique way of locomotion. The body of GoQBot consists of

several kinds of silicone rubbers, in which are two axial tunnels for SMA coils and

one tunnel for wires. The robot can speed up to more than 0.5m/s within the first

200ms and reaches 1 G of acceleration within 50ms in rolling movements. The robot

is controlled by frequency-modulated stimuli of fixed voltage. For rolling movements,

the actuators are controlled by sustained DC pulses for maximum power.

A lot of similar robots have been built, such as works by Akbarzadeh and Kalani

(2012); Ávila et al. (2006); Arena et al. (2006); Wang et al. (2008). Therefore, worm-

like robots are well developed and can provide a variety of platforms to test motor
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control and decision making of neuron circuits.

Worm-like or snake-like robots can be divided into two groups by stiffness of ma-

terial: hard robots and soft robots. They have distinct characteristics in shape, gait,

actuator and control system. Soft robots mimic real larvae more accurately than hard

robots in the mechanical property of tissues and deformation during motion. As a con-

trol system is based on its control object, a more realistic body offers a better platform

for a bionic control system.

At the present stage, for most worm-like or snake-like robots, their control strate-

gies are relatively simple, especially for the soft robots. They usually only able to move

with pre-preprogrammed motions, and thus lack the ability to learn the environment or

adapt to its own body. A more realistic control system inspired by the nervous system

may improve the adaptability.

5.1.3 Drives and actuators of worm-like robot

There are a variety of actuators that apply to worm-like robots. If they are classified

according to the type of motions, they are mainly of 2 types: linear motion and rotation.

If they are classified according to the type of driving methods, they are mainly of 5

types: electromagnetic drive, shape memory drive, chemical drive, hydraulic drive,

and pneumatic drive.

5.1.3.1 Electromagnetic Drive

The electromagnetic drive is a relatively mature method when it mainly refers to elec-

tric motors. A series of types and control circuits, accurate mathematic models and

control algorithm are available.

Servo motors are usually divided into two groups: direct current (DC) motors and

alternating current (AC) motors. The most significant difference of structures between

them is that DC motors have electric brushes but AC motors not. By closed-loop

control with feedback sensors such as photoelectric encoder and Hall sensor, servo

motors are capable of outputting accurate velocity and angle.

C. Elegans inspired robot made by Boyle et al. (2013) and the worm-like robot

designed by Conradt and Varshavskaya (2003) adopts DC motors as actuators, to drive

angle between two segments.

Steering Servo is a type of specific servo motors that integrates angular transducer

and a closed-loop feedback circuit which controls its output to be a corresponding
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Figure 5.9: FUM Snake-3. Adopt from Akbarzadeh and Kalani (2012), with permission.

Figure 5.10: An artificial segmented worm. Adopt from Steigenberger and Behn (2011),

with permission.

angle for a specific duty ratio input. As its ease of use and integration, steering servos

are used in a lot of miniature robots.

The snake-like robot FUM Snake-3 (Figure 5.9) developed by Akbarzadeh and

Kalani (2012) uses steering servos as actuators to control angles between every two

adjacent segments. The motors could provide a maximum torque of 1.5 Nm and a

maximum speed of 360 °/s.

A step motor keeps an angle with constant input and turns when the input currents

of different phases switch. It is designed to achieve the functions of servo motors using

a low-cost way. As stable positions of a rotor are discrete, step motors are capable of

rotating an accurate distance in the absence of the feedback loop. Some step motors

work as linear motors of which spindles replace by screw rods.

Steigenberger and Behn (2011) designed an artificial segmented worm, which mainly

composes of linear stepper motors (Figure 5.10).

There are also some special approaches to actuate worm-like robot by electromag-

netic drives, such as the inchworm mobile robot (Figure 5.11) using electromagnetic

linear actuator Lu et al. (2009), and a Bio-Inspired robot named SEMOR (Figure 5.12)

using a voice-coil as an actuator Cotroneo et al. (2008).
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Figure 5.11: The Inchworm mobile robot using electromagnetic linear actuator. Adopt

from Lu et al. (2009), with permission.

Figure 5.12: The SEMOR. Adopt from Cotroneo et al. (2008), with permission.

5.1.4 Shape memory material drive

Shape Memory drive adopts shape memory materials as actuators. This kind of mate-

rials can return from deformed shapes to their original shapes by stimulations, such as

temperature (Mohd Jani et al., 2014). Shape memory materials include Shape-memory

alloy (SMA) and shape-memory polymer.

Utilise the characteristic, shape memory materials are adopted as a kind of ac-

tuators in robots. Robots developed by Lin et al. (2011); Menciassi et al. (2006);

Vaidyanathan et al. (2000) use SMA as actuators. Advantages of shape memory ma-

terial actuators include small size and flexible arrangement, as they usually are made

into wires. However, it has shortages include poor frequency response compared with

other drive approaches and low energy efficiency, as most or energy is consumed in

creating conditions for transition, such as heat up to the transition temperature, then

dissipate heat for reverse motion.

5.1.5 Hydraulic drive

The hydraulic mechanism utilises liquid as a medium of the power supply. Hydraulic

actuators usually have a high power-to-weight ratio, as hydraulic mediums can transmit

high power generated from the prime motor.
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Figure 5.13: The SnakeFighte. Adopt from Liljebäck et al. (2006), with permission.

Liljebäck et al. (2006) design a snake-like robot named SnakeFighter 5.13. The

robot is actuated by hydraulic cylinders. Two cylinders actuate adjacent two segments

and offer 2 degrees of freedom, yaw and pitch direction, respectively.

5.1.6 Pneumatic drive

Similar to the hydraulic mechanism, the pneumatic mechanism utilises fluid as a medium

of the power supply except the fluid is air. Compared with the hydraulic mechanism,

a pneumatic mechanism usually has a higher frequency response and lower price, but

more difficulties in control, such as nonlinear and delay of air compression.

Pneumatic artificial muscle (PAM) is an essential part of a pneumatic actuator ap-

plying to robotics. A variety of pneumatic artificial muscles have been developed

during the past decades.

Braided Muscles by Henri (1953) (Figure 5.14) are the most frequently used artifi-

cial pneumatic muscles. Braided sleeving covers on an elastic tube or blade. Fibres of

Sleeving are specially woven that the angles between the fibres and longitudinal axis

are coincident. When the tube is inflated, the diameter of tube increase, the angle of

fibres change, and the muscle becomes shorter.

Daerden (1999) developed pleated PAM (Figure 5.14 (B)). Villegas et al. (2012)

improve it. The maximum contraction of this muscle was experimentally found to be
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Figure 5.14: Pneumatic muscles. (a) McKibben Muscle/Braided Muscle, (b) Pleated

Muscle, (c) Yarlott Netted Muscle, (d) ROMAC Muscle and (e) Paynter Hyperboloid

Muscle. Adopt from Kelasidi et al. (2011), with permission.

Figure 5.15: Festo fluidic muscle. From brochure of fluidic muscle DMSP/MAS by Festo.

Adopt from www.festo.com.

41.5%.

Yarlott Muscle(Figure 5.14 (C)) is described in US patent No. 3645173 (Yariott

(1972)). It is composed of a flexible thin-wall shell with strands on latitude and longi-

tude. An advantage of this type of muscle is energy is less consumed in deformation

of the chamber.

An Axially Contractable Actuator, which is usually referred to as ROMAC (Figure

5.14 (C)), is composed of membrane covers on a frame built by jointed non-stretchable

flexible sticks.

Paynter Hyperboloid Muscle (Paynter, 1988), as shown in Figure 5.14(D), is also

composed of braid and membrane chamber, but braid is outside the chamber and ar-

ranged on a hyperboloid.

The pneumatic ’Fluidic muscle’ development by Festo (Figure 5.15) is similar to

braided muscles. Its contraction is only up to 25% of the nominal length.

There are also several kinds of pneumatic actuator applied in worm-like robots.

An inchworm-like microrobot for pipe inspection (Figure 5.16) designed by Lim et al.

(2008) utilises resistance of air when it flows through a small hole to actuate the robot

www.festo.com
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Figure 5.16: An inchworm-like micro robot for pipe inspection. Adopt from Lim et al.

(2008), with permission.

Figure 5.17: Robot Air Muscles made from Oogoo. Adopt from www.inklesspress.

com/robots.htm

with only one airway tube. The robot is divided into three chambers: head and tail are

for contact and fixation, middle for elongation. When pressed air is injected from the

tail, the chamber is inflated firstly, then the air inflow to the middle chamber and the

body of robot extend, and at the last, air inflow into the head chamber and block in

the pipe. When pressure released from the tail, the chamber deflate first, then the body

becomes shorter, at the last the head released. By alternately inflated and deflated, the

robot moves forward.

The Robot Air Muscles show in Figure 5.17 is made by mikey77 and published on

the website www.inklesspress.com/robots.htm. The muscle is made from Oogoo,

a material made from silicone caulk and gorilla instant glue.

Different drivers or actuators are suitable for different robot bodies. Electromag-

netic drives, such as electromotors, have mature bottom layer control method and high

accuracy, a hydraulic cylinder can generate huge pressure, and an air cylinder has fast

response, but they are only suitable for hard robots. For soft robots, soft hydraulic or

www.inklesspress.com/robots.htm
www.inklesspress.com/robots.htm
www.inklesspress.com/robots.htm
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pneumatic drives are more appropriate, since they are possible to fit into a soft body

with miniature size. More importantly, as this kind of drivers can be designed as arti-

ficial muscles which are similar to animals muscles, a robot with them can reproduce

realistic motions of animals.

5.2 The soft maggot robot

In this subsection, the design of a soft maggot robot is proposed and detailed. The robot

uses integrated pneumatic muscles made from Ecoflex, which is a type of silicone. The

pattern of the muscles mimics the muscle pattern of Drosophila larvae. An embedded

control system is designed for the robot. Experiments show the motions of the robot.

The following paper presents the biological background, design and tests of the

robot. The paper is titled “A Soft Pneumatic Maggot Robot” (Wei et al., 2016), pub-

lished in The 5th International Conference on Biomimetic and Biohybrid Systems (Wei

et al., 2016). It is about hypothesis 5, result 5, and highlight 5 in Chapter 1. Adam

Stokes and Barbara Webb are the co-authors of the paper, who advised on the work

and the writing of the paper.
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Abstract. Drosophila melanogaster has been studied to gain insight
into relationships between neural circuits and learning behaviour. To
test models of their neural circuits, a robot that mimics D. melanogaster
larvae has been designed. The robot is made from silicone by casting in
3D printed moulds with a pattern simplified from the larval muscle sys-
tem. The pattern forms air chambers that function as pneumatic muscles
to actuate the robot. A pneumatic control system has been designed to
enable control of the multiple degrees of freedom. With the flexible body
and multiple degrees of freedom, the robot has the potential to resemble
motions of D. melanogaster larvae, although it remains difficult to obtain
accurate control of deformation.

1 Introduction

We have designed a robot to mimic Drosophila melanogaster larvae (maggots),
as a platform to test and verify their learning and chemotaxis models. Drosophila
as a model system has a useful balance between relatively small number of neu-
rons yet interestingly complex behaviours [10]. Many genetic techniques, such as
GAL4/UAS systems developed by Brand and Perrimon [2], facilitate research on
the connectivity and dynamics of the circuits. As a result, a number of necessary
components of neural circuits for sensorimotor control and learning are being
found and modelled. Currently, the models are tested by comparing between
wildtype and genetic mutation lines, or using simulations of neural circuits and
comparing output with biological experimental recordings. To test models in a
wider environment, more similar to a larva, a physical agent that copies proper-
ties of the larval body is important.

Larvae have high degrees of freedom (DOFs) and flexible bodies. As a result,
they are able to do delicate and spatially continuous motion. Simplified in
mechanics, a larval body consists of body wall attached to the muscles and
body fluids inside the body wall. The 2 parts works together as a hydrosta-
tic skeleton [5]. The skin has regular repeating symmetrical folds, which are
essential for its deformation and friction, forming its segments. The muscles of
Drosophila larvae are in 3 orientations: dorso-ventral, anterioro-posterior and

c© Springer International Publishing Switzerland 2016
N.F. Lepora et al. (Eds.): Living Machines 2016, LNAI 9793, pp. 375–386, 2016.
DOI: 10.1007/978-3-319-42417-0 34
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oblique. Antero-posterior muscles are located nearer the interior than dorso-
ventral muscles. The body wall muscles are segmentally repeated, and in each
abdominal half segment there are approximately 30 of them ([1]) (Fig. 1).

Fig. 1. A Drosophila larva expressing mCherry (a type of photoactivatable fluorescent
proteins [14]) in its muscles. From Balapagos (2012).

Based on the property of their bodies, Drosophila larvae are able to do sev-
eral motions, such as peristaltic crawling, body bending and rolling. Forward
peristaltic motion is best described. In the centre of the body, viscera suspended
in hemolymph is essential for limiting body wall deformation and produces pis-
ton motion. During the ‘piston phase’ of peristalsis, muscles on the tail contract
and push the viscera forward. The second ‘wave phase’ involves a wave of muscle
contraction travelling through the bodywall segments from tail to head [4]. To
mimic various and motions of a Drosophila larval, it is important to utilize this
anatomical structure and avoid oversimplifying the high DOFs.

Some soft robots have been developed as bionic robots. The main materials
are silicone, rubber, or other flexible and stretchable materials. They are usually
actuated by Shape-Memory Alloy (SMA) or pneumatically, such as Biomimetic
Miniature Robotic Crawler [7], GoQBot [6], Multigait soft robot [13], and a flu-
idic soft robot [11]. These robots only have several degrees-of-freedom (DOFs)
and usually only have one type of motion, which is not sufficient to mimic larval
motion. Although SMA is widely applied on soft robots, it has a significant short-
coming. As SMAs deform according to temperature, their response is limited by
control of temperature. Because soft robots are usually not sufficient in heat
dissipation, heat accumulates inside the robots, and response times of SMAs get
too long so that continuous actuation is infeasible. The shortcoming does not
exist on pneumatic actuation. Hence, pneumatic actuators are a feasible option
as they have a faster response and longer effective working time. However, the
main action most of soft pneumatic actuators is off-axis bending, and the axial
elongation and contraction are only side effects. For examples: Micro Pneumatic
Curling Actuator- Nematode Actuator [9], Pneu-net [13]), and Robot Air Mus-
cles made from Oogoo [8]. As axial contraction is necessary for some motion
(such as peristalsis), we designed a new type of pneumatic actuators.

2 Methods

The robot is made from soft silicone rubber, instead of rigid material, because:
(1) motions of Drosophila larva are based on continous body deformation; (2)
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soft materials have more similar properies to biological tissue than rigid material,
such as nolinear elasticity and hysteresis, which are suitable to simulate dynamic
characteristics of the muscle; and (3) defomation of Drosophila larval body wall
is one method to control friction between body and contacted surface.

Figure 2 shows a sketch of a possible structure of a maggot robot. The robot
has repeating modular body wall segments, with a water bag or air bag inside.
Here we described the construction and control of 4 body segments. At present,
the control system and pneumatic system are placed off board because of limited
space and load.

Fig. 2. Sketch of the soft maggot robot. A central bag of fluid is surrounded by muscle
segments.

2.1 Design of the Actuator and Body Wall of the Soft Robot

Pneu-nets (Fig. 3(a) and (b)) are usually made from 2 different soft materials: (1)
flexible and stretchable material, such as Ecoflex, to form chambers to inflate and
expand; (2) flexible but less or not stretchable material, such as Polydimethyl-
siloxane (PDMS). Thus, when pneu-nets are inflated, the actuator bends to the
side made from less stretchable material. Pneu-nets are not suitable for tubu-
lar body wall because the stretchable layer limits axial bending, hence we have
modifeid the design to produce a new actuator type, which we called Extensible
Pneu-nets.

Fig. 3. Structure of Pneu-nets and Extensible Pneu-nets (a) and (b) are longitudinal
and transverse sections of Pneu-nets, respectively; (c) and (d) are longitudinal and
transverse sections of Extensible Pneu-nets, respectively.
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Extensible Pneu-nets (Fig. 3(c) and (d)) use only 1 stretchable material.
Small air chambers are connected by air tunnels to form a muscle. Different mus-
cles are isolated. When an air chamber is inflated, it expands in all directions,
and the direction with maximum expansion is the direction with the maximum
cross sectional area. To limit deformation in the unwanted direction, thickness of
the inner walls between chambers and thickness of the outer walls are carefully
selected and tested. As stretchable material allows not only bending but also
expansion along the surface, tubular body wall based on Extensible Pneu-nets
are possible to axially bend.

To make the air chambers and tunnels inside, the actuator is divided into 2
layers which are cast separately. The moulds can be manufactured in conven-
tional machining process or by 3D printing. Then the 2 layers are glued together
with the same material. Finally, tubes for injecting pressed compressed air are
inserted and glued. By including more air chambers and tunnels on a model, a
body wall with multiple pneumatic actuators can be cast.

The first attempt at a muscle pattern was designed according to real mus-
cle pattern on dissected and flattened body wall of Drosophila larva (Fig. 4).
Dorsal oblique (DO) muscles, lateral transverse (LT) muscles, oblique lateral
(LO) muscles, ventral longitudinal (VL) muscles and ventral acute (VA) muscles
are simplified and mapped on the muscle pattern of the body wall. However, the
adjacent muscles limited each others motions, especially when they have differ-
ent orientations. The cause of limitation is that inner walls between air chambers
limit transverse deformation, which is the direction that the adjacent muscles are
designed to deform. Thus adjacent muscles should either be parallel, or should
not be contiguous.

Fig. 4. Body wall of a body segment with Extensible Pneu-nets designed according to
real muscle pattern on dissected and flattened body wall of Drosophila larva.

The design of the prototype evaluated in this paper is a body wall with 4
body segments (Fig. 5, left). Each body segment has 3 transverse muscles and
3 longitudinal muscles. These 2 types of muscles are connected perpendicularly
and only connected on corners, leaving gaps between them to avoid limitation
of deformation between each other (Fig. 5, right). Body segments are connected
in series by longitudinal muscles. Figure 6 shows the mould for the body wall.
After a flat body wall was made, it was folded end to end and clamped by 2
specially cut boards. Through the window of the board, the end was carefully
aligned and glued together. By this process, the flat body wall is formed into a
hollow cylinder shape (Fig. 7).

In this 4 body segment version, because the limited resolution of the 3D
printer we use (Wanhao Duplicator with 0.4 mm nozzle) and resistance of air
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flow in tube, the dimensions of air chamber, as shown in Fig. 3(c) and (d), are:
a = 1.2 mm, b = 3.0 mm, c = 0.8 mm, d = 1.2 mm, e = 18 mm (longitudinal
muscles) or 28 mm (transverse muscles), f = 2.0 mm, g = 3.0 mm. In a curved
single body segment, the longitudinal length is 40 mm, the diameter is of the
robot is about 50 mm. The total length of the 4 body segment body wall is
about 175 mm.

Fig. 5. (left) Prototype design of a body wall with perpendicular arrangement of mus-
cles. Transverse muscles and longitudinal muscles of the first body segment are high-
lighted in red and green, respectively. (centre) A closer view of the flatten body wall
shows gaps and spaces between the muscles to allow expansion. (right) The gaps and
spaces when the body wall curved. (Color figure online)

Fig. 6. The 3D printed mould for body wall casting.

2.2 Pneumatic Actuation and Control System

The pneumatic actuation and control system controls the robot by controlling
air pressures of air chambers. Air pressure sensors measures pressure in every
muscle, pumps and valves control the air flow.
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Fig. 7. (left) The body wall is clamped and glued. (centre) Formed into a hollow
cylinder. (right) Names of muscles: body segments are numbered, longitudinal muscles
named in capital letters, transverse muscles named in lower case letters.

Pneumatic Control System. A pneumatic control system has been designed
for the robot. The system is located off board and connects to the robot with
rubber tubes. As the robot has more DOFs than previous pneumatic soft robots
mentioned above, the size of the pneumatic control system is designed to be
compact.

The main component of the system is a valve island with 24 pairs of miniature 2
way solenoid valves (Fig. 8). The size of solenoid valves is 10 mm × 11 mm × 23 mm.
Overall, the size of the valve island is 120 mm × 91 mm × 60 mm. The valves are
installed the 3D main structure by interference fit. The main structure of the valve
island consists of layers of 3D printed parts. The upper layer made form Acry-
lonitrile Butadiene Styrene (ABS), which offers Mechanical strength to fix valves,
and lower layer made from Thermoplastic Elastomer (TPE), which has build in air
channels with air-tightness. Every channel connects 4 ways, which are 2 valves, a
pressure sensor, and an air chamber on the robot. The other 2 ways of each pair of
valves are connected to compressed air and open to air, respectively.As the solenoid
valves speed up to 100 Hz, the air flow can be finely controlled.

Fig. 8. (left) A valve and pump in the system. (centre) Structure of the 3D printed
valve island. (right) Pneumatic valve island with 24 pairs of valves

Embedded Control System. An Embedded Control system has been designed
for control and actuation. The control system is a hierarchical control system con-
sisting of 1 main controller and 3 slave controllers. Their micro controllers are
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STM32F411RE by STMicroelectronics. They are based on Cortex-M4 by ARM
with digital signal processor (DSP) and floating-point unit (FPU). The main
controller receives commands from a computer, and distributes them among the
slave controllers by Universal Synchronous/Asynchronous Receiver/Transmitters
(USART). On each of the slave controllers, 16 hardware Pulse-width modulation
(PWM) channels and 8 Analog-to-digital converters (ADC) are configured to con-
trol 8 muscles. The PWMs control Darlington transistor arrays (ULx2003 by Texas
Instruments). On each slave control board, 3 of them are adopted to drive valves.
MPS20N0040D-D, which is an air pressure sensor to measure pressure in air cham-
bers, is adopted to measure the pressures.

Algorithm. At present stage, the robot is controlled by feedforward prepro-
grammed motion. According to a approximate linearization between deforma-
tion and pressure at the initial state of equilibrium, the pressure is utilized as
feedback of motion of muscle.

3 Experiments

The robot was tested for individual control of every muscle and coordination
between them. Three motions are programmed and tested on the robot (A video
of the experiments: https://youtu.be/aFE9dANHowk). The muscles are named
based on their location. As show in (Fig. 7), body segments are numbered, lon-
gitudinal muscles named in capital letters, transverse muscles named in lower
case letters.

Turn. In this motion, muscle a and B on every body segment was actuated at
the same time, then pressure released. To minimize friction and show relevance
between pressure and deformation, the robot is tested while floating on water.
Figure 9 shows the motion of the robot. The pressure of the muscles is shown
in Fig. 10.

Fig. 9. Turning left. The black lines show the initial central axis.
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Fig. 10. Pressure of muscles in the first body segment, muscles A and muscles B during
turning. (Color figure online)

Fig. 11. Roll.
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Roll. In this motion, muscle a and B, b and C, c and A, are inflated alternately.
As the bundle of the tubes flowing the robot impact the rolling on a surface in
water, the robot is hold on its tail vertically during test. Figure 11 shows the
motion of the robot. The pressure of muscles show in Fig. 12.

Peristalsis. In this simplified peristalsis, all the muscles on a body seg-
ment inflate at same time and muscles of different segments inflate alternately.
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Fig. 12. Pressure of muscles in the first body segment, muscles A and muscles B during
rolling. (Color figure online)

Fig. 13. Peristalsis. The parts on the blue lines were expanding. (Color figure online)
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Fig. 14. Pressure of muscles in the first body segment, muscles A and muscles B during
peristalsis. (Color figure online)

The motion is tested on water. Figure 13 shows the motion of the robot. The
pressure of muscles show in Fig. 14.

4 Discussion

In the tests above, the robot produced three different motions from muscles
actuated individually in different orders. The system was able to control the
pressures according to the control signal, although the pressures have some noise.
However, the three motions are not accurate. Deformation for the same pressure
is different between the muscles. That is because muscles are slightly different
and the relationship between deformation and pressure is not ideally linear.
When an air chamber is inflated to a given range, the pressure does not change
much even with obvious deformation. Hence, applying the same pressure to
different muscles can result in different deformations. Thus, deformation sensors
will be important to precise control of the robot.

Hence our immediate aim for future work is to develop and install sensors on
the robot for deformation feedback. As the sampling density of the deformation
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sensors is limited, different deformations may map to the same output, hence a
model or method to learn the relationship between sensor outputs and posture
is necessary. We should then be able to explore more thoroughly the movement
capabilities of the current design. Some additional redesign of the pneumatic
muscle and body wall may be necessary, for example, surface processes to mimic
denticles on Drosophila larval skin which generate asymmetric friction so that
peristalsis produces forward locomotion [12].

5 Conclusion

Our longer term aim for this robot is to use it as a platform to test neural circuit
models of Drosophila larvae. Initially this could focus on the motor circuits that
generate and control peristalsis and bending. In particular these circuits could
form the basis of an adaptative method for learning the control signals needed to
adjust to the irregularities and non-linearities in the actuators and their interac-
tions, in the same way that maggots are able to adapt to rapid change and growth
in their body while maintaining efficient locomotion. Ultimately we would like to
add sensors for environmental signals and investigate the sensorimotor control
and associative learning involved in, e.g., odour search [3].
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5.3 Further discussion

The soft maggot robot has more details of the Drosophila larval motor system than

other robots. It has advantages in replicate larva motor control, especially subtle mo-

tions which need coordinate control of multiple muscles. The more simplified simu-

lated animal body or robots, such as rigid body robots, miss the details of the larval

motor system. Although at the behaviour level, such as chemotaxis, subtle motions

are not necessary, so as the detailed motor system, for low-level actions which need

fine motion control, such as efficient peristalsis gait, missing the details could result in

qualitative differences. Hence, the soft maggot robot can be applied for behavioural

level research as well as action level research.

5.3.1 The balance between fidelity and simplification

Although the soft maggot robot has more details than other robots, the design of the

robot is still a trade-off of Drosophila larva motor system and existing manufacturing

technology for soft robots, which seems unavoidable according to the attempts at the

designs.

In our first attempt at designing of the body wall, as shown in Figure 5.18 (A),

the muscle pattern of Drosophila larvae is copied with the maximum accuracy of the

fabrication process. Five groups of muscles are captured in the silicone body wall, as

marked in colour shown in Figure 5.18 (A) and (B). However, the body wall does not

work as expected. As mentioned in the above paper, the adjacent muscles in different

directions limit each other’s deformations because they are contiguous. In a real larva,

as shown in Figure 5.18 (B) and (C), the muscles are not contiguous and can slide

relative to each other. In the later design the body wall takes this important feature

and leaves some gaps between muscles that are in different directions. Although, the

number and pattern of muscles are simplified due to the limitation of fabrication, the

robot wall functions better.

In these attempts of the design, the manufacturing technology limits the fidelity of

the biorobot body, which causes a range of problems of the biorobot approach. E.g.

that trying to be like the animal in some factors ends up less like the animal in other fac-

tors, such as put multiple muscles at limited location constrain locomotion capability.

With the limitation of existing fabrication technology, copying the animal’s structure

without appreciating the properties of the technology are not practical. trade off has

to be made. The ultimate solutions to these problems may rely on the development of
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Figure 5.18: Compare between the first design of the body wall and larval body wall.

(A) is the same in Figure 4 in the above paper, in addition to the left half of the muscles

are marked. The muscles with same extension directions are marked with the same

colours. The dotted arrows show the extension directions. (B) and (C) are photos of a

Drosophila larva body wall, and (C) is part of (B). The left half of the muscles on (B) are

marked in the same way with (A). Some of the muscles in (B) are not captured in (A) due

to the limitation of fabrication and design. Blue: the dorsal acute (DA) muscles. Black:

the DA muscles or the segment border muscles (SBM). Purple: the lateral transversal

(LT) muscles. Red: the ventral longitudinal (VL) muscles. Yellow: the ventral oblique

(VO). (B) and (C) are modified from the work by Itoh et al. (2016).
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the fundamental technology, such as manufacturing technology of soft materials and

development of new materials.

5.3.2 More about future works

In the inserted paper, some future work is mentioned. Due to the limited time of de-

veloping the robot, the sensors for body wall deformation are not yet designed and

applied. Stretchable sensors, as reviewed by Liu et al. (2018), are options for measur-

ing the deformation. The sensor made with Ecoflex, the type of silicone used in the

robot, and EGaIn (eutectic gallium-indium), a type of liquid alloy when it is home tem-

perature, can be the best option for the robot. The same type of silicone has the same

deformation property and thus less possibility of limiting the motion of the robot. With

liquid metal, the sensor can have a wide functional range. With the sensor as feedback,

the dynamic synapse learning rule proposed in chapter 2 and neural networks with the

similar architecture of the neural network proposed in chapters 3 and 4 can be applied

to the maggot robot for reinforcement learning of behaviours or actions.



Chapter 6

Summary and Discussion

Robot control or decision making for a robot is usually very dynamic due to the proper-

ties of robot bodies and realistic environments. However, most existing reinforcement

learning models are based on statistics of static data, thus are not efficient in robot re-

inforcement learning for these tasks. As animals can learn dynamic tasks in dynamic

environments efficiently, Drosophila larva is studied in this work as a model for robot

reinforcement learning. A soft robot inspired by Drosophila larva is also designed for

the advantage that soft robots are safer than traditional rigid-body robots in motion

explorations.

6.1 Key contributions

A key question in this work is how a learning rule can be compatible with neural cir-

cuit architectures which are more like biological systems and suitable for robot learn-

ing of dynamic tasks. These neural circuits usually have internal dynamics, such as

dynamical neuron models and recurrent connections, and could have complex network

topological structures, which cannot be optimised using conventional approaches for

optimising neural networks.

Chapter 2 demonstrates that the micro-level properties of neural systems can sup-

port an alternative learning rule. Based on the study of the dynamics of synaptic neu-

rotransmitter receptors, a synaptic plasticity model for operant learning is proposed

and discussed. With the synapse model, a variety of neural circuit models, including

spiking neural networks, firing-rate neural networks, feedforward neural networks and

recurrent neural networks, can be optimised in operant learning tasks. The relationship

between the model and previous synaptic plasticity models, such as LTP-STP models,

99
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are discussed.

Chapter 3 shows that the proposed synaptic plasticity model can reproduce lifelike

learning. The model was applied to a mushroom body model to explain the operant

learning of Drosophila larval turning with light-stimulated Dopamine neuron as re-

wards. The model reproduced the characteristics of the biological experiments, shows

that the synaptic plasticity model is compatible with biologically plausible neural cir-

cuits and can provide learning ability in realistic tasks.

Chapter 4 shows that the proposed synaptic plasticity model can be applied to a

robot reinforcement learning task. The synaptic plasticity is abstracted and simplified

for the convenience of engineering application, such as for less computational resource

occupation and straightforward dynamics control. The simplified model was applied to

a dynamical neural network with internal dynamics and recurrent connections, which

controlled a planar bipedal robot learning to walk in a standard reinforcement learning

benchmark. The is no previously published model that can solve the task.

Another key question of the study is how to replicate the characteristics of the

Drosophila larva motor system with a soft robot. There have been soft robots designed

mimicking the shapes and gaits of worms, but not yet their motor system, as reviewed

in Chapter 5. My study paid more attention to the mechanics of Drosophila larval mo-

tor systems for motions, and design a soft pneumatic maggot robot closely based on

characteristics of the motor system. The pneumatic muscle configuration is simplified

from Drosophila larval muscle patterns. With a novel pneumatic muscle integration

process, the robot body contains a high density of pneumatic muscles. With the high

DOFs provided by the biometric muscle system, the robot can reproduce lifelike mo-

tions such as peristalsis, turning and rolling.

6.2 Future work

6.2.1 Dynamic synapse

There is a detailed discussion of the synaptic plasticity model in chapter 2. Here are

three key directions for the next step of the model.

The extension of the dynamic synapse model: The dynamic synapse model pro-

vides a framework with the ability of reinforcement learning, based on a learning rule

that the centre of oscillation is biased to the instantaneous state when the state causes

reward. The framework keeps the flexibility to be extended for more functions, such
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as 3-factor learning, as discussed in chapter 2. There are more potential extensions

worth to be modelled and simulated, such as LTD/LTP, and compared with biological

observation results. More biological experiments and observation of synaptic plasticity

can be helpful for this comparison, especially those experiments that can densely track

and record multiple types of dynamics, such as receptor trafficking, PSD, and size of

synapses, in the same synapses and at the same time.

Chaotic oscillation model that has non-drift first-order integral: In an oscil-

lation period of the dynamic synapse model, the integrated values of the differences

between instantaneous synaptic strength and the centre of oscillation on each side are

not equal. This causes a drift of the first-order integral and reduces the resistance of

the learning rule to modulators that are not correlated with rewards. A more idealised

oscillation should have non-drift first-order integral. Hence the noise in modulator or

reward will have a smaller possibility to impact the centre of oscillation. As the model

is simplified and abstracted from real synapses which have more detailed mechanics, it

could be the simplification that causes the unequal oscillation. A model that has non-

drift first-order integral could be developed by including more mechanics in synapses

or using a different approach of simplification.

Modelling of chaotic explorations that integrates dynamic synapse and other
chaotic processes: Chaotic spontaneous behaviours have been observed in animals,

such as Drosophila (Maye et al., 2007). Because there are a variety of dynamics in an-

imals can be sources of chaos, such as neuron membrane potentials (Olsen and Degn,

1985) and animal body dynamics (Loveless et al., 2018), the behaviour or action ex-

ploration can be from them as well besides synaptic chaos. Exploration of a learning

system with both dynamic synapse and chaos from other sources would be an exciting

direction, for the interaction between these chaotic systems and their impact on the

learning process.

6.2.2 Neural circuit/network models

In Chapter 3, a mushroom body (MB) model is built based on previous mathematical

models and the dynamic synapse models. The model reproduced the biological ex-

periments of Drosophila larva operant learning of turning. As the complexity of the

operant learning task only needs a small section of MB, the model in Chapter 3 is

simplified from the intact MB. More sophisticated learning tasks, such as locomotion,

need MB models with a larger scale due to the higher DOFs of actions and non-linear
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relations between actions and rewards.

An attractive opportunity provided by the dynamic synapse model is to explore

more neural circuit architectures that have not been explored because of the restrictions

of previous synapse models, such as architectures of other brain regions and other

hypothetical artificial neural network architectures. An interesting target is to find the

architectures that can solve or weaken the Curse of Dimensionality (Kober et al., 2014;

Arulkumaran et al., 2017). The curse includes:

1. Parameter space would be too large to explore in a short time, given a limited

response time of system and reward.

2. Assuming the size of regions in parameter spaces that can lead to rewards are

constant, higher dimensions of parameter space will results in sparser reward

during exploration.

3. The exploration in more dimensions at the same time would make the time taken

for identifying relations between dimensions and results increasingly longer.

New neural circuit/network architectures with curiosity, attention and internal re-

wards can help solve the problems.

For complex tasks, taking locomotion as an example, the external reward is usually

only provided according to whether the agent is moving in a specific direction, which

is the criterion for successful movements. However, the simple reward signal is not

adequate to guide the details of learning for more reusable knowledge in multiple lev-

els. Successful locomotion also requires lower level knowledge including how to keep

balance, the relations between joint angle and location of limbs, the boundary between

safe and dangerous states, and actions for recovering from abnormal states. However,

the external reward would not provide a direct indication of this knowledge. If a neural

architecture could have ’curiosity’, such as a willing for learning new arbitrary knowl-

edge it finds, it can learn some basic knowledge without external reward. For example,

when a robot notice an abnormal motion of a limb then reward the memory the asso-

ciation among the motion, effort of muscles and sensory inputs, it can learn a lower

level control of it limb. As the lower level knowledge can be elements for building

higher-level knowledge, learning with curiosity can utilise the exploration that does

not result in rewards and save time spent in exploration.

The lower-level knowledge learnt with curiosity can be elements for building an

internal representation of states. With the representation, links between states and
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actions can be built within a neural circuit/network, and then the links can be a map for

calculating internal rewards by calculating the distances between the current states and

rewarding states. The internal reward can be used to improve the performance when

the external rewards are sparse. The map is similar to model-based learning in that

they all builds internal models of the world, but it starts with model-free learning that

prior knowledge of the world is not necessary to initiate the learning.

Because dynamic synapse does not require global reward and information of global

synapse strengths ( which is required by error back-propagation), neural circuit/network

architectures with dynamic synapse can update locally. It is similar to attention in that

only a small set of knowledge is updated. Moreover, the internal reward can be cal-

culated not only based on the global state by also local states, so it can provide dif-

ferent rewarding criteria for different circuits to learning different knowledge, which

increases the learning efficiency. It is similar to attention in that learning is based on a

subset of information.

The MB could be an inspiration for architectures with these abilities. The Kenyon

Cells (KCs) in MB receive an apparently random collection of sensory inputs Caron

et al. (2013), mapping lower dimension sensory inputs to higher dimension spaces

representation, which is a type of sparse coding. Hence, each KC can represent an ini-

tially random but specific subset of states, which provides a base for learning at an early

stage. For example, an artificial architecture can facilitate the learning with curiosity

by remembering the result of explored actions as transfers of the states. The transfer

of the states could be coded by KCs to KCs connections, as recently discovered that

KCs get extensive synaptic input from KCs(Takemura et al., 2017). The research also

finds there are direct synaptic connections from KC to Dopaminergic neurons (DANs)

(Takemura et al., 2017), which suggests that KCs can influence the activity of DANs.

If a KC that have not ever fired actives and causes a DAN to release modulator, which

enable learning but weaken synapse from KCs to DANs, the circuit can provide an

internal reward for curiosity. MB consists of multiple compartments that have similar

architecture (Cohn et al., 2015). Each of the compartments usually has one DAN and

one Mushroom body output neuron (MBON) and is believed to be a semi-autonomous

information processing units (Aso et al., 2014a). Existing MB models only capture

one of the compartments, such as Wessnitzer et al. (2012),Ardin et al. (2016) and the

model proposed in chapter 3. If a model can include multiple compartments, each of

MBONs corresponds to a type of behaviour, and each of DANs modulates the learning

related the behaviour, the model could learn with attention to different behaviours and
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have better exploration efficiency.

6.2.3 Robot reinforcement learning

Regarding applications of the works, there are three directions for improvements:

higher processing ability of sensory input, richer behaviours and safer exploration for

risky actions. To elaborate on it, the bipedal robot in Chapter 4 is taken as an example

here.

In Chapter 4, the learning rule based on dynamic synapse is applied to a planar

bipedal robot. Although it is just a preliminary attempt of application of the learning

rule to robot reinforcement learning, the performance exceeds performances of other

algorithms people have applied to the task. There is another similar task with the

same robot, but the terrain is more complicated with ladders, stumps, pitfalls. To

pass through the task, the neural network controlling the robot needs to rely more

on the Lidar sensor data for the perception of the obstacles and adjustment of the

gaits. Hence, the neural network should include more architectures for processing

Lidar data. Different obstacles might not be overcome with the same gait. Hence, the

neural network also should be able to explore, learn, and retrieve a variety of gaits for

different obstacles. The strategy presuming stability for higher reward in early stage

implied in the neural network proposed in chapter 4 could be not practicable in this

case. Hence, the learning process should not only presume higher external reward

but allowed learning of explored action and results without high external reward. It

requires novel neural network architectures, which is as described in the above section.

The learning rule can also be applied to many other robot tasks, such as robot arm

control and motion planning, manipulation, soft robot control and control of whole

body motions. Among them, soft robot control is a key section because soft robots

are hard to control with conventional robot control approaches but are safer than rigid

body robots during action exploration. Hence, combining the learning rule with soft

robot control is potentially a productive research direction.

6.2.4 Soft robot

In chapter 5, the design and evaluation of a soft pneumatic robot are presented. The

robot has bio-inspired muscle patterns and can mimic some of the Drosophila larval

motions. The muscles are driven by compressed air, and the pressure in the muscles

are carefully controlled. However, because of the nonlinear elasticity of silicone, con-
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trol of muscles is only reliable with small deformation. For large deformation, direct

sensory feedback of deformation is necessary for control accuracy and avoiding explo-

ration of the muscles. However, there is no existing sensor for the measurement. A

strain gauge can measure the deformation of surfaces but only suitable for materials

with high stiffness and small deformation (Window, 1992). There are some recently

developed strain sensors using Polydimethylsiloxane (PDMS) as a substrate, such as

strain sensors utilise strain-induced resistance of aligned single-walled carbon nan-

otube (SWCNT) thin film (Yamada et al., 2011), and strain sensors utilise deformation

of Eutectic Gallium-Indium (EGaIn, a type of liquid alloy) (Kramer et al., 2011; Ma-

jidi et al., 2011; Gozen et al., 2014). Some of these sensors can deform up to 300%.

However, their stiffness is too high for the maggot robot, which is made from Ecoflex,

impacting the abilities of the robot in deformation and motion. A possible solution

is to design a new type of soft deformation sensor with EGaIn and Ecoflex. It needs

a new procedure of manufacture, as the sensor should be very thing avoiding impact

the deformation, and new technologies of sealing, as the stiffness of the substrate and

electrode are so different that easily causes adhesive failure with large deformation.

One of my recent work with my colleagues has improved the reliability of sealing be-

tween PDMS and conductive thread, which could be applied to Ecoflex and need more

tests. A procedure of manufacture the sensor has been explored and a prototype of the

maggot robot with the sensor is made, which also needs more tests.

With sensors that can measure the deformation of the robot body, the robot can be

a platform to test robot reinforcement learning. Because the robot is made from soft

materials, the robot is safe to the environment and itself during learning. Mushroom

body model with dynamic synapse can be applied to the robot for reinforcement learn-

ing of motions. The neural network proposed in Chapter 4 can be applied to the robot

by a little modification such as include more CPGs. The robot can also be a physical

agent to test the operant learning model proposed in Chapter 3.

6.3 Closing remark

The study is motivated by the observation that (a) existing robot reinforcement learn-

ing approaches base on idealise simplification and need a large amount of computation

for learning of simple tasks, (b) while insects can have complex learning behaviours

and capacities with their small brain and body. Deep learning, the rising approach

in robot learning, always emphasises the significance of larger and deeper networks,
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while ignoring the aspects, such as neurodynamics, that could enable small neural net-

works with richer abilities. By modelling the dynamics inside synapses and a dendrite,

I found that the dynamics can be potentially chaotic. Based on the model and a simple

learning rule, the dynamics in synapses enables reinforcement learning at the neuron

level. It is the core of the work presented in this thesis. With the model, three different

types of neural networks were trained with reinforcement learning. The types include

the feedforward neural network, the recurrent neural network and the spiking neural

network. The model also explains operant learning of Drosophila larvae turning be-

haviour with optogenetic control of rewards. I also proposed a dynamic neural network

with recurrent connections and CPGs. With the simplified dynamic synapse model, the

neural network becomes the first algorithm that solved the bipedal worker task of the

OpenAI Gym, a standard benchmark for reinforcement learning. It provides a tool of

reinforcement learning with parameter space exploration that are compatible with feed-

forward neural networks, biologically plausible neural networks, and recurrent neural

networks. It can be applied to neural networks with more complex architectures, and

with potential to facilitate reinforcement learning problems with complex dynamics by

introducing biological neural circuits to robot reinforcement learning. A soft maggot

robot is proposed based on the observation of Drosophila larva body wall and loco-

motion. The body wall of the robot is designed with multiple versions for finding the

balance between the fidelity of muscle patterns and feasibility with existing fabrica-

tion technologies. The resulting robot can execute realistic motions like a larva with

feasible design.
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