6 research outputs found

    Enhancement of Motionability Based on Segregation of States for Holonomic Soccer Robot

    Full text link
    One of the critical issues when navigating wheeled robot is the ability to move effectively. Omnidirectional robots might overcome these nonholonomic constraints. However, the motion planning and travel speed of the movement has been in continuous research. This study proposed segregation of states to improve the holonomic motion system with omnidirectional wheels, which is specially designed for soccer robots. The system used five separate defined states in order to move toward all directions by means of speed variations of each wheel, yielding both linear and curved trajectories. The controller received some parameter values from the main controller to generate robot motion according to the game algorithm. The results show that the robot is able to move in an omnidirectional way with the maximum linear speed of 3.2 m/s. The average error of movement direction is 4.3Ā°, and the average error of facing direction is 4.8Ā°. The shortest average time for a robot to make a rotational motion is 2.84 seconds without any displacement from the pivot point. Also, the robot can dribble the ball forward and backward successfully. In addition, the robot can change its facing direction while carrying the ball with a ball shift of less than 15 cm for 5 seconds. The results shows that state segregations improve the robots capability to conduct many variations of motions, while the ball-handling system is helpful to prevent the ball gets disengaged from the robot grip so the robot can dribble accordingly

    Behavioural Fault tolerant control of an Omni directional Mobile Robot with Four mecanum Wheels

    Get PDF
    This paper analyses the four-mecanum wheeled drive mobile robot wheels configurations that will give near desired performance with one fault and two faults for both set-point control and trajectory-tracking (circular profile) using kinematic motion control scheme within the tolerance limit. For one fault the system remains in its full actuation capabilities and gives the desired performance with the same control scheme. In case of two-fault wheels all combinations of faulty wheels have been considered using the same control scheme. Some configurations give desired performance within the tolerance limit defined while some does not even use pseudo inverse since using the system becomes under-actuated and their wheel alignment and configurations greatly influenced the performance

    Front and Back Movement Analysis of a Triangle-Structured Three-Wheeled Omnidirectional Mobile Robot by Varying the Angles between Two Selected Wheels

    Get PDF
    Omnidirectional robots can move in all directions without steering their wheels and it can rotate clockwise and counterclockwise with reference to their axis. In this paper, we focused only on front and back movement, to analyse the square- and triangle-structured omnidirectional robot movements. An omnidirectional mobile robot shows different performances with the different number of wheels and the omnidirectional mobile robotā€™s chassis design. Research is going on in this field to improve the accurate movement capability of omnidirectional mobile robots. This paper presents a design of a unique device of Angle Variable Chassis (AVC) for linear movement analysis of a three-wheeled omnidirectional mobile robot (TWOMR), at various angles (Īø) between the wheels. Basic mobility algorithm is developed by varying the angles between the two selected omnidirectional wheels in TWOMR. The experiment is carried out by varying the angles (Īø = 30Ā°, 45Ā°, 60Ā°, 90Ā°, and 120Ā°) between the two selected omniwheels and analysing the movement of TWOMR in forward direction and reverse direction on a smooth cement surface. Respectively, it is compared to itself for various angles (Īø), to get its advantages and weaknesses. The conclusion of the paper provides effective movement of TWOMR at a particular angle (Īø) and also the application of TWOMR in different situations

    Vision-based Global Path Planning and Trajectory Generation for Robotic Applications in Hazardous Environments

    Get PDF
    The aim of this study is to ļ¬nd an eļ¬ƒcient global path planning algorithm and trajectory generation method using a vision system. Path planning is part of the more generic navigation function of mobile robots that consists of establishing an obstacle-free path, starting from the initial pose to the target pose in the robot workspace.In this thesis, special emphasis is placed on robotic applications in industrial and scientiļ¬c infrastructure environments that are hazardous and inaccessible to humans, such as nuclear power plants and ITER1 and CERN2 LHC3 tunnel. Nuclear radiation can cause deadly damage to the human body, but we have to depend on nuclear energy to meet our great demands for energy resources. Therefore, the research and development of automatic transfer robots and manipulations under nuclear environment are regarded as a key technology by many countries in the world. Robotic applications in radiation environments minimize the danger of radiation exposure to humans. However, the robots themselves are also vulnerable to radiation. Mobility and maneuverability in such environments are essential to task success. Therefore, an eļ¬ƒcient obstacle-free path and trajectory generation method are necessary for ļ¬nding a safe path with maximum bounded velocities in radiation environments. High degree of freedom manipulators and maneuverable mobile robots with steerable wheels, such as non-holonomic omni-directional mobile robots make them suitable for inspection and maintenance tasks where the camera is the only source of visual feedback.In this thesis, a novel vision-based path planning method is presented by utilizing the artiļ¬cial potential ļ¬eld, the visual servoing concepts and the CAD-based recognition method to deal with the problem of path and trajectory planning. Unlike the majority of conventional trajectory planning methods that consider a robot as only one point, the entire shape of a mobile robot is considered by taking into account all of the robotā€™s desired points to avoid obstacles. The vision-based algorithm generates synchronized trajectories for all of the wheels on omni-directional mobile robot. It provides the robotā€™s kinematic variables to plan maximum allowable velocities so that at least one of the actuators is always working at maximum velocity. The advantage of generated synchronized trajectories is to avoid slippage and misalignment in translation and rotation movement. The proposed method is further developed to propose a new vision-based path coordination method for multiple mobile robots with independently steerable wheels to avoid mutual collisions as well as stationary obstacles. The results of this research have been published to propose a new solution for path and trajectory generation in hazardous and inaccessible to human environments where the one camera is the only source of visual feedback

    Stabilization of Mobile Manipulators

    Get PDF
    The focus of this work is to generate a method of stabilization in a system generated through the marriage of a mobile robot and a manipulator. While the stability of a rigid manipulator is a solved problem, upon the introduction of flexibilities into the manipulator base structure there is the simultaneous introduction of an unmodeled, induced, oscillatory disturbance to the manipulator system from the mobile base suspension and mounting. Under normal circumstances, the disturbance can be modeled through experimentation and then a form of vibration suppression control can be employed to damp the induced oscillations in the base. This approach is satisfactory for disturbances that are measured, however the hardware necessary to measure the induced oscillations in the manipulator base is generally not included in mobile manipulation systems. Because of this lack of sensing hardware it becomes difficult to directly compensate for the induced disturbances in the system. Rather than developing a direct method for compensation, efforts are made to find postures of the manipulator where the flexibilities of the system are passive. In these postures the manipulator behaves as if it is on a rigid base, this allows the use of higher feedback gains and simpler control architectures.Ph.D
    corecore