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SUMMARY

The focus of this work is to generate a method of stabilization in a system generated

through the marriage of a mobile robot and a manipulator. While the stability of a rigid

manipulator is a solved problem, upon the introduction of flexibilities into the manipulator

base structure there is the simultaneous introduction of an unmodeled, induced, oscillatory

disturbance to the manipulator system from the mobile base suspension and mounting. Un-

der normal circumstances, the disturbance can be modeled through experimentation and

then a form of vibration suppression control can be employed to damp the induced oscilla-

tions in the base. This approach is satisfactory for disturbances that are measured, however

the hardware necessary to measure the induced oscillations in the manipulator base is gen-

erally not included in mobile manipulation systems. Because of this lack of sensing hard-

ware it becomes difficult to directly compensate for the induced disturbances in the system.

Rather than developing a direct method for compensation, efforts are made to find postures

of the manipulator where the flexibilities of the system are passive. In these postures the

manipulator behaves as if it is on a rigid base, this allows the use of higher feedback gains

and simpler control architectures.

xvii



CHAPTER 1

MOTIVATION AND BACKGROUND

1.1 Motivation

Growth in telerobotics has increased the development of manipulators on mobile-robotic

bases. While this coupling can open the door to new avenues of rescue and exploratory

robotics, complications may arise from introducing unknown base parameters to the ma-

nipulator and requiring high maneuverability with a small form factor. In separating these

issues into kinematic control of the mobile robot and the stability of the manipulator on the

flexible base allows creates the opportunity for solving both of these issues.

As a result of the trajectory in automation, the necessity for intelligent mobile plat-

forms has increased to match industry needs. These platforms typically fall into a category

of differential drive, automobile robots with fixed wheels and steerable casters, or an omni-

directional platform [1]. While each of these has their merits, in order to satisfy the general

specification of a high planar mobility while minimizing the platform’s footprint, the need

for omnidirectional or pseudo-omnidirectional motion arises. Optimization methods exist

for stationary manufacturing equipment with transport robots within the context of robot-

work cells [2], but this does not take into account the mobility of the necessary robotics.

Within the context of disaster relief, there are myriad potential health risks due to el-

evated radiation at a nuclear disaster site. The use of remotely operated robots for tasks

such as measurement and reorganization of damaged objects at the site, instead of human

responders, is a preferred option. Nuclear plant inspection robots were extensively studied

back in 1980’s [3]. Since then, a number of rescue and first-responder robots have been

developed in a variety of forms. International Atomic Energy Agency (IAEA) hosted the

first robotics competition in 2017 to promote the research and development of small ground
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and surface autonomous robots that could handle safeguards inspection tools [4]. This idea

extends beyond just nuclear disaster relief. Both earthquakes and hurricanes create unmod-

eled environments that could, depending on locale, be dangerous for humans to explore

and provide relief in. To this end, the coupling between some form of mobile robot and

a manipulator system becomes necessary to avoid putting a human being in a dangerous

environment.

1.2 Overview

Independent of application, the necessity for stability in mobile manipulation systems is

constant. Intuitive kinematics and simple control structures enable the rapid outfitting of

new and existing mobile manipulation systems. For the purposes of this work, the concepts

of wheeled mobile robot control (in this case just inverse kinematics) and the stabilization

rigid systems that are mounted upon flexible bases (referred to hereafter as flexi-rigid sys-

tems) are decoupled. It is understood that while the base motion will affect the stability of

the upper structure, in many cases the composite mobile manipulator system can be con-

sidered to be quasi-static and as such the mobile base can be considered to be a redundancy

in the system.

This work will address inadequacies in inverse kinematic methods as they relate to de-

generate wheeled mobile robots, and the disturbance rejection of induced oscillation in

flexi-rigid systems.

1.3 Research Questions

This work aims to accomplish the following goals:

• Aim 1: In order to make definitive claims about the passivity of flexi-rigid systems,

the normalized coprime factor (NCF)-based and the modal passivity-based stability

margins are analyzed with respect to the system dynamical description these systems.
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Several proofs are presented regarding the constant value of the NCF stability margin,

as well as conditions to remain within a robust posture.

• Aim 2: In order to employ simple feedback control to manipulators with bases of

unknown flexibility, modal-space and H∞-based stability metrics are used to charac-

terize the passivity of the base flexibility and the manipulator’s robustness to induced

oscillations in that flexibility. These metrics will be used to optimize the manipulator

posture in order to improve closed-loop stability of the flexible, marginally-stable,

open-loop plant.

• Aim 3: In order to prevent divergent kinematic behavior in degenerate mobile robots,

a singularity-free analytical inverse kinematics method will be developed. Rather

than relying on numerical accuracy in inverse matrix methods, the proposed method

generates a set of equations specific to the mobile robot which do not have numerical

singularity.
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CHAPTER 2

LITERATURE REVIEW

2.1 Passivity-Based Control

The motivating theory behind the use of the modal passivity index and the normalized

coprime factor robustness is to be able to describe the target flexible system’s ability to

function under high feedback gain without directly compensating for the flexibilities. At

its root, passivity theory and passivity-based control can do just that. Through inherent

robustness guarantees available as a result of passive systems and the small-gain theorem,

it is possible to have no theoretical limit to feedback gain for the target linear system.

The small-gain theorem states that the feedback connection of two systems, G1 and

Figure 2.1: Standard feedback configuration,G1‖fG2, [5]

G2; shown in Figure 2.1 has closed-loop stability given that the product of their Lq-gains is

less than 1 (γq(G1)γq(G2) < 1). This implies a robustness to perturbations in the feedback

configuration so long as the loop-gain remains “small.” Existing work has equated systems

that satisfy the small-gain theorem as being passive [6, 7]. Furthermore, because these two

properties are equivalent, for a perturbed system that satisfies the small-gain theorem, it

should also be passive.

Whereas when a linear system is considered to be passive it is also positive real [8,

9]. Positive realness occurs when the elements of the transfer matrix of is analytic in the

right half of the imaginary plane, the transfer matrix has real values for all values of s, and
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the hermite sum of the transfer matrix is positive semi-definite for all values of s in the

right-half plane. It should also be known that the poles of the transfer matrix are within the

closed left-half plane of the s-domain.

The relationship between Lyapunov stability and passivity is also well established. Sys-

tems that are strictly passive are at least asymptotically stable about the origin. This can

be easily proven by using the storage function that describes the passivity of the system as

a candidate Lyapunov function. While passivity has guaranteed stability at the origin of

the system, it is certainly a conservative metric and might not capture the “upper limit” of

controller gain. That said, when approached from the realm of small-gain theory, one can

follow this extension to determine that a pair of connected systems that satisfy the small

gain theory are asymptotically stable at the origin.

Positive reality is also closely related to a system’s other properties, namely the minimum-

phase property. Necessarily, a positive real system will be minimum-phase [9, 10] as well

as be roughly equivalent to having an in-phase property for lightly-damped flexible sys-

tems. The in-phase property is known to be advantageous as it coordinates motion of the

flexible modes with the rigid mode. For an negative feedback of error in a system with

out-of-phase modes the closed-loop becomes unstable as the feedback gain increases [11,

12].

The sum-total of these relationships results in a concise statement: the concepts of

passivity, positive-reality, and in-phase modes all remove the theoretical upper limit of

controller gain. These concepts are also intrinsically linked to the concept of normalzied

coprime factor robustness which will be explored later in this work.

2.2 Vibration Suppression in End-Point Control of Flexible-Base Systems

When considering the control of a mechanical system, it is reasonable to expect that the de-

signer might first move to employ simple feedback control and treat the system as rigid in

its totality. The exclusion of modeled flexible dynamics in the system-dynamical descrip-
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tion severely limits the control bandwidth due to unmodeled disturbance oscillation [13,

14]. The ability to measure these disturbances provides avenues to generate a model for the

oscillations [15] and use gain scheduling or to even introduce active damping to suppress

these vibrations [16]. Being able to characterize these disturbances is powerful as it opens

the door to passive suppression methods (such as tuned mass-spring-damper systems [14])

or pre-compensators in control [17].

The current state of the art in vibration suppression control relies on this ability. Know-

ing the frequency range of the flexibility allows for the introduction of robust control and

rejection of the nonlinearity in the system [18] or for the shaping of sensitivity functions in

the controller [19]. Sliding mode and fuzzy controllers are also used to compensate for un-

known dynamics [20, 21, 22, 23, 24, 25]. When such systems have kinematic redundancy

it is also known to lever those redundancies so as to pose the system in a more robust pos-

ture. Macro-micro manipulators on flexible bases use this concept to minimize the initial

excitation of oscillation [26, 27, 28, 29, 30]. In the case of redundant manipualtor control,

it is commonplace to utilize nullspace augmentation [31, 32, 33].

2.3 Degenerate Mobile Robot Kinematics

Wheeled mobile robots (WMR) are well studied mechanical systems that contain uninte-

grable kinematic constraints that, overall, complicate the modeling process [34, 35, 36].

These complications give rise to multitudinous descriptors for the overall structures of

these systems; namely degrees of mobility and steerability. These terms can be consid-

ered as an analogue to degrees of freedom one might see in traditional mechanism analysis

and are dependent not only on the number of wheels a WMR has, but also the style of each

wheel (fixed-conventional wheels, orientable conventional wheels, caster wheels, Swedish

wheels, and spherical wheels; each of these has their own kinematic constraints generated

through the no-slip condition). The degree of mobility is a measure of how many wheel
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constraints are unsatisfied from fixed and orientable conventional wheels. Obviously, the

more of these wheels that exist along different axes of rotation the overall resolvability of

planar robot motion decreases. Mathematically, this exists as:

δm = dimN [C∗(ϕc)] (2.1)

whereC∗(ϕc) is the constraint matrix whose rows are formed from the fixed and centered-

orientable conventional wheel constraints and ϕc is a vector of steering angles for each of

those wheels. Because this is a planar system (with x, y, and angular velocities), the maxi-

mum rank [C∗(ϕc)] is 3. Intuitively, the larger the nullspace of this constraint matrix is, the

more directions the WMR can move immediately move given an input. The second met-

ric, the degree of steerability is defined as the number of conventional centered-orientable

wheels that may be oriented independently in order to steer the robot. This is expressed as

δs = rankCc(ϕc) (2.2)

whereCc(ϕc) is a constraint matrix whose rows are formed from the constraints from only

the centered-orientable conventional wheels. Reasonably, this matrix is always rank defi-

cient and has limits of 0 and 2. When a robot designer employs more centered-orientable

wheels than the degree of steerability there is a requirement that the extra wheels must be

moved in concert in order to resolve motion. The sum of these two descriptors is known as

the degree of maneuverability, δM = δm+δs, 0 ≤ δM ≥ 5. This metric is, qualitatively, the

number of degrees of freedom afforded by both the effective number of steerable wheels

and the mobility that comes directly from the velocity input. Due to the structural nature

of these indices, two robots may have the same overall maneuverability but have different

steerability and mobility.

It is through these indices that one may descriptively term a WMR as degenerate. By

defintion, degeneracy is the condition under which the posture kinematic model is rank-
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deficient. Practically this resolves to the nonexistence of an instantaneous center of rotation

for all given configurations of the WMR. This necessitates that all fixed-direction conven-

tional wheels share a common axis that will not be colinear with the axes of any of the

centered-orientatable conventional wheels, as well as that there are no redundant centered-

orientable wheels.

The singularity of the posture-kinematic model raises the question of solvability of the

robot’s inverse kinematics. In general, the solution of WMR inverse kinematics requires

first the construction of the posture kinematic model from either homogenous transform

or wheel constraint methods. The resulting wheel-Jacobian is then inverted to achieve the

desired inverse kinematics of the WMR [37, 38, 39, 40, 41], and these kinematics are then

used with control systems to ensure proper robot motion (with necessary care for velocity

singularity avoidance or management of redundancy) [42, 43, 44, 45, 46, 47]. Fundamen-

tally this is a concise way of solving the problem of inverse kinematics, however when a

robot is degenerate and has a singular posture-kinematic model that singularity prevents

the inversion of the wheel Jacboian.

The structural nature of this problem has lead to discourse on wheel structures them-

selves [48, 49, 50, 51, 52, 53]. Generally the consensus is to limit the number of centered-

orientable wheels present in the system to avoid the limiting effect on the holonomy of

the platform. Instead, in order to maintain the nonholonomy and omnidirectionality of the

robotic platform there is a clear advantage This, however, marginalizes the efficacy of this

wheel style; for most applications where both torque transmission and load capacity are

required these wheels are the superior choice [1].
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CHAPTER 3

PASSIVITY OF FLEXI-RIGID SYSTEMS

3.1 Motivation

The normalized coprime factor-based stability (NCF stability or the εmax metric) and the

modal-space stability index (modal stability index or wi) are both used to describe the

stability of a system[54, 55], however they describe the system from two different perspec-

tives. The former examines the system’s robustness to external disturbances for all classes

of feedback controller, and the latter is a measure of the system’s distance from a positive-

real configuration for a particular vibration mode. While these two concepts are removed

from one another, it is theorized that there is an analytical relationship between the two

metrics. This chapter introduces both of these metrics and analyzes their relationship.

3.2 Relationship between Normalized Coprime Factor Robustness and Manipulator

Passivity

Theorem 1. If a posture exists where the modal space stability index, wi = 0,∀i = 1...m,

the manipulator’s flexible dynamics are passive, and the NCF stability margin will indicate

that the total system will perform at least as well as the rigid system. Furthermore, all

double-integrator (rigid) systems share the same NCF stability margin.

The above statement hinges on the following predicates:

1. The theorem requires that the posture have all of its modal stability indices are 0.
2. The value of the NCF stability margin for the flexible manipulator in this posture is

at greater than or equal to the NCF stability margin for the system’s rigid mode.
3. This value of the NCF stability margin is known for rigid systems.
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3.3 The Modal Stability Index and Determination of Robust Arm Configurations

The first predicate of Theorem 1 requires the manipulator to be in a posture with all modal

space stability indices, wi,∀i, to be identically 0; this is a robust arm configuration (RAC,

or just a robust configuration when considering systems that are not robot arms).

3.3.1 System Model

The linearized dynamics of the manipulator system that contains m lightly-damped flexi-

bilities and n rigid components in a task-space with d dimensions can be described by the

second order differential equation:

M (q)q̈ +Dq̇ +K (q) = τ ∈ Rm+n (3.1)

whereM (q),D, andK are symmetric mass, viscosity, and stiffness matrices. The system

posture, q, is a collection of positions of each of the joints in the system and is partitioned

such that q =
[
qTp , q

T
a

]T ∈ Rm+n. Here, qp is a position vector containing the displace-

ments or angles of the passive joints in the system and qp is a position vector containing

the displacements and angles for the active (driven) joints in the composite system. The

partition of joint states induces a similar partition in the torque vector τ . The torque vector

can be described by:

τ = ST (q)f (3.2)

where f ∈ Rd is the force command in the task space, T (q) ∈ Rn×d is the map between

the task space and the joint space, and S ∈ R(m+n)×n is a selection matrix to apply the

joint-space input command to the appropriate joints, qa.

Considering a state-space system derived from the above dynamics using the state vec-

tor x =
[
qT , q̇T

]T
. The resulting system has the representation (for conciseness the func-
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tional dependence on q may be omitted):

A =

 Om+n Im+n

−M−1K −M−1D

 ∈ R2(m+n)×2(m+n) (3.3)

B =

 O(m+n)×d

M−1ST

 ∈ R2(m+n)×d (3.4)

C =

[
J tot(q) O

]
∈ Rd×2(m+n) (3.5)

with output y = Cx. In the matrix C, J tot is the manipulator Jacobian including the

flexibilities in the system.

Through Jordan decomposition of theAmatrix (namely V AU = J, where V = U−1)

it is possible to retrieve each of the spectral projectors for the system Ωj = ujvj, ∀λj j =

2n, . . . , 2(m + n) − 1. uj and vj are the jth columns and rows of U and V respectively.

Given the partial fraction expansion of the manipulator system:

G(s, q) =
R0(q)

s2
+

2(m+n)−1∑
j=2n

ρj(q)

s− λj
(3.6)

R0(q) = C

(
n−1∑
i=0

u2iv2i+1

)
B (3.7)

ρj(q) = CΩjB (3.8)

Through the modal analysis we can represent the same transfer function as a linear

combination of the rigid and flexible modes:

G(s, q) =
R0(q)

s2
+

m∑
i=1

Ri(q)

s2 + 2ζiωnis+ ω2
ni

(3.9)

with ζi as the damping coefficient of the ith flexible mode and ωni is its natural (resonant)

frequency. Being that the two above constructions should be equivalent, comparing the two
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yields:
Ri(q)

s2 + 2ζiωnis+ ω2
ni

=
ρ2j(q)

s− λ2j

+
ρ2j+1(q)

s− λ2j+1

(3.10)

insofar as the ith mode, λi, is equal to λ2j and its conjugate λ̄i is equal to λ2j+1. Expanding

the above equality yields:

Ri(q)

s2 + 2ζiωnis+ ω2
ni

= C
s(Ω2j + Ω2j+1)− λ2jΩ2j − λ2j+1Ω2j+1

(s− λ2j)(s− λ2j+1)
B (3.11)

The modulus of s is a constant 0 due to the structural properties of the sum (Ω2j + Ω2j+1)

in the product C(Ω2j + Ω2j+1)B yielding 0. Therefore the equality resolves to:

Ri(q)

s2 + 2ζiωnis+ ω2
ni

= −Cλ2jΩ2j + λ2j+1Ω2j+1

(s− λ2j)(s− λ2j+1)
B (3.12)

ultimately yielding thatRi(q) = −2<
(
λ̄iCΩiB

)
(adapted from [12]).

3.3.2 Modal Stability Index

For a manipulator system describable by the formulation in the preceding section, it may

be represented as an MIMO transfer function of the form:

G(s, q) =
R0(q)

s2
+

m∑
i

Ri(q)

s2 + 2ζiωnis+ ω2
ni

∈ Cd×d (3.13)

R0(q) = Jv(q)M̂(q)−1T (q) ∈ Rd×d (3.14)

Ri(q) = −2<
(
λ̄iCΩiB

)
∈ Rd×d (3.15)

where: R0(q) andRi(q) are the rigid and ith flexible mode (residual) respectively; ζi is the

damping coefficient of the ith flexible mode and ωni is its natural (resonant) frequency. The

variable d represents the dimension of the space the system lies in (d = 1 is a linear space,

d = 2 is a planar space, etc). Jv is the “rigid” Jacobian of the flex-rigid system, M̂ (q)−1

is the rigid portion of the inverse of the inertia matrix for the system, and T (q) is the map
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between the task-space and the state-space. Lastly, λ̄i is the conjugate of the eigenvalue

associated with the ith mode, Ωi is the spectral projector for the ith flexible mode.

The modal stability index, wi is defined as [54]:

wi = λmin(Ri + RT
i ) ≤ 0 (3.16)

These measures indicate the distance from the current robot configuration to a robust arm

configuration (RAC) [54]. A robust arm configuration is a joint configuration q which

satisfies wi = 0. The linearized system in this configuration is positive real, and therefore

passive. In this posture, the residual must satisfy [54]:

Ri = RT
i (3.17)

Ri < 0 (3.18)

Knowing this, the stability index in that posture becomes wRACi = λmin(2Ri).

3.3.3 Locating Robust Postures

For ease of analysis, the elements of the residual will be broken into blocks such that:

B̂ = M−1ST =


| | |

b1 , · · · , bk , · · · , bd

| | |

 (3.19)

Ĉ = J tot =



— c1 —
...

— cj —
...

— cd —


(3.20)
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Ωi =

 Ω1 Ω2

Ω3 Ω4

 (3.21)

AssumingB = [0T , B̂
T

]T and C = [Ĉ, 0], the residual can be rewritten as:

Ri = −2<

λ̄i

c1Ω2b1 · · · c1Ω2bd

... . . . ...

cdΩ2b1 · · · cdΩ2bd


 (3.22)

Expansion of each term has shown that each of the terms in the matrix can be represented

as:

[Ri]jk = −2ΣΣ
[
(bkcj)

T ◦ <(λ̄iΩ2)
]

(3.23)

The symmetry condition from (Equation 3.18) obviously requires that bkcj = bjck for all

pairs of j and k. The positive semi-definite condition requires a 0-minimum eigenvalue of

Ri which is only possible should the det(Ri) = 0. This comes from the general form of a

matrix characteristic polynomial:

pRi
(X) =

d∏
i

(X − λi) = Xd + · · ·+
d∏
i

(λi) (3.24)

det(Ri) =
d∏
i

(λi) (3.25)

where λi is an eigenvalue of Ri. In addition, by [56, 57], all principal minors of Ri must

be nonnegative for the residual to be positive semidefinite.

Remark. As a result of the above analysis, it has been shown that C and/or B must be

rank deficient in order for the manipulator posture to be an RAC. These correspond to

uncontrollable and observable conditions on the flexible modes of the system.
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Figure 3.1: Visualization of the angular perturbation of the residual in the plane

3.3.4 Remaining in a Robust Posture

It is reasonable to expect that once a system enters a passive posture it would be desirable

to stay in a passive posture. Being that the modal passivity index has no dependence on the

rigid mode, one might consider only a small perturbation in residual. This perturbation is

additive in the flexible mode such that:

G′(s) = G(s) +
m∑
i=1

∆Ri

s2 + 2ζiωnis+ ω2
ni

(3.26)

∆Ri = (rotz(φi)− Id)Ri (3.27)

It is understood that while the rigid mode will also change with the system’s posture, the

change can be considered negligible in this context.

The perturbation of the residual, R′i, can be abstractly visualized as a rotation of

image(Ri) in the plane, shown in Figure 3.1. The domain of the transfer functions dis-

cussed in this work is the task-space of the manipulator, and the rank of the residual

(rank(Ri) = 1) implies that the image forms the span of a line in this space. The rota-
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tion of matrix’s image is equivalent to the rotation of the residual due to the linearity of

the image function. For mathematical convenience, in order to introduce the concept of a

residual perturbation, the rotational perturbation will be discussed. The effect of rotating

the residual away from the robust posture is shown in Figure 3.2 for a planar system. The

two eigenvalues are the spectra of the residual after a rotation by φ. Obviously, these pos-

tures are not robust as the minimum eigenvalue (the lower curve) moves away from 0.

This can be extended to a spatial manipulator by using rotation matrices about the

normal and bi-normal vectors for the image of the residual. The planar case can use the

general rotational formalism for the “z” direction, however when the residual spans a line

in 3-space, in order to decompose the rotational perturbation into convenient matrices, two

vectors normal to the span of the residual must be described. These are the normal and

bi-normal vectors of the residual and lie within the plane that is described by the span of

the residual.

In order to classify the structure of perturbations that are allowable to remain at a robust

posture, the spectra of the perturbed residual must be analyzed. The proceeding analysis is

conducted for a planar manipulator system, but can be extended to a manipulator in R3.

Theorem 2. A rigid manipulator on a flexible base can remain in a robust arm posture for

a subset of all perturbations in its point of linearization.

Proof. Beginning with the classic eigenvalue problem, we find the spectra of a perturbed

Hermite matrix H i = 2RRAC
i for a particular perturbation that maintains the RAC condi-

tion: ∆H i = 2∆Ri. If the original spectra ofH i is denoted by λwith unit eigenvectors, v

that form an orthornomal basis of the eigenspace, then the perturbations made to the eigen-

values and eigenvectors can be denoted by δλ and δv respectively. The resulting problem

formulation becomes:

(H i + ∆H i)(vj + δvj) = (λj + δλj)(vj + δvj) (3.28)
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Expanding the above expression and removing second order terms (they are typically very

small), the eigenvalue problem becomes:

∆H ivj +H iδvj = δλjvj + λjδvj (3.29)

The perturbation in eigenvector can be represented in the basis spanned by the orthogonal,

original eigenvectors. After some manipulation, the resulting eigenvalue perturbation is:

λ′j = λj +
vTj ∆H ivj

vTj vj
(3.30)

Utilizing this it becomes possible to generate restrictions on ∆H i (and therefore on ∆Ri).

The original spectra of H i is λ = {0, 2ρ2(α2 + 1} with ρ, α ∈ R with corresponding

eigenvectors, v =
{

[−α, 1]T , [1/α, 1]T
}

.

Looking first at the 0 eigenvalue, the resulting perturbed eigenvalue should be

λ′1 =
vT1 ∆H iv1

vT1 v1

= 0 =⇒ 〈v1,∆H iv1〉 = 0 (3.31)

This implies either orthogonality between v1 and ∆H iv1 or that v1 lies within the nullspace

of ∆H i. The second eigenvalue gives a condition on the structure of ∆H i. For the per-

turbed system to still be in a robust configuration, the second eigenvalue must satisfy

λ′2 = 2ρ2(α2 + 1) +
vT2 ∆H iv2

vT2 v2

≥ 0 (3.32)

in order to maintain the positive semi-definiteness of the residual at a robust posture. Notic-

ing that the second eigenvalue is 2‖a‖2, where a is the vector used to construct the residual

at the robust configuration, the inequality becomes

−2‖a‖2 ≤ v
T
2 ∆H iv2

vT2 v2

(3.33)

18



−2‖a‖2 ≤ λmin(∆H i)‖v2‖2

vT2 v2

≤ v
T
2 ∆H iv2

vT2 v2

(3.34)

−2‖a‖2 ≤ λmin(∆H i) ≤
vT2 ∆H iv2

vT2 v2

(3.35)

This inequality gives an lower bound on the spectra of ∆H i; combined with the inner-

product condition from (Equation 3.31) there are now two conditions upon ∆H i.

Being that the matrix H + ∆H i is still a residual of a flexible mode, its guaranteed

to have one positive eigenvalue in addition to its lower eigenvalue of 0. Therefore, the

second condition on ∆H i is intrinsically satisfied and the only condition needed to be

satisfied is the inner product of the eigenvector v1 with the perturbation due to the residual,

∆H iv1. �

Remark. The above theorem requires the use of v1, the eigenvector associated with the 0

eigenvalue. The resulting contour of where the inner product condition equals 0, generally,

runs parallel to the curve of maximum modal passivity in the manipulator workspace. If the

inner product condition is evaluated erroneously with the other eigenvector, the resulting 0

contour will be perpendicular to the robust postures due to the orthogonal basis spanned

by eigenvectors.

3.4 Normalized Coprime Factor Robustness and its Value for Rigid Systems

3.4.1 The NCF Stability Margin

The focus of discussion is the NCF stability margin [58, 59]. This metric is used to mea-

sure the ability for a perturbed plant system to remain stable for all classes of stabilizing

controller. In most texts, this metric is defined as:

εmax =

√
1−

∥∥∥[Ñ ,M̃
]∥∥∥

H
(3.36)
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with a similar definition given in Appendix A. Here, the matrices Ñ and M̃ are the normal-

ized left coprimse factors of the plant system being analyzed. This definition of the NCF

stability margin takes the Hankel norm of the normalized left coprime factors (NLCF) of

the target plant system. The Hankel norm [60], denoted by ‖•‖H , is a measure of how

much energy (in an H∞ sense) from past inputs gets passed to future output, and is equal to

the largest Hankel singular value of the target minimal state-space system, σ1. The Hankel

singular values [61] are defined as σi ,
√
λi(PQ) where P and Q are the controllability

and observability Gramians of a stable plant system with balanced state-space realization,

and λi(PQ) is used to denote the ith eigenvalue of the product PQ.

While the definition in (Equation 3.36) is valid, computing the NLCF of the plant sys-

tem can be computationally intensive. Equivalent formulations exist in the form of [55]:

∥∥∥[Ñ ,M̃
]∥∥∥

H
= λmax(PQ) = λmax(ZX(I +ZX)−1) (3.37)

making εmax, after some manipulation,

εmax =
1√

1 + λmax(ZX)
(3.38)

Z and X in (Equation 3.38) are the solutions to the Generalized Filtering Algebraic Ric-

cati Equation (GFARE) and the Generalized Controllability Algebraic Riccati Equation

(GCARE) respectively [55]. These equations, in their full form are expressed as:

(A−BS−1D∗C)∗X +X(A−BS−1D∗C)

−XBS−1B∗X +C∗Γ−1C = 0

(3.39)

(A−BD∗Γ−1C)Z +Z(A−BD∗Γ−1C)
∗

−ZC∗Γ−1CZ +BS−1B∗ = 0

(3.40)
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3.4.2 Evaluating the NCF Stability Margin a General Rigid System

Theorem 3. For a rigid system with no flexible modes (d ≥ 2,m = 0), the value of the

NCF stability margin takes on a specific value for all configurations of the system.

Proof. The generalized rigid system is given by:

G(s, q) =
R0

s2
⇐⇒ P s(q) = (A,B,C,D) (3.41)

A =

0d Id

0d 0d

 ∈ R2d×2d (3.42)

B =

 0d

FR0(q)

 ∈ R2d×d (3.43)

C =

[
F−1 0d

]
∈ Rd×2d (3.44)

D = 0d (3.45)

The matrix F ∈ Rd×d (invertible) is used to decompose the rigid mode between the in-

put and output sides of the system for state space realization. Because the D matrix is

0, both the Γ and S are identity. This makes the GCARE (Equation 3.39) and GFARE

(Equation 3.40)

A∗X +XA−XBB∗X +C∗C = 0 (3.46)

AZ +ZA∗ −ZC∗CZ +BB∗ = 0 (3.47)

While these are matrix equations, the system in (Equation 3.41) can remain partitioned in

block-form during evaluation. This enables the assumption that the solutions to the above
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equations,X and Z, are symmetric and defined blockwise as

X =

X1 X2

XT
2 X3

 , Z =

Z1 Z2

ZT
2 Z3

 (3.48)

Substituting the rigid-manipulator model, Equations (Equation 3.42)-(Equation 3.45), into

(Equation 3.46), the result is the following system of matrix equations:

X2FR0R
T
0F

TXT
2 = F−TF−1 (3.49)

X1 −X3FR0R
T
0F

TXT
2 = 0 (3.50)

X1 −X2FR0R
T
0F

TX3 = 0 (3.51)

XT
2 +X2 −X3FR0R

T
0F

TX3 = 0 (3.52)

Being that this set of equations is quadratic, it is not always possible to generate a unique

solution, however, a positive definite, Hermitian stabilizing solution is guaranteed for the

GCARE (GFARE) if the system is both stable and controllable (detectable) [55]. Beginning

this process by solving forX2:

X2FR0R
T
0F

TXT
2 = F−TF−1

X2F (R0R
T
0 )

1
2 (R0R

T
0 )

1
2F TXT

2 = F−TF−1

X2F (R0R
T
0 )

1
2 = F−T

F−T (R0R
T
0 )−

1
2F−1 = X2 (3.53)

It is possible to split the quantity R0R0
T into a product of its unique square roots because

it is positive symmetric [62]. This allows the symmetry of the problem to be maintained in

the solution. Utilizing the solution ofX2 the solution toX3 can be found:

XT
2 +X2 −X3FR0R

T
0F

TX3 = 0
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X3FR0R
T
0F

TX3 = XT
2 +X2

F−T
√

2(R0R
T
0 )−

1
4 (R0R

T
0 )−

1
4
√

2F
−1

=

X3F (R0R
T
0 )

1
2 (R0R

T
0 )

1
2F TX3

F−T
√

2(R0R
T
0 )−

1
4 = X3F (R0R

T
0 )

1
2

√
2F
−T

(R0R
T
0 )−

3
4F−1 = X3 (3.54)

UsingX2 andX3 to solve forX1 the result is:

X1 −X2FR0R
T
0F

TX3 = 0

X2FR0R
T
0F

TX3 = X1

√
2F
−T

(R0R
T
0 )−

1
4F−1 = X1 (3.55)

Compiling the elements ofX , the solution to the GCARE for the generalized rigid system

is:

X =

√2F
−T

(R0R
T
0 )−

1
4F−1 F−T (R0R

T
0 )−

1
2F−1

F−T (R0R
T
0 )−

1
2F−1

√
2F
−T

(R0R
T
0 )−

3
4F−1

 (3.56)

The system of equations for the GFARE can be generated by substituting (Equation 3.41)-

(Equation 3.45), into (Equation 3.47) and can be enumerated as:

Z2 +ZT
2 −Z1F

−TF−1Z1 = 0 (3.57)

Z3 −Z1F
−TF−1Z2 = 0 (3.58)

Z3 −ZT
2F
−TF−1Z1 = 0 (3.59)

ZT
2F
−TF−1Z2 = FR0R

T
0F

T (3.60)

Following similar procedure to the above GCARE formulation, the solution process begins
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with solving for Z2:

ZT
2F
−TF−1Z2 = FR0R

T
0F

T

ZT
2F
−TF−1Z2 = F (R0R

T
0 )

1
2 (R0R

T
0 )

1
2F T

F−1Z2 = (R0R
T
0 )

1
2F T

Z2 = F (R0R
T
0 )

1
2F T (3.61)

Using Z2, the solution for Z1 can be found:

Z2 +ZT
2 −Z1F

−TF−1Z1 = 0

2F (R0R
T
0 )

1
2F T = Z1F

−TF−1Z1

F
√

2(R0R
T
0 )

1
4 (R0R

T
0 )

1
4
√

2F
T

= Z1F
−TF−1Z1

F
√

2(R0R
T
0 )

1
4 = Z1F

−T

F
√

2(R0R
T
0 )

1
4F T = Z1 (3.62)

And the solution for Z3:

Z3 −Z1F
−TF−1Z2 = 0

Z1F
−TF−1Z2 = Z3

F
√

2(R0R
T
0 )

3
4F T = Z3 (3.63)

With the total solution for Z

Z =

√2F (R0R
T
0 )

1
4F T F (R0R

T
0 )

1
2F T

F (R0R
T
0 )

1
2F T

√
2F (R0R

T
0 )

3
4F T

 (3.64)

Using these ARE solutions, it is possible to use (Equation 3.38) to determine the the NCF
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stability margin of the rigid-manipulator system. Executing this, we find that:

(ZX) =

 3In 2
√

2F (R0R0
T
)−

1
4F−1

2
√

2F (R0R0
T
)

1
4F−1 3In

 (3.65)

While this product is still a function of the rigid mode of the manipulator system, upon

finding the characteristic equation:

p(ZX)(λ) =
(
λ2 − 6λ+ 1

)n (3.66)

The roots of the characteristic equation are {3 ± 2
√

2} with multiplicity n. Finishing the

evaluation of (Equation 3.38), it is found that the NCF stability margin, for rigid manipu-

lator systems, can only have the value of 1√
4+2
√

2
, or 0.38268343 (truncated for concise-

ness). �

Remark. The value of the NCF stability margin for the rigid manipulator with no flexible

modes is not dependent on any system parameter, illustrated in the characteristic equation

(Equation 3.66), meaning all postures of a rigid manipulator will have this stability margin.

Later in this work we will discuss the effect of additional flexible modes on this value.

Remark. The solution of the NCF stability margin for a rigid manipulator system, firstly,

has no dependence on the inertia matrix or the rigid mode itself. This implies that neither

the definiteness nor the structure of the inertia matrix impact the solution.

Remark. The above construction holds for redundant manipulators, however, allowances

must be made for the redundancy in the T matrix in (Equation 3.14). Further, any double-

integrator system in the form of (Equation 3.41) will result in the same maximal value.

The solution above can be confirmed numerically through existing Riccati equation so-

lution methods. Mentioned in Kucera’s early work [63], it is possible to find a non-negative,

stabilizing solution to an ARE given that the system is controllable and observable. Intro-
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ducing a Hamiltonian matrix,

Ψ =

 A −BBT

−CTC −AT

 (3.67)

under the assumption that Ψ ∈ C2l×2l is diagonalizable. This matrix, being real with

the above structure has eigenvalues occurring in quadruples. This is to say that for an

eigenvalue of A, λ ∈ C, the spectrum will also contain λ∗,−λ, and −λ∗. Given the right-

eigenvectors of Ψ, ui =

[
xTi yTi

]T
, the matrix Λ = Y X−1 = Λ∗ is a solution to the

ARE. The matrices Y = [y1, ...,yl] and X = [x1, ...,xl] are selected such that the matrix

X is invertible.

It should be noted that since the Riccati problem is quadratic, there is a uniqueness

issue for Λ. This can also be seen in the spectral quadruple of Ψ. Therefore selections of

eigenvalues (and their associated vectors) will give negative solutions as well.

This eigenspace decomposition provides a framework for other, equivalent forms of

decomposition: namely Schur decomposition [64] and utilization of the matrix sign func-

tion [65, 66]. In essence, these methods function the same way as the eigendecomposition

above, but have numerical advantages for certain systems. The matrix sign method is used

to validate the analytical solution in section B.1.

3.4.3 Evaluation of the NCF Stability Margin for SISO Systems

It has been shown that the preceding work holds for all classes of system, and that the pri-

mary interest of this work is to investigate the stability of MIMO flexible systems. SISO

systems, on the other hand, can be considered to be a special case of the MIMO formula-

tion. Consider the modally decomposed SISO system:

P (s) =
κ0

s2
+

m∑
i=1

κi
s2 + 2ζiωnis+ ω2

ni

(3.68)
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Figure 3.3: NCF stability for an SISO system over various combinations of κ0 and κ1. The
black dotted line is the theoretical constant for rigid systems proven in subsection 3.4.2,
and the red dotted line is the case of a rigid body.

where κj ∈ R ∀j = 0, . . . ,m, ζi is the damping coefficient of the ith mode, and ωni is

the natural frequency of the ith mode. κ0 is analogous to the rigid mode in the MIMO

formulation and the other m κi are the flexible residues. Evaluation of the NCF stability

margin for various rigid modes over a range of κ1 yields the curves shown in Figure 3.3.

It can be seen in this figure that the rigid case, where κ1 = 0, yields the theoretical

maximum NCF stability margin previously shown in this work. As flexibility is introduced

into the system however, one of two things can happen. Obviously κ1 deviates from 0,

however if the system has co-located sensors and actuators, this residual is positive. Non-

colocated sensors yield a negative residual value. In the case of co-location, it is possible

to exceed the theoretical maximum NCF margin for rigid systems due to the resulting in-

phase motion between the actuator and the sensor. Negative κ1 indicates a non-colocated

sensor and that the motion between the sensor and actuator are not in phase. This lowers

the NCF stability margin and will generate instability for large controller gain. The effect

of an in-phase flexible mode on an SISO rigid system is demonstrated in section B.2.

The solution of the NCF stability margin for an SISO rigid system can be immediately
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extended from equations (Equation 3.64), (Equation 3.56), and (Equation 3.65):

Zrigid = f 2

 √2κ0 κ0

κ0

√
2κ3

0

 (3.69)

Xrigid =
1

f 2


√

2
κ0

1
κ0

1
κ0

√
2
κ30

 (3.70)

ZXrigid =

 3 2
√

2
κ0

2
√

2κ0 3

 (3.71)

where f is the scalar distribution factor analogous to F in (Equation 3.45). With charac-

teristic equation:

p(λ)
(ZXrigid)

= λ2 − 6λ+ 1 (3.72)

Therefore, the SISO, rigid εmax value is equal to 1√
4+2
√

2
, the constant for rigid systems.

While the inclusion of a flexible mode decreases the solvability of the algebraic Riccati

equations (Equation 3.46) and (Equation 3.47), it is still possible to explore its effect upon

the solutions Z and X , as well as the NCF stability margin. Consider the modal-based

state space construction of the SISO manipulator system extended to encapsulate a flexible

mode:

ASISO =

S0 02

02 S1

 ∈ R4×4, S0 =

0 1

0 0

 , S1 =

 0 1

−ω2 −2ζω

 (3.73)

BSISO =



0

√
κ0

0

√
κ1


∈ R4 (3.74)

CSISO =

[
√
κ0 0

√
κ1 0

]
∈ R1×4 (3.75)
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DSISO = 0 (3.76)

It is possible to linearize this system about κ1 = 0 and treat the increasing flexible mode

as a perturbation. Taking 0 < γ << 1 to be the displacement of the flexible mode, the

perturbed state-space can be formulated as:

BSISO = B0 + ∆B =



0

√
κ0

0

0


+



0

0

0

√
γ


(3.77)

CSISO = C0 + ∆C =

[
√
κ0 0 0 0

]
+

[
0 0

√
γ 0

]
(3.78)

It should also be noted that the flexible residual may be negative (0 > γ >> −1), in which

case either the entry corresponding to the flexible residual in eitherBSISO orCSISO should

be negative.

Intuitively, the corresponding solutions to the GCARE (Equation 3.46) and GFARE

(Equation 3.47) can be considered to be the sum of solution to the rigid equations (SISO

form of solution provided in (Equation 3.71) for f =
√

1
κ0

) and a perturbation in the solu-

tion:

XSISO = X0 + ∆X

=

Xr 02

02 02

+

∆X1 ∆X2

∆XT
2 ∆X4


Xr =

 √2κ0 1

1
√

2
κ0


(3.79)
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ZSISO = Z0 + ∆Z

=

Zr 02

02 02

+

∆Z1 ∆Z2

∆ZT
2 ∆Z4


Zr =


√

2
κ0

1

1
√

2κ0


(3.80)

This construction is supported by existing work in perturbations of algebraic Riccati equa-

tions [67, 68, 69] Substituting all of the perturbed matrices into the GCARE and GFARE

yields:

A∗SISO(X0 + ∆X) + (X0 + ∆X)ASISO

− (X0 + ∆X)(B0 + ∆B)(B0 + ∆B)∗(X0 + ∆X)

+ (C0 + ∆C)∗(C0 + ∆C) = 0

(3.81)

ASISO(Z0 + ∆Z) + (Z0 + ∆Z)A∗SISO

− (Z0 + ∆Z)(C0 + ∆C)∗(C0 + ∆C)(Z0 + ∆Z)

+ (B0 + ∆B)(B0 + ∆B)∗ = 0

(3.82)

Eliminating the second-order perturbations and the nominal products, the perturbed GCARE

and GFARE become:

A∗SISO∆X + ∆XASISO + ∆C∗∆C + ∆C∗C0+

C∗0∆C −X0B0B
∗
0∆X −∆XB0B

∗
0X0

−X0∆B∆B∗X0 = 0

(3.83)

ASISO∆Z + ∆ZA∗SISO + ∆B∆B∗ +B0∆B
∗

+ ∆BB∗0 −Z0C
∗
0C0∆Z −∆ZC∗0C0Z0

−Z0∆C
∗∆CZ0 = 0

(3.84)
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When expanded, these equations can be solved for ∆X and ∆Z:

∆X1 = 02 (3.85)

∆X2 =



√
γ
√
κ0

(√
2+4ω ζ

√
1
κ0

+2ω3 ζ
(

1
κ0

)3/2
+ 4
√
2ω2 ζ2

κ0

)
(

1
κ0

)3/2κ20+ω4+4κ0 ω2 ζ2+ 2
√
2ω3 ζ√

1
κ0

+ 2
√
2ω ζ

( 1
κ0 )

3/2


√
γ κ

3/2
0

(
4ω2 ζ2

κ0
−ω

2

κ0
+2
√

2ω ζ
√

1
κ0

+1

)
κ20+ω4+4κ0 ω2 ζ2+ 2

√
2ω3 ζ√

1
κ0

+ 2
√
2ω ζ

( 1
κ0 )

3/2

√
γ
√
κ0
(
κ0+ω2+2

√
2κ0 ω ζ

√
1
κ0

)
κ20+ω4+4κ0 ω2 ζ2+2

√
2κ20 ω ζ

√
1
κ0

+2
√

2κ0 ω3 ζ
√

1
κ0√

γ
√
κ0
(

2ω ζ+
√

2κ0
√

1
κ0

)
κ20+ω4+4κ0 ω2 ζ2+2

√
2κ20 ω ζ

√
1
κ0

+2
√

2κ0 ω3 ζ
√

1
κ0


(3.86)

∆X4 =

 γ (4 ζ2+1)
4ω ζ

γ
2ω2

γ
2ω2

γ
4ω3 ζ

 (3.87)

∆Z1 = 02 (3.88)

∆Z2 =


√
γ
√
κ0
(

2ω ζ+
√

2κ0
√

1
κ0

)
κ20+ω4+4κ0 ω2 ζ2+2

√
2κ20 ω ζ

√
1
κ0

+2
√

2κ0 ω3 ζ
√

1
κ0√

γ κ
3/2
0

(
ω2

κ0
+2
√

2ω ζ
√

1
κ0

+1
)

κ20+ω4+4κ0 ω2 ζ2+ 2
√
2ω3 ζ√

1
κ0

+ 2
√
2ω ζ

( 1
κ0 )

3/2

√
γ
√
κ0 (κ0−ω2)

κ20+ω4+4κ0 ω2 ζ2+2
√

2κ20 ω ζ
√

1
κ0

+2
√

2κ0 ω3 ζ
√

1
κ0√

γ κ
3/2
0

(
2ω ζ+

√
2κ0

√
1
κ0

)
κ20+ω4+4κ0 ω2 ζ2+2

√
2κ20 ω ζ

√
1
κ0

+2
√

2κ0 ω3 ζ
√

1
κ0


(3.89)

∆Z4 =

 γ
4ω3 ζ

0

0 γ
4ω ζ

 (3.90)

These solutions, found through the symbolic math toolbox (Matlab, Mathworks) can be

used to evaluate the matrix product ZSISOXSISO and can then extend to calculating the
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NCF stability margin. Expanding the matrix product ZSISOXSISO:

ZSISOXSISO = (Z0 + ∆Z)(X0 + ∆X)

= Z0X0 +Z0∆X + ∆ZX0 + ∆Z∆X

=

ZrXr 02

02 02

+

02 Zr∆X2

02 02


+

 02 02

∆ZT
2Xr 02


+

∆Z2∆X
T
2 ∆Z2∆X4

∆Z4∆X
T
2 ∆ZT

2 ∆X2 + ∆Z4∆X4



(3.91)

In terms of powers of γ, this product can be likened to:

ZSISOXSISO ∝


1 0

0 0

+

 0 0

γ
1
2 0

+

0 γ
1
2

0 0

+

 γ γ
3
2

γ
3
2 γ + γ2


⊗ I2 (3.92)

Furthermore, γ is assumed to be much smaller than 1, powers of gamma that are greater

than 1 can be neglected such that:

ZSISOXSISO ∝


1 0

0 0

+

 0 0

γ
1
2 0

+

0 γ
1
2

0 0

+

γ 0

0 γ


⊗ I2

∝


1 + γ γ

1
2

γ
1
2 γ


⊗ I2

(3.93)

ZSISOXSISO ≈

 ZrXr + ∆Z2∆X
T
2 Zr∆X2

∆ZT
2Xr ∆ZT

2 ∆X2

 = ˜ZX,

ZrXr =

 3 2
√

2
κ0

2
√

2κ0 3

 = (XrZr)
T

(3.94)
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Attempting to find the characteristic equation of the matrix ˜ZX yields (all ∆ symbols are

removed for conciseness):

p ˜ZX
(λ) = | ˜ZX − λI4|

= |ZrXrZ
T
2X2 +Z2X2Z

T
2X2 −ZT

2XrZrX2

− λ
(
ZT

2X2 +ZrXr +Z2X
T
2

)
+ λ2I2|

(3.95)

Removing second order terms, the characteristic equation can be reduced to:

p ˜ZX
(λ) ≈ |ZrXrZ

T
2X2 −ZT

2XrZrX2

− λ
(
ZT

2X2 +ZrXr +Z2X
T
2

)
+ λ2I2|

(3.96)

Regrouping, this becomes:

p ˜ZX
(λ) ≈ |S0 − λS1 + λ2I2|

S1 = ZT
2X2 +ZrXr +Z2X

T
2 =

S1a S1b

S1c S1d


S0 = ZrXrZ

T
2X2 −ZT

2XrZrX2 =

S0a S0b

S0c S0d


(3.97)

and evaluates to:

p ˜ZX
(λ) ≈ λ4 − (S1a + S1d)λ

3

+ (S0a + S0d + S1a S1d − S1b S1c)λ
2

+ (S0b S1c − S0a S1d + S0c S1b − S0d S1a)λ

+ S0a S0d − S0b S0c

(3.98)

p ˜ZX
(λ) ≈ λ4 − (6−O(γ))λ3 + (1 +O(γ))λ2

+O(γ)λ+O(γ)

(3.99)
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Table 3.1: SISO Example System Parameters

Parameter Value Parameter Value

ω 20
[
rad
s

]
ζ 1× 10−5

κ0 10 γ variable

≈ λ2
(
λ2 − 6λ+ 1

)
+O(γ, λ) (3.100)

Numerical Analysis of SISO Case

The above holds for a rigid system and yields a comparable characteristic equation as in

(Equation 3.66) (albeit scalar with two extra roots at 0 and not matrix polynomial). The

NCF stability margin of the SISO flexible system is based upon the largest root of the

characteristic equation of ZSISOXSISO, as γ changes its effect on the maximum root are

illustrated in Figure 3.4 for the system described by the parameters in Table 3.1.

Using those same parameters, the characteristic equation in (Equation 3.100) can be

expressed as:

p ˜ZX
≈ λ4 + (2.49× 10−4γ − 6.0)λ3

+ (1.55× 10−8γ2 + 1.57× 10−7γ + 1.0)λ2

+ (9.33× 10−8γ2 − 0.00225γ)λ+ 1.4× 10−7γ2

(3.101)

Continuing the assumption that γ is small, the above can be reduced to:

p ˜ZX
≈λ2(λ2 − 6λ+ 1)

+ γ(2.49× 10−4λ3

+ 1.57× 10−7λ2 − 0.00225λ)

(3.102)

Theorem 4. For an SISO flexible-base system, the maximum root of the characteristic

equation of the product ZSISOXSISO displaces away from the nominal root λ̄max , 3 +

2
√

2 in the direction opposite the change in γ (where γ is the perturbation in κ1 and is
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assumed to be |γ| << 1). That is to say: γ > 0 induces ∆λ < 0 and γ < 0 induces

∆λ > 0.

Proof. Consider both the scalar version of the nominal characteristic equation in (Equation 3.66)

and the approximate characteristic equation given in (Equation 3.102). For a displaced

largest root, λ = λ̄max + ∆λ > 0, |∆λ| << 1, to be a root of the approximate characteris-

tic polynomial it must satisfy yields:

p ˜ZX

∣∣
λ=λ̄max+∆λ ≈ (λ̄max + ∆λ)2·(

(λ̄max + ∆λ)2 − 6(λ̄max + ∆λ) + 1
)

+ γ
(
2.49× 10−4(λ̄max + ∆λ)3

+ 1.57× 10−7(λ̄max + ∆λ)2

−0.00225(λ̄max + ∆λ
)

= 0

(3.103)

Separating the above into the the rigid characteristic polynomial and the perturbation from

γ, the above equality becomes:

(λ̄max + ∆λ)2
(
(λ̄max + ∆λ)2 − 6(λ̄max + ∆λ) + 1

)
= (λ̄max + ∆λ)2

(
λ̄2
max + 2λ̄max∆λ+ ∆λ2

−6λ̄max − 6∆λ+ 1
)

= (λ̄max + ∆λ)2
(
2λ̄max∆λ− 6∆λ+ ∆λ2

)
= −γ

(
2.49× 10−4(λ̄max + ∆λ)3

+ 1.57× 10−7(λ̄max + ∆λ)2

−0.00225(λ̄max + ∆λ
)

(3.104)
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The above equality can be further simplified. First, simplifying the left-hand side:

(λ̄max + ∆λ)2
(
2λ̄max∆λ− 6∆λ+ ∆λ2

)
≈

(λ̄max + ∆λ)2
(

4
√

2∆λ
) (3.105)

And the right:

(λ̄max + ∆λ)3 ≈ λ̄3
max (3.106)

(λ̄max + ∆λ)2 ≈ λ̄2
max (3.107)

(λ̄max + ∆λ) ≈ λ̄max (3.108)

−γ
(
2.49× 10−4(λ̄max + ∆λ)3

+ 1.57× 10−7(λ̄max + ∆λ)2

−0.00225(λ̄max + ∆λ
) (3.109)

≈ −γ
(
2.49× 10−4 λ̄3

max + 1.57× 10−7λ̄2
max

−0.00225λ̄ max) = −0.3626γ

(3.110)

These simplifications yield the condition for sign consistency

(λ̄max + ∆λ)2(4
√

2∆λ+ ∆λ2) = −0.3626γ (3.111)

≈(4
√

2∆λ) ∝ −γ (3.112)

This logic also holds for a γ < 0 and ∆λ > 0. Numerically, this inverse relationship is

expressed in Figure 3.4(b). �
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Figure 3.4: (a) Evaluated characteristic polynomials for various values of γ about the nom-
inal maximum eigenvalue of the rigid system. (b) Maximum roots of the characteristic
polynomial across various γ. Intersection of dotted lines indicate the nominal values of
each parameter.

3.4.4 Numerical Analysis of MIMO Cases

Consider an extension of the preceding analysis to the general MIMO case. The stabiliz-

ing solution of an ARE requires the solution of 2d(m+1)(2d(m+1)+1)
2

simultaneous quadratic

equations. While it was feasible for a symbolic math solver to generate a solution for an

SISO case with a single flexible mode (d = 1, m = 1 → 10 equations), the addition of

an additional dimension (d = 2) yields 36 scalar equations. However, leaving the terms

in their d × d blocks, the number of equations left to solve remains 10 (these are matrix

equations and will not necessarily be equal to the ones from the SISO case).

Overall the system construction is similar to that of the SISO case:

AMIMO =

S0 02

02 S1

⊗ Id ∈ R4d×4d (3.113)
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BMIMO =



0d

R0

0d

R1


∈ R4d×d (3.114)

CMIMO =

[
Id 0d Id 0d

]
∈ Rd×4d (3.115)

DMIMO = 0 (3.116)

despite this, the same approximation used for the SISO case will not work. In neglecting

the quadratic terms in the ARE, too many terms containing the residual information are ne-

glected. This causes an immediate divergence between the approximated and actual NCF

stability margin. This means that the only avenue for analysis is numerical experimenta-

tion.

The primary goal of this investigation is to see any emerging trends in the the NCF

stability margin. Given a known rigid mode

R0 =

 23.676 −5.0429

−5.0429 4.6265


 and vis-

coelastic parameters (ζ = 0.2 and ωn = 10 rad
s

) the NCF stability margin can be described

as a function of the flexible residual R1 =

 u v

wu wv

. The decision to structure the vari-

able residual in this way is so that the rank 1 matrix can be completely described as both a

robust posture (that satisfies the outlined properties earlier in the chapter) or a non-robust

posture. Illustrated in Figure 3.5 the space of values of u and v that give an RAC (in this

case, because w = 1, u = v and u ≥0) are similar to the region that is at or exceeds the

rigid system NCF stability margin. Largely, we do see that has the flexible residual moves

away from the robust posture the NCF stability margin drops.

While not much on its own, this motivates the investigation into how the NCF stabil-

ity margin varies with a residual that is guaranteed to be a robust residual. Redefining the
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Figure 3.5: (a) NCF stability margin and (b) modal space stability index for residual with
w1 = 1. The gray surface in (a) is the value of the NCF stability margin for rigid systems
and the blue surface in (b) is the robust condition, w1 = 0.

residual to beR1 = α

1 β

β β2

, one can see that it is rank 1, symmetric. The NCF stability

margin can be found for combinations of α and β, shown in Figure 3.6. This supports the

existing conjecture: that robust postures have performance that is only as bad as the sys-

tem’s rigid mode (within the context of the NCF stability margin). What is interesting with

this data is that there are two points on the plot that are fixed for scaling in the residual (α)

and for scaling in the rigid mode. Being that this is invariant with respect to the rigid mode,

these points are likely related to the underlying structure of the rigid mode. It is found that

when the image of the flexible mode is colinear with a principal axis (eigenvector) of the

rigid mode, the NCF stability margin takes its rigid-system value.

Simultaneous Diagonalization of Modes

It was stated previously that when the residual projects on to the principal axes of the rigid

mode, the system’s NCF stability margin is equivalent to the rigid case. This can be shown

simply given the eigenbasis E and diagonal matrix with eigenvalues Λ of the rigid mode.
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Figure 3.6: NCF stability margin for guaranteed robust postures. Baseline NCF stability
margin for rigid systems is equivalent to case of α = 0.

Given the MIMO transfer function representation of the flexi-rigid system:

G(s) =
R0

s2
+

R1

s2 + 2ζωn + ω2
n

(3.117)

=
EΛE−1

s2
+

R1

s2 + 2ζωn + ω2
n

(3.118)

if the residual projects on to a principal axis of the rigid mode, the residual must be gener-

ated through the outer-product of the associated eigenvector. Mathematically this takes the

form of: R1 = δEPE−1 where δ is a constant factor to handle scaling of the residual and

P is a diagonal selection matrix to select the correct eigenvector. Substituting this into the

above:

G(s) =
EΛE−1

s2
+

δEPE−1

s2 + 2ζωn + ω2
n

(3.119)
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Figure 3.7: Simultaneous diagonalization of modes for the case of an orthogonal eigenbasis
of the rigid mode (λ1, ê1 and λ2, ê2) with the task-space denoted by (x̂, ŷ)

the basis can be changed from the task-space to the eigenspace of the rigid mode. This

makes a diagonal matrix transfer function that is similar to the originalG(s).

G′(s) = E−1G(s)E =
Λ

s2
+

δP

s2 + 2ζωn + ω2
n

(3.120)

This leads to an interesting special case. Should the eigenbasis of the rigid mode be or-

thogonal (like in Figure 3.7, and as guaranteed for symmetric matrices by the Spectral

Theorem), the diagonal transfer function can be decoupled and treated as individual SISO

systems (with a rigid subsystem, Gr(s), and a flexible subsystem, Gf (s)):

G′(s) =

Gr(s) 0

0 Gf (s)

 (3.121)

These subsystems have their own state-space matrices and the aggregate system, in the

state-space can be represented, with appropriate sizes, as:

A′ =

Ar 0

0 Af

 (3.122)
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B′ =

Br 0

0 Bf

 (3.123)

C′ =

Cr 0

0 Cf

 (3.124)

Substituting these into the GFARE and GCARE in order to calculate the NCF stability

margin. Due to the decoupled dynamics between the two subsystems, it is reasonable to

assume the solutions Z′ andX ′ are block diagonal:

Ar 0

0 Af


Zr 0

0 Zf

+

Zr 0

0 Zf


AT

r 0

0 AT
f


−

Zr 0

0 Zf


CT

rCr 0

0 CT
fCf


Zr 0

0 Zf


+

BrB
T
r 0

0 BfB
T
f

 = 0

(3.125)

AT
r 0

0 AT
f


Xr 0

0 Xf

+

Xr 0

0 Xf


Ar 0

0 Af


−

Xr 0

0 Xf


BrB

T
r 0

0 BfB
T
f


Xr 0

0 Xf


+

CT
rCr 0

0 CT
fCf

 = 0

(3.126)

Explicitly, the solutions of these ARE’s are not important at this point. Looking first at the

matrix product ZX ′ and its characteristic equation,

ZX ′ =

ZrXr 0

0 ZfXf

 (3.127)
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pZX ′(λ) = det(ZrXr − λI) det(ZfXf − λI) (3.128)

= pZXr
(λ) pZXf

(λ) (3.129)

It can be seen here that this characteristic equation is the product of the rigid system and

the flexible system characteristic equations. Unlike the general case of the MIMO system,

we have closed form expressions for both of these characteristic equations. Because these

characteristic polynomials are multiplied together, their roots are passed through to the

total characteristic equation. This means that the largest root between both equations is

the largest root for the aggregate, creating the smallest overall NCF stability margin. This

implies for the diagonalized flexi-rigid system NCF robustness is equal to that of its worst

subsystem.

This is intuitive. Take for instance a cartesian robot; motion in one joint does not

influence the other. Extend this concept to a cartesian robot with a flexibility in only one

of its axes. While each axis can move independently the aggregate system can only be

as robust as its least robust member. This is to say that if that flexibility is in-phase, then

the system will be as robust as its rigid counterpart, however should that flexibility be out

of-phase, we know that the aggregate system would take on the lower NCF stability margin.

Asymmetrical Rigid Modes

Until now the examples given have had symmetrical rigid modes because it is common to

see these when using Jacobian transpose control. When inverse control is used there is no

guarantee on the symmetry of the rigid mode. The above analysis holds, but as stated it is

only viable for rigid modes with orthogonal bases. An arbitrary, asymmetrical rigid mode

may be able to simultaneously diagonalize the modes, however the resulting basis may not

be orthogonal. This is illustrated in Figure 3.8 where the eigenbasis displayed is clearly

not orthogonal. The effects of this asymmetry are seen when looking at the NCF stability

margin as compared to various guaranteed robust postures. Looking at Figure 3.9 we see
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Figure 3.8: Simultaneous diagonalization of modes for the case of an non-orthogonal eigen-
basis of an asymmetrical rigid mode (λ1, ê1 and λ2, ê2) with the task-space denoted by (x̂, ŷ)

that there are several points where the NCF stability margin takes on its rigid-system value,

and these points do occur when the residual projects on to the principal axes of the rigid

mode, however there is clearly a region where the robust system performs worse than the

rigid system.

It was mentioned in the previous subsection that the for simultaneous diagonalization

one can treat the MIMO system as an aggregate of SISO systems and then take the lower

NCF stability margin as the margin for the aggregate. In the case of an asymmetric rigid

mode, the non-orthogonal basis creates a subset of postures where the flexible mode with a

robust residual is out of phase in its subsystem and the NCF stability drops below the nomi-

nal value. Returning to the idea of the cartesian robot, this would be similar to the two axes

of the machine being not-quite orthogonal. Depending on the degree of non-orthogonality,

motion would feed through the system and potentially excite motion in both axes.

When considering the eigenspace of the manipulator with asymmetric rigid mode the

dynamics are “skewed” in the transformation, creating the possibility for an unequal dis-

tribution of effort in the task space. While these postures exist in the numerical analysis,

the regions of subnominal robustness are not realistic postures for real manipulator sys-

tems. Therefore, this can be considered to be an exception to the theorem outlined in the
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Figure 3.9: NCF stability margin for guaranteed robust postures for a system with an asym-

metric rigid mode, R0 =

[
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]
. Baseline NCF stability margin for rigid systems is

equivalent to case of α = 0.

beginning of the chapter as it is unlikely to appear in practice.
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3.5 Contribution of Work

The theory presented in this chapter is integral to the application of these stability met-

rics to stabilize manipulators. Conditions where outlined to exist and remain in a robust

configuration with respect to the modal space stability index. The constant NCF stability

margin is presented for all double-integrator systems, and this was demonstrated to be the

minimum NCF stability for systems in robust configurations. Moving forward it is possible

to use these properties to lever redundancy in the mobile manipulation systems to pose the

robot in a locally optimal posture without compromising the reachability of its workspace.

This work, in part, has been submitted to Journal of Dynamic Systems, Measurement

and Control and is currently under review, [70].
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CHAPTER 4

ROBOT MANIPULATOR CASE STUDIES

4.1 Motivation

The material in this chapter is to be seen as a compilation of the theory presented in chap-

ter 3 as applied to various styles of manipulator system. While this will not invoke new

material, it will highlight the applications of the presented principles. To this end, the

considered systems will be planar systems, for ease of analysis, and will be what can be

considered to be “canonical” manipulator systems. Namely the “RR”, “RP”, and “parallel-

drive” planar manipulators. There will also be a brief discussion on the extension of this

theory beyond the context of flexible bases and will instead look at flexible link systems.

Each section will include a comparison between the normalized coprime factor and

modal-passivity based robustness metrics, an examination of a slice of the workspace

around a robust posture, and the conditions necessary to stay in an robust posture as out-

lined in subsection 3.3.4.

4.2 The RR Manipulator

In most robotics curricula the serial-link RR manipulator is used as an introductory ex-

ample due to its well established dynamics. Shown in Figure 4.1 this target system has a

singular rotational viscoelasticity with two rigid modes. The decision to look at a system

with only two links (nonredundant systems) is to ensure that, when only considering end-

point position, the manipulator Jacobian is square, which will allow for the examination

of Jacobian inverse control without needing to modify the Jacobian. For this system, we

consider three states: [θb, θ1, θ2]T with the last two being actively driven.

While the system description in the previous chapter will be suitable for the simulation
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Figure 4.1: Geometric diagram of RR manipulator with single flexibility in its base, shown
by generic volume in blue.

of these systems, it is sufficient to adapt the state space system from the dynamics of the

system directly such that (noting that all matrices are functions of the system posture):

A =

 O3 I3

−M−1K −M−1D

 ∈ R6×6 (4.1)

B =


O3×2

M−1

 O1×2

I2×2


T ∈ R6×2 (4.2)

C =

[
J O

]
∈ R2×6 (4.3)

where the system parameters D and K are the square viscosity and stiffness matrices

with the state-viscosity and -stiffness along their diagonals. The matrix T is chosen as a

map between the input and joint-space of the manipualtor system. For the cases consid-

ered this is either JTv or J−1
v , with Jv being the rigid-body Jacobian. The inertia matrix,

M = MT ≥ 0, and the full-system Jacobian, J , are given by the particular robot struc-
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ture. It should be noted that the preceding variables are dependent on the robot posture.

Utilizing the two robustness measures discussed in the previous chapter, the workspace

Figure 4.2: NCF Stability (red) and modal passivity index (yellow) across the workspace of
a planar RR manipulator with a single rotational flexibility under Jacobian (a-b) transpose
and (c-d) inverse control. Posture shown is highly robust.

of the linearized plant can be described in terms of high and and low robustness, shown in

Figure 4.2. Qualitatively it is easy to see that the two metrics maximize in similar places,

this can be further explored by looking at a local neighborhood of this posture, shown in

Figure 4.3. Not only do the the two metrics follow the same overall shape, this demon-

strates that a small error in end-point position will allow the manipulator to remain in an a

relatively robust posture. Furthermore, this plot illustrates that these ideal postures occur

as s continuum within the workspace; that the robust postures are continuous throughout

the workspace, as shown in [71].

Furthermore, within the neighborhoods displayed in Figure 4.3, the black regions can
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Figure 4.3: NCF Stability (red) and modal passivity index (yellow) around a chosen end-
point of a planar RR manipulator with a single rotational flexibility under Jacobian (a-b)
transpose and (c-d) inverse control. Posture shown is highly robust and drawn in Figure 4.2.
Black regions are postures close to the ideal stability margins for each metric.

be seen approximately following the “0” contour in the figures detailing the inner prod-

uct condition (Equation 3.31), shown in Figure 4.4. Should the manipualtor end-point be

displaced by some small disturbance, this information shows the eligibility for that new

posture to be robust.

The preceding discussion has assumed that the manipulator is already in a robust pos-

ture. As a result there exists a finite set of displacements that will allow the manipulator to

remain in a robust posture. However, when considering a posture that is not robust, it may

become necessary to transit to a robust posture. Looking at a slice of the RR manipulator
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Figure 4.4: Inner product condition to remain in a robust posture around a chosen end-point
of a planar RR manipulator with a single rotational flexibility under Jacobian (a) transpose
and (b) inverse control. Posture shown is highly robust and drawn in Figure 4.2. When this
metric is 0 the manipulator will remain in a robust posture at that location.

workspace, shown in Figure 4.5, it is evident that through shifting the posture along the

x-axis, both stability margins can be increased. Because the goal in this situation would be

to maximize the desired stability margin while maintaining a particular point in the inertial

frame (e.g. a grasping task), in order to take advantage of this it is best that the system

have some floating base so that the manipulator can reorient itself in its joint space with-

out changing its inertial-space position. These regions of higher robustness, because they

indicate passivity of the flexible modes, allow for higher feedback gain to be used in the

control loop. The higher feedback gain enables the use of more aggressive controllers that

could have more desirable temporal performance.
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Figure 4.5: NCF stability (blue) and modal-space passivity index (red) along a slice of the
workspace of a planar RR manipulator with a single rotational flexibility under Jacobian
(a) transpose and (b) inverse control. Slice is drawn in black dotted line on Figure 4.2.

4.3 The RP Manipulator

As with the RR manipulator, we can look at the workspace of an RR manipulator, again

with a single rotational flexible mode, with diagram shown in Figure 4.6. Despite having

the same overall system structure, (Equation 4.3), it can be seen that the shape of the sta-

bility surfaces differs between the RR and RP manipulators. Shown in Figure 4.7, these

surfaces take on a flatter appearance once the length of the prismatic slider begins to dom-

inate the size of the system. Furthermore, we can see that when the manipulator is folded

over its flexible base (when the end-point is at a negative x value).

The region of decreased robustness in the right-half plane of the workspace occurs due to

the ratio of mass/inertia of manipulator to the base. When the base is more massive than

the

The local neighborhood surrounding the drawn posture in the workspace figure can

also be analyzed, Figure 4.8. This figure, like in the RP manipulator, highlights that within
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Figure 4.6: Geometric diagram of RP manipulator with single flexibility in its base, shown
by generic volume in blue.

small areas of high robustness, the NCF stability margin and the modal passivity index fol-

low roughly the same path. While the black regions in this figure are regions as opposed to

curves, it should be noted that these regions appear due proximity to the ideal robustness

values. Because the systems discussed are linear, uncontrollability and unobservability

happen along specific curves within the workspace (not regions), and as such the ideal ro-

bustness should exist along a curve.

Within these neighborhoods the inner product condition can also be examined, shown

in Figure 4.9. The 0 contour for this structure runs along the boundary shown on the edge

of the black region in Figure 4.8, as expected, but also runs perpendicular or nearly perpen-

dicular to it.

Looking at the workspace at a wider-scale, along the dotted path running through the

robust posture, we can see that there comes a point where both stability margins maximize.

It would be in this outer region where it would be advantageous to operate the RP manipu-

lator.
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Figure 4.7: NCF Stability (red) and modal passivity index (yellow) across the workspace of
a planar RP manipulator with a single rotational flexibility under Jacobian (a-b) transpose
and (c-d) inverse control. Posture shown is highly robust.
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Figure 4.8: NCF Stability (red) and modal passivity index (yellow) around a chosen end-
point of a planar RP manipulator with a single rotational flexibility under Jacobian (a-b)
transpose and (c-d) inverse control. Posture shown is highly robust and drawn in Figure 4.7.
Black regions are postures close to the ideal stability margins for each metric.

Figure 4.9: Inner product condition to remain in a robust posture around a chosen end-point
of a planar RP manipulator with a single rotational flexibility under Jacobian (a) transpose
and (b) inverse control. Posture shown is highly robust and drawn in Figure 4.7. When this
metric is 0 the manipulator will remain in a robust posture at that location.
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Figure 4.10: NCF stability (blue) and modal-space passivity index (red) along a slice of the
workspace of a planar RP manipulator with a single rotational flexibility under Jacobian
(a) transpose and (b) inverse control. Slice is drawn in black dotted line on Figure 4.7.
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4.4 Parallel-Drive Manipulator

Lastly, take for instance the parallel-drive planar manipulator upon a base with rotational

flexibility, illustrated in Figure 4.11. This manipulator, like the others will be described by

the same overall system construction. The difference here, is that rather than having two

links in its rigid manipulator, the parallel-drive manipulator has four. This allows for the

selection of links to cancel the off-diagonal elements in its mass matrix, allowing for the

decoupling of the dynamics in the rigid portion of the manipulator.

As with the previous two manipulator structures, its workspace can be characterized

Figure 4.11: Geometric diagram of parallel-drive manipulator with single flexibility in its
base, shown by generic volume in blue.

and regions of high robustness can be inspected. These figures, similar to those of the

preceding structures, can be seen in Figure 4.12, Figure 4.13, and Figure 4.14. Interestingly,

because it is possible to decouple the planar dynamics of this manipulator, it is possible

to exceed the rigid-system value of the NCF stability margin. This is demonstrated in

Figure 4.13 by the stability surface going above the black region. While we see an NCF

robustness higher than that of a rigid system, it the modal space stability index, w1 remains

below its maximum. Furthermore, as with the the previous manipulators, the inner product
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condition is satisfied for the parallel-drive manipulator. Slices for the stability metrics also

demonstrate that the manipulator can take advantage of planar redundancy to better pose

the robot to maximize stability Figure 4.15.

Figure 4.12: NCF Stability (red) and modal passivity index (yellow) across the workspace
of a planar parallel-drive manipulator with a single rotational flexibility under Jacobian
(a-b) transpose and (c-d) inverse control. Posture shown is highly robust.
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Figure 4.13: NCF Stability (red) and modal passivity index (yellow) around a chosen end-
point of a planar parallel-drive manipulator with a single rotational flexibility under Jaco-
bian (a-b) transpose and (c-d) inverse control. Posture shown is highly robust and drawn in
Figure 4.7. Black regions are postures close to the ideal stability margins for each metric.
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Figure 4.14: Inner product condition to remain in a robust posture around a chosen end-
point of a planar parallel-drive manipulator with a single rotational flexibility under Jaco-
bian (a) transpose and (b) inverse control. Posture shown is highly robust and drawn in
Figure 4.12. When this metric is 0 the manipulator will remain in a robust posture at that
location.
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Figure 4.15: NCF stability (blue) and modal-space passivity index (red) along a slice of
the workspace of a planar parallel-drive manipulator with a single rotational flexibility
under Jacobian (a) transpose and (b) inverse control. Slice is drawn in black dotted line on
Figure 4.12.
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4.5 Flexible Link Manipulators

Until this point the discussed manipulators were rigid with flexible bases. The base flexibil-

ity, while preventing the use of high feedback gain in some postures, does not necessarily

preclude the exsitence of passive postures. Flexibility in links, however, creates a situation

where the motion in the system induces oscillation in that flexibility. For obvious reasons,

this prevents passive postures in the manipulator.

Overall, the system structure matches those of the previous systems, but geometrically

the systems differ. An example of a system like this is given in Figure 4.16.

Looking first at the case where the first link is flexible, the stability margins across its
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Figure 4.16: Diagram of a planar RR manipulator with a flexibility in its second link.

workspace can be seen in Figure 4.17. Firstly, between the two sets of controller structures,

the idea that a manipulator with in-link flexibility has no passive postures is illustrated by

the scale on the w1 indices in (b) and (d). The workspace of the manipulator under each

controller does not approach the condition for passivity in either case at any posture. The

NCF stability margins for this system highlight that the most robust postures are the tradi-

tional velocity singularities of a fully rigid RR manipulator. Within the scope of this work,

this information can still be used. Rather than operating the manipulator in the center of

its workspace, the control designer can prioritize operating the manipualtor so that its end-

point is nearer to its inner and outer extents. Obviously there are risks to this as operating
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a system near its singularities as control in these regions become unpredictable.

The other case for flexible-link RR manipulators is the case where the second link

Figure 4.17: NCF Stability (red) and modal passivity index (yellow) across the workspace
of an RR manipulator with link-1 flexibility under Jacobian (a-b) transpose and (c-d) in-
verse control.

is flexible. The link-2 flexibility stability margins have a different shape than the link-1

case. Illustrated in Figure 4.18 there is a “peak” in each stability margin within the usable

region of the workspace. When the second link is orthogonal to the first, the manipulator

can move in such a way that end-point wrenches that are colinear with the second link do

not induce oscillation in the link (only motion from the first joint). Despite this, the overall

scale in these stability margins betray this concept. The NCF stability is near zero for both
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controllers, which indicates that there do not exist postures that are robust to external dis-

turbances. By the same measure, the modal passivity indices also demonstrate that there

are no postures where the flexibility in the second link is passive.

Figure 4.18: NCF Stability (red) and modal passivity index (yellow) across the workspace
of an RR manipulator with link-2 flexibility under Jacobian (a-b) transpose and (c-d) in-
verse control.

4.6 Contribution of Work

The work in this chapter amounts to the demonstration of the stability margins from the

preceding chapter as applied to various manipulator structures. Utilizing canonical manip-
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ulator examples the application of the NCF and modal-passivity stability metrics are shown

to be valid and provide the same information regardless of manipulator structure. When

considering redundant systems with these dynamics, it is shown that the generated surfaces

can feasibly be sliced to determine the optimal posture about a particular task-space lo-

cation. The foray into flexible-link manipulators demonstrates that these systems are not

robust to induced oscillations from their flexibility not just as a binary, but categorically

across their workspaces.
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CHAPTER 5

POSTURE-DEPENDENT STABILIZATION FOR REDUNDANT

MANIPULATORS WITH BASE FLEXIBILITY

5.1 Problem Statement

The development of first-responder robotics and related technologies have grown consid-

erably as the problems needing to be solved have become more complex [72, 73, 74, 75,

76, 77]. It is clear that the effectiveness of these technologies increases if done before an

incident, but what about in the short term? This can easily be solved through the retrofitting

of existing hardware with control solutions. To address the hardware reliability issues, in-

terfaces can be developed that turn existing construction equipment into mobile robotic

manipulators as shown in Figure 5.1. During a collaboration, one of the groups developed

wirelessly-operated mechanical interfaces that operates the controls of the conventional

excavator for this express purpose [78, 79, 80].

Figure 5.1: Ghost(R) Remote Excavator Control System: Remote operator interface is
used to transmit commands to the Ghost(R) system attached to each lever on the remote
excavation system. Photos courtesy of ROHAU.

Motion of the upper mechanism of the retrofitted excavator (mobile manipulator) dy-

namically induces the undercarriage flexibility, resulting in errors in end-point positioning.
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Figure 5.2: Accelerometer data resulting from cabin swing on an excavation system.
Curves presented are raw accelerometer data for the x,y, and z axes as well as the fre-
quency spectra of those vibrations.

The undercarriage oscillation and resultant end-point error must be effectively suppressed

to accurately position the end-point. Brief high-speed motion testing of a small excavator

yielded accelerometer data that demonstrated these induced oscillations upon rotation of

the cabin, shown in Figure 5.2. The chattering seen is largely high frequency, however the

gripper retains low-frequency oscillation, which is likely to be within the control bandwidth

of the system and affect end-point control.

Due to lack of actuation and sensing hardware, end-point feedback control will be done

without measuring or modeling of induced base oscillations for practical advantages. To

improve robustness of such simple controller implementation, configuration-based stability

analysis of a manipulator with an oscillatory base is performed. Once stability margins of
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the manipulator workspace have been characterized, it is possible to determine the position

of the undercarriage and the posture of the arm such that the task-space feedback control

has greater robustness to induced oscillation while maintaining the same position in the

task-space.

5.2 Manipulator Model, Dynamics, and Feedback Control

5.2.1 Model

The presented excavator can be, instantaneously, considered to be a two-degree-of-freedom

(2DOF) planar manipulator on a base that is flexible in three directions, shown in Fig-

ure 5.3, where θ1 is the base rotation, θ2 and θ3 are manipulator joint angles. In the fol-

Figure 5.3: Planar manipulator with flexible (used for modeling) and rigid bases (used for
control purposes)

lowing analysis, the position of the end-point of the arm is considered, and its orientation

is not considered. Generally, excavators have an additional degree of freedom between the
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arm and bucket which can be used to compensate for orientation, but that will be ignored

in this analysis.

Given geometries shown in Figure 5.3, the end-point Oe = [xe, ye]
T is represented by

a function of a total of five displacements: Oe = r(xmobile, ymobile, θ1, θ2, θ3). Note that θ1

is passively produced by undercarriage oscillation and is therefore not a control input. In

addition, the Jacobian matrix that maps joint angular velocities to end-point velocities is

given as

J =

1 0 −l1S1 − l2S12 − l3S123 −l2S12 − l3S123 −l3S123

0 1 l1C1 + l2C12 + l3C123 l2C12 + l3C123 l3C123

 (5.1)

The trigonometric functions are defined to simplify the description such as Sa = sin(θa)

and Cab = cos(θa + θb).

5.2.2 Dynamics

The dynamics of the planar manipulator can be described by: τ = M(q)q̈ +H(q, q̇) +

N(q, q0, q̇)+G(q). τ is is the joint torque vector for the system, consisting of
[
τ Tp , τ

T
a

]T
,

which are the passive joint torques and the actuator effort torques for the driven joints; the

matrixM(q) is the inertia matrix for the system; andH(q, q̇) is the collection of Coriolis

factors and centrifugal terms for the manipulator. N(q, q0, q̇) is the general viscoelas-

tic term and G(q) is the gravity term. The state vector, q =

[
qTp qTa

]T
, contains state

information for all of the joints in the system, containing qp = [xmobile, ymobile, θ1]T and

qa = [θ2 θ3]T . Note that the horizontal position of the undercarriage center, xmobile is a

variable, but assumed to be fixed when the system is in motion, therefore is not included in

the dynamic equation.
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5.2.3 Rigid Body Jacobian

In many practical implementations, manipulators are considered completely rigid and res-

onant frequencies are significantly higher than the control bandwidth. One of the simplest

class of manipulator end-point feedback controllers can be obtained from its Jacobian ma-

trix, derived only from kinematic information, in the form of its inverse or transpose, where

dynamic close-loop stability is guaranteed for rigid systems.

Oscillations due to its flexible undercarriage may be within the control bandwidth and

thus introduce oscillatory or unstable responses. As a practical approach, one may still

want to use the rigid-body assumption and examine stability and performance limits when

applied to a flexible-base manipulator without increasing the complexity of feedback con-

trol. Figure 5.3 (bottom) illustrates this concept where the base deformation is strategically

neglected. The rigid body Jacobian, Jv, can be found by only considering the motion of

the two links in the manipulator chain Jv =

 −l2S12 − l3S123 −l3S123

l2C12 + l3C123 l3C123

.

5.2.4 Feedback Control

A method to control the manipulator is to specify joint velocities: q̇ad = Jv(qa)
−1f(Oed,Oe),

with control structure detailed in Figure 5.4. Obtained q̇ad is directly converted into joint

torques, τ a =

1 0

0 1

 q̇ad.

5.2.5 Manipulator System Modeling

Local asymptotic stability of the nonlinear system can be evaluated by a linearized model

about a particular desired end-point position. Recall that the undercarriage oscillation is

passive therefore τ p = 0 and a linearized model can be written as:
[
0 τ Ta

]T
= Mq̈ +

Dq̇ + K(q − qd) is obtained, where qd is the desired joint states for the manipulator;
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Figure 5.4: Block diagrams illustrating the control structure for Jacobian Inverse control

D is the viscosity matrix of the system; and K is the stiffness matrix for the system.

Defining x =
[
q̇T , (q − qd)T

]T
and y = r(q)−r(qd), a two-input two-output state-space

representation in the work coordinate system is obtained as: ẋ = Ax+Bf and y = Cx,

with

A =

 −M−1D −M−1K

I O

 (5.2)

BI =


M−1

 O3×2

I2×2


O(3+2)×2

J−1
v (5.3)

C =

[
O J

]
(5.4)

where J = ∂r/∂qT ∈ <2×(3+2), Jv = ∂rv/∂q
T
a ∈ <2×2 are Jacobian matrices. The plant

for this system can be realized from the state-space form as:

P I(s, qd) = C(sI −A)−1BI (5.5)

Note that P I is the linearized plant dynamics seen from the task-space controller when the

Jacobian Inverse control is applied.
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5.2.6 Modal Analysis

By using modal analysis, P (s) can be represented as a linear combination of n rigid modes

and m vibration modes. Matrix A has in total 2(n+m) poles where 2n of these poles are

zero, corresponding to the rigid modes, and 2m conjugate complex poles correspond to the

vibration modes.

Let λ0 = 0,λi ,λ̄i (i = 1 · · · ,m) be 2m + 1 distinct eigenvalues of A. λ0 , λi and λ̄i

correspond to the rigid modes and the ith vibration modes respectively. U and V = U−1

are defined from the modal decomposition/ Jordan normal form of A and is the orthogo-

nality transformation between the state matrix and its modal-space. Note that v∗ denotes

the conjugate transpose (or Hermitian transpose) of v. By applying U ,V toA with n = 2

rigid body modes and m = 3 flexible modes, [81], of P (s) for Jacobian inverse control is

given below.

P I(s) =
n∑
j=1

Cu2j−1v
∗
2jBI

s2

+
m∑
i=1

(
Cu2(n+i)−1v

∗
2(n+i)−1BI

s− λi
+
Cu2(n+i)v

∗
2(n+i)BI

s− λ̄i

)
=

1

s2
R0,I +

m∑
i=1

1

s2 + 2ζiω̂is+ ω̂2
i

Ri

(5.6)

R0,I =
n∑
j=1

Cu2j−1v
∗
2jBI = JTv M̂

−1
J−1
v (5.7)

Ri = −2Re
(
λ̄i(Cu2(n+i)−1)(v∗2(n+i)−1BI)

)
, i ≥ 1 (5.8)

In (Equation 5.6)-(Equation 5.8),R0 corresponds to the rigid body modes whereR0 is

a positive definite matrix. M̂ = [Mkl] ∈ <n×n(m+1 ≤ k, l ≤ m+n) is a partial matrix of

M . Ri is called a residue matrix. Note thatRi is positive-semi-definite and rank(Ri) = 1

at most from (Equation 5.8). In addition, ω̂i = |λi| , ζi = −Re(λi)/ |λi| is obtained where

ζi and ω̂i represent the damping coefficient and the natural frequency, respectively. It is
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also of note that the outer product (u2j−1v
∗
2j) yields the spectral projector of the 2jth mode

of the system, and is equivalent in concept to Ωi of the previous chapter.

5.3 Robustness Metrics

Link parameters of the excavator are found in Table 5.1 and are derived from the geometry

of a 3D model assuming the material is isotropic steel. The viscoelastic parameters are

chosen so that the modal frequency range is similar to that of the data shown in Figure 5.2.

Table 5.1: Dynamic parameters

Name Value Unit Name Value Unit

lb 0.541 m lgb 0.563 m

l1 1.918 m lg1 1.067 m

l2 1.097 m lg2 0.613 m

mb 5291.5 kg Ib 1020.7 kgm2

m1 766.6 kg I1 214.9 kgm2

m2 458.2 kg I2 93.6 kgm2

kx 4x107 Nm−1 bx 50 Nsm−1

ky 4x107 Nm−1 by 50 Nsm−1

kθ 1.112x106 Nm−1 bθ 25 Nsm−1

θ1d 1.2451 rad

Robustness analysis is performed to determine the configurations of a manipulator that

are robust to undercarriage oscillation and, therefore, are stable. Numerically calculating

the NCF robustness (section 3.4) of the plant across its workspace it becomes possible to

characterize the robustness of the plant, εmax, at all of its achievable postures.

Similarly, the manipulator workspace can be described through its passivity-based ro-

bustness using the wi passivity indices from section 3.3. These measures indicate the dis-

tance from the current robot configuration to a robust arm configuration (RAC) [54]. The
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linearized system in this configuration is positive real, and therefore passive [54]. The

regions where each of these flexible modes is in-phase is shown in Figure 5.5. MIMO sys-

tems such as the one considered in this chapter have no guarantee for a total in-phase design

[82, 83]. However, being that the third mode is at a much higher natural frequency, it can

be seen in Figure 5.5(d) that for the manipulator described by the parameters in Table 5.1

that the manipulator workspace has many configurations where its first two flexible modes

are in-phase with one another.

As shown in Figure 5.6, NCF stability is calculated across the workspace where higher
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Figure 5.5: In-phase regions (shown in yellow) for a manipulator workspace under Jacobian
inverse control. (a) First, (b) second, (c) third flexible mode, and (d) the total in-phase
region for the first and second modes; the union of (a) and (b). Manipulator configurations
shown in red are found in Table 5.2. Coordinates are in the rigid-manipulator workspace.

values are indicative of more robust configurations (with Figure 5.7 showing regions of
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high NCF robustness). While the robustness is dependent on both the plant model and the

servo gain used in the analysis, there is a clear difference in performance between locations

with high and low stability margin. Similarly, in Figure 5.8, a surface can be generated for

each flexible mode in the system using the modal passivity index, with approximate RAC

postures shown in Figure 5.9. It can be seen that features in the modal-based robustness

surfaces appear in the coprime factorization surfaces. The relationship between the com-

prime factor-based robustness metric and the modal stability indices can be seen in the GAP

metric [84] between the rigid body excavator system and the total flexible system, shown

in Figure 5.10 for both Jacobian transpose and inverse control. The disparity in scale be-

tween the two control architectures can likely be attributed to the difference in strucutre of

the Jacobian inverse control compared to transpose control and the gain limitations inverse

control has to maintain stability [85] (also, although likely to a lesser extent, transpose

control has an amount of guaranteed asymptotic stability [86]). However, the regions of

low robustness correspond to high GAP in the workspace, making these robust postures

ones where the flexible system “close” to the desired rigid one. Utilizing the relationship

between the two robustness metrics established in the previous chapter it becomes possible

to only use the modal analysis wi metric to perform posture optimization [87].

Figure 5.6: εmax calculated across the manipulator workspace.(a) is the curve associated
with Jacobian transpose control and (b) is associated with Jacobian inverse control.
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Figure 5.7: Regions of high NCF robustness for Jacobian (a) transpose and (b) inverse
control, shown in red.

5.4 Manipulator Configuration Optimization

Due to the manipulator being on a mobile base, there is a planar redundancy between the

x axis position in world frame and the x axis position of the manipulator end-point in the

manipulator’s workspace. It is then possible to reconfigure the position of the manipulator’s

mobile base in order to put the manipulator’s goal position in a position with a higher

stability margin. The variation of stability margin with end-point position for a given yed is

shown in Figure 5.11. Mathematically, this redundancy can be represented as

q̃d = argmax
qd∈{Θ:ye=yd}

V (qd) (5.9)

where Θ is a set of arm configurations that realizes Oed [54]. Here, the objective function

V (qd) is defined as

V (qd) =
m∑
i=1

αiwi(qd) (5.10)

To maximize computational ease (as compared to the calculations for the NCF sta-

bility margin), the use of w1 will be used to optimize the base position under Jacobian

nullspace control for redundant manipulators. From Figure 5.11 it can be seen that the
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Figure 5.8: wi Robustness metric for the flexible modes of the manipulator system under
Jacobian (a)-(c) transpose control and (d)-(f) inverse control. Each row corresponds to
successive flexible modes. With mean natural frequencies of: 3.0872 Hz, 13.1392 Hz, and
22.4394 Hz respectively.

curves for εmax and w1 follow the same general shape, so there is not a clear performance

increase between using one or the other. The update law for the redundant base parameters

[xmobile,d, θ2d, θ3d] is:

∆qd = S(I − J+
BJB)kξξ, S =

 1 O3x2

O4x1 I2x2

 (5.11)

77



kξ is a positive gain matrix used to selectively damp the augmentation of the nullspace

for each coordinate, and ξ is the gradient of the objective function, (Equation 5.10). The

Jacobian used to map the redundant parameters to the manipulator end-point, JB, is defined

as JB ∈ <2x3 =

1

0
Jv

.

While the use of a weighted sum of flexible modes will violate the concavity of the

objective function, binary weights can be used to select which of the flexible modes is

being optimized against. In the case of the proposed system in this study, the first flexible

mode is at a very low frequency, so we will use the following α parameters: α1 = 1,

α2 = 0, α3 = 0 for m = 3 and n = 2. For the given objective function its gradient ξ is

given by:

ξ =
∂

∂qBT

(
m∑
i=1

αiwi(q)

)
=

[
∂

∂xmobile

(
m∑
i=1

αiwi(q)

)
∂
∂θ2

(
m∑
i=1

αiwi(q)

)
∂
∂θ3

(
m∑
i=1

αiwi(q)

)]T (5.12)

Executing the gradient of the objective function for a particular parameter ql ∈ Sqd, yields:

∂V (q)

∂ql
=

m∑
i=1

αi
∂wi(q)

∂ql
(5.13)

with
∂wi(q)

∂ql
=

n∑
a=1

(
n∑
b=1

(
∂[Ri +RT

i ]ab
∂ql

νb

)
νa

)
(5.14)

where [Ri + RT
i ]ab is the element in the ath row and bth column of the matrix given by

Ri +RT
i , and ν ∈ <n is the eigenvector associated with λmin(Ri +Ri

T ). Derivation of

this gradient is shown in Appendix C.
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5.5 Results

Simulations of the nonlinear manipulator system were conducted in Matlab (Mathworks)

using an RK4 numerical integrator. The integration step of the MATLAB simulation was

selected to be 0.005 second (i.e., 200 Hz), which is significantly higher than the resonant

frequencies of the flexible system and its closed-loop control bandwidth. Changing the

end-point position in the workspace, one can improve the stability of the end-point control

of the manipulator system as illustrated in Figure 5.11. Applying both εmax and wi stability

margins to two discrete points in the manipulator workspace, shown in Table Table 5.2, we

can see an improvement in convergence and when going from a position of low robustness

to high robustness. The results of optimizing the mobile base position with Jacobian inverse

control are shown in Figure 5.12 using two discrete positions, shown in Table 5.2 based on

their w1, shown in Figure 5.8(d). It can be seen that there is better performance for the

optimized position that has a higher robustness.

Table 5.2: Controller Stability Margins Optimization Positions. *See Figure 5.5 for
workspace end-point positions and postures

Posture A B

xdesired
0.00m (inertial) 0.00m (inertial)

−0.1733m (workspace)∗ 1.32687m (workspace)∗

ydesired
1.60m (inertial) 1.60m (inertial)

1.0870m (workspace)∗ 1.0870m (workspace)∗

xmobile 0.00m −1.50m
εmax 0.2869 0.3826

w1 −0.2969× 10−3 −0.0209× 10−4

w2 −0.0308× 10−3 −0.0683× 10−4

w3 −0.001× 10−3 −0.3105× 10−4

The same phenomena can be seen when moving the manipulator mobile base to change

the position of the end-point in the workspace without changing its position in the inertial

coordinate space. This can be seen in Figure 5.13. Moving the manipulator base according

to the trajectory generated through nullspace augmentation, shown in Figure 5.13, does
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excite some base oscillation and end-point error. However, by moving the system from

a configuration of low robustness to one of high robustness, manipulator stability can be

achieved.

5.6 Contribution of Work

The use of the coprime factorization-based stability margin and modal decomposition based

stability margin allows for end-point feedback control robust to model variation in base

oscillations. When employed alongside the redundancy introduced by the mobile base of

the excavator, configuration optimization is able to position the end-point of the excavator at

the desired target position while still utilizing a robust arm configuration without explicitly

including the undercarriage flexibility in the controller. As long as the configuration for

the manipulator is chosen to have a high stability margin against induced undercarriage

oscillation, the feedback system is stable and does not excite unstable vibration modes.

This work has been published in the inaugural issue of Letters in Dynamic System

Control, [88].
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Figure 5.9: Approximate robust arm configuration curves curves for the flexible modes of
the manipulator system under Jacobian (a)-(c) transpose control and (d)-(f) inverse control.
Each row corresponds to successive flexible modes. With mean natural frequencies of:
3.0872 Hz, 13.1392 Hz, and 22.4394 Hz respectively.
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Figure 5.10: GAP metric for Jacobian (a) transpose and (b) inverse control.

82



-3 -2 -1 0 1 2 3

End-Point X-Position [m]

0.3

0.35

0.4

e
m

a
x

-2

-1

0

1

w
1

10-4

0.3827, Max e
max

0, Max w
1

     Posture A          Posture B

(a)

-3 -2 -1 0 1 2 3

End-Point X-Position [m]

0.3

0.35

0.4

e
m

a
x

-2

-1

0

1

w
1

10-4

0.3827, Max e
max

0, Max w
1

     Posture A          Posture B

(b)

Figure 5.11: Optimization curves for (a) Jacobian transpose control and (b) Jacobian in-
verse control along the desired yd. Due to the presence of the second and third flexible
modes, εmax is always less than its maximum of 0.3827.
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Figure 5.12: Base oscillations for the chosen optimization positions using Jacobian inverse
controller. (a) is x axis oscillation, (b) is y axis oscillation, and (c) is the angular oscillation
of the manipulator base.

83



0 2 4 6 8 10 12 14 16 18 20

Time [s]

-0.1

0

0.1

0.2

E
rr

o
r 

[m
]

(a)

e
base motion

e
stationary

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-0.1

0

0.1

0.2

E
rr

o
r 

[m
]

(b)

e
base motion

e
stationary

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-4
-2
0
2
4

B
a

s
e

 O
s
c
. 

[m
] 10-3

(a)

x
base motion

x
stationary

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-3

-2

-1

0

1

B
a

s
e

 O
s
c
. 

[m
] 10-3

(b)

y
base motion

y
stationary

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-0.2

0

0.2

B
a

s
e

 O
s
c
. 

[r
a

d
]

(c)

base motion

stationary

0 2 4 6 8 10 12 14 16 18 20

Time [s]

-2

-1

0

x
m

o
b

ile
,d

 [
m

]

Figure 5.13: End-point position error (center) and base oscillation (right) using Jacobian
inverse controller with and without base position adjustment. Base position adjustment
changing from posture A to posture B using the base trajectory shown left during end-point
positioning (shown in blue). Without base position adjustment (shown in red) end-point
positioning around Posture A.
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CHAPTER 6

DEGENERATE MOBILE ROBOT INVERSE KINEMATICS

6.1 Problem Description

The class of robots addressed in this chapter are termed degenerate by the definition in

section 2.3, but are also required to be over-actuated. This requirement comes from the

need for the system to be instantaneously configurable and from the power transmission

ability four driven wheels provides. The foundational difference between the use of these

degenerate structures and the classical offset structures that the lack of longitudinal offset

in the wheel structure prevents the decoupling of the two components of the system angular

velocity - the reorientation of the wheel with respect to the world frame and with the robot

frame - at the velocity level. Further, the redundancy in zero-caster offset wheel structure

prevents the independent selection of the angle of the wheel with respect to the world frame

and the robot. This is evident in a loss of rank in the wheel Jacobians and suggests a change

of state variables and use of a nonlinear solution.

Using an analytical inverse kinematics solution, the singularities from the matrix-inversion

solution are avoided and the joint states for the wheel structures are solvable. While robots

of similar structure have been designed, [89], considerations in their methodologies focus

on generating specific modes of operation rather than solving the inverse kinematics for the

system.

6.2 Mobile Robot Platform Model and Kinematics

6.2.1 Psuedo-Omnidirectional, Nonholonomic Drive Mobile Robot Platform

The development of a reconfigurable pseudo-omnidirectional mobile platform is presented

in this section Figure 6.1. Omnidirectionality and reconfigurability are enabled through a
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Figure 6.1: The reconfigurable pseudo-omnidirectional mobile platform

transforming chassis and four uniquely developed synchronous drive modules (SDM).

The development of the reconfigurable chassis with lateral transformation highlights

the necessity of wheel structures that can reorient themselves without needing to move in

the plane (unlike in traditional caster wheels [90]). If one considers thse use of wheel struc-

tures that do not satisfy this property, it is clear that as the chassis attempts to expand, there

is a chance for the system to bind mechanically and damage the chassis.

The robot platform consists of four wheel modules that behave, dynamically, similar to

a centered-orientable wheels mounted on two sliding mechanisms that change the footprint

of the robot. These wheel structures are controlled locally with proportional-integrating

controllers to orient and set the speed of the wheel structure with one “primary” and one

“secondary” wheel like in [91]. Simplifying the interface of these wheel modules is possi-

ble thorugh treating them like centered, orientable conventional wheels.
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Synchronous Driving Module (SDM)

The developed SDM is categorized as a centered orientable concentional wheel. The zero

caster offset property makes the robot pseudo-omnidirectional, requiring reorientation of

the wheel structures The choice of the SDM design and the key components are shown in

Figure 6.2. Also, a simplified illustration of the SDM mechanism is presented in Figure 6.3.

The size of an SDM is 208.8 mm × 248.5 mm × 380.7 mm. Each SDM consists of the

upper static part and the lower rotary part. The mounting bracket in the upper back of the

module is fixed to the main chassis so the upper SDM doesn’t move relative to the platform.

The lower SDM is free to rotate about the central vertical axis (i.e., zero caster offset).

Instead of a single motor generating torque about the rotating axis as widely seen in the

conventional wheel design, this particular SDM uses two synchronous and independently

driven wheels driving in the opposite directions at the same speed (one driving forward, the

other driving backward) to perform the steering. Because the ground condition is indoors

and known, to minimize stress on the shafts of the harmonic drive, the center wheel is

passive and takes the majority of the load without possibility of slip from the drive wheels.

As a result of introducing this mechanism, the SDM can re-orient itself without inducing

any moment to the chassis, which minimizes disturbances to the positioning accuracy of

the chassis with the conventional powered caster wheels.

Each active side wheels is independently driven by a servo motor (Sanyo Denki, Japan,

R2GA04008DCS01, rated output: 80W) with an embedded incremental encoder. A load

cell located at the top of the SDM is integrated to measure vertical loading force to the

wheels. The Elmo Gold DC Whistle (Elmo, Israel) supporting EtherCAT communication

protocol is selected as the motor driver.

SDM Validation

Tracking a square-corner path without orienting the chassis is shown in Figure 6.4. Re-

orientation of a wheel is achieved by rotating two active wheels to the opposite direction
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Figure 6.2: Rendering of Synchronous Drive Module, labeled, with drive wheels removed
to highlight harmonic drive mechanism.

Free Joint Connec�on to the Chassis

Center Wheel (passive)

Ac�ve Wheel

Ac�ve Wheel

Figure 6.3: SDM Schematic and Profile (Rotated by 90◦ counterclockwise)
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to each other, inducing vertical rotation in the lower part of the wheel module. Since the

vertical rotational axis is a free joint, no torque associated with the reorientation of the

wheel is transmitted, minimizing unwanted disturbance to the chassis. While similar wheel

mechanisms have been developed [52], they employ a driven steering axis that could exert a

reaction torque on the chassis. While the proposed mechanism cannot revolve indefinitely

due to limitations of the absolute encoder, intelligent choice of system trajectory could

minimize the need to reorient the whole mechanism.

An Optitrack motion capture system was used to capture the world-frame motion of the

robot. Figure 6.5 shows linear velocities, angular velocity, and one of the wheels steering

angle, corresponding to each of the scenes shown in Figure 6.4. In Scene 3, the robot

chassis was stationary, and the wheels were re-oriented (the steering angle was programmed

to come back to the neutral angle first, and then move to a desired angle). During the wheel

reorientation, the chassis merely created angular velocity of 0.0012 ± 0.0015 rad/s. Even

for the entire square-corner path tracking, from Scene 1 to 5, the angular velocity was -

0.0025± 0.0662 rad/s. In other words, the chassis’s orientation was kept almost unchanged

throughout the motion.

Figure 6.4: Reorientation of wheels and tracking of a square corner test trajectory

Reconfigurable Chassis

The movable parts of the chassis are two aluminum slider assemblies sliding on the linear

guides on the top of the main chassis as in Figure 6.6. Each slider is independently driven

by a servo motor (Sanyo Denki, Japan, R2GA04008DCP00E01, rated output: 80W) along

a ball screw with a screw nut bracket attached to the slider. This sliding mechanism works
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Figure 6.5: Wheel orientation and captured chassis motion when tracking a square corner
path. Scene numbers correspond to Figure 6.4.

as a prismatic joint to allow 1 degree of freedom (DOF) motion, illustrated in Figure 6.7.

Each slider has a maximum displacement of 100 mm which adds up to a total of 200 mm

lateral reconfiguration range.

The SDMs are mounted on the sliders as shown in Figure 6.9. Each slider holds two

SDMs on each side with one facing front and the other facing rear. Four SDMs are labeled

as Module 1 through Module 4, and two sliders are Slider 1 and Slider 2. To perform the

chassis reconfiguration when the mobile platform is stationary, Module 1 and Module 2 are

aligned towards the left, whereas Module 3 and Module 4 are aligned towards right. Each

SDM pair drives at the same velocity as the attached slider to complete the extension or

retraction motion. To reconfigure the chassis while the mobile platform is in motion, the

slider velocity is added to the current SDM motion using the described kinematic formula-

tion.
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Table 6.1: Robot Geometry Parameters

Variable Value Description
r 50 [mm] Wheel Radius
l 240 [mm] Robot Half-Width
a 270.5 [mm] Robot Half-Length

Mobile Platform Structure

The mobile platform has four driving modules as the majority of conventional mobile

robots do. A cubic frame designed as the main chassis of the platform where four SDMs

can be attached to consists of one base plate, six aluminum extrusions, and one top plate.

System hardware such as motion controller, onboard PC, power distribution panel, and

lead-acid batteries are compactly organized within the open space of the chassis. As shown

in Figure 6.6 and Figure 6.8, two linear guides are installed on the top plate to enable the

chassis reconfiguration.

The size of the main chassis is 264 mm × 483 mm × 387.5 mm. The overall platform

length (747 mm) and the minimum width (483 mm) are determined by the size and place-

ment of four batteries, whereas the height (406.5 mm) is determined by the height of the

SDM.

The goal of introducing reconfigurability to the robot platform was to give the operator

or control system the ability to center the robot’s contact pad with the ground under the load

of the robot. This would minimize the tipping risk involved in moving large loads about

a confined warehouse space. The choice to include two sets of expansion mechanisms

over a single one was made to increase the available degrees of freedom to compensate a

misplaced load.

6.2.2 Reduced Modeled Mobile Robot Platform

In the previous section, the SDM wheel modules were described to function similarly to the

centered, orientable conventional wheels. For this one can treat the platform as having the
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Figure 6.6: Movable Sliders on the main chassis
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Figure 6.7: General function of robot expansion mechanism

Figure 6.8: Components on the main chassis
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Figure 6.9: Rendering detailing the enumeration of both the drive modules and the sliding
mechanisms

Figure 6.10: Mobile platform dimension: extended and retracted
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same model as the platofrm shown in Figure 6.11. The orientation of the robot in inertial

coordinates ({W} frame) is denoted by ψ and is the angle of the robot-i vector ({RB}

frame) to the inertial-I vector. This example is a consideration of the robot designed in

Section II under no transformation and reducing each SDM to a centered, orientable wheel.

Each of the robot’s wheels is centered on a corner of the robot’s chassis, shown in Fig-

ure 6.11. The chassis is 2l wide and 2a long, with wheels of radius r that are offset from

the steering interface by h distance. Each wheel has a local, body-fixed coordinate system

that is coplanar with the wheel plane which is offset from the robot coordinate system by

ϕi radians, denoted by the Ŵm prefix, where m is the wheel number.

The proposed analysis will be done so as to derive a set of equations to generate goal

Figure 6.11: The inertial reference frame and body-fixed coordinate frames for the mobile
robot

values for the steering angle and drive speed of each wheel as functions of the robot’s de-

sired planar velocity, vc =
[
vx vy ω

]T
so that they may be used as set points for local

controllers at the wheel-level that ensures the positioning and speed of each wheel. Inci-

dentally, this creates a lack of control over the rate of change of the steering direction of

each wheel, so even if the desired parameters from the inverse kinematic method could be

successfully retrieved using inverse Jacobian methods, post-processing would need to be

conducted in order to retrieve the data that is useful to the control of this robot.
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6.2.3 Kinematic Analysis

Kinematic analysis is conducted on a degenerate mobile robot shown in Figure 6.11. On

this robot the controllable parameters are the steering angles of its wheels, denoted by ϕi,

and the rotational speed of its wheels, θ̇i. The goal of this analysis is to derive closed form

solutions to each of these values so that they may be used in conjunction with a low-level

servo controller that will be orienting and setting the wheel speeds.

Following the method employed by Yi, the analysis will begin using open chain kine-

matics to relate the wheel mechanism kinematics to the robot-center velocity [39]. The

point of contact between the wheel and the ground can be instantaneously modeled as a

higher-order pair that allows for rotation and translation with a single link between the

steering axis of the wheel to the robot-center [37].

Each of the wheels makes an open kinematic chain with the center of the robot, there-

fore the system can be treated as a set of four parallel manipulators. The result is a set of

vector equations for each of the wheel structures (omitted for space). ωi, the robot angular

velocity, can be defined as the sum of the rate of change of the steering angle, ϕi and the

rate of change of the angle of the wheel with respect to the inertial frame. ηi, therefore

ωi = η̇i + ϕ̇i. The result of substituting this for each wheel into the parallel-chain velocity

equations is a set of matrix equations that represent the relationships between the kinematic

variables in the system:


vx

vy

ω

 =


−r sinϕ1 a a

r cosϕ1 l l

0 1 1



θ̇1

η̇1

ϕ̇1

 (6.1)


vx

vy

ω

 =


r sinϕ2 −a −a

−r cosϕ2 l l

0 1 1



θ̇2

η̇2

ϕ̇2

 (6.2)
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vx

vy

ω

 =


r sinϕ3 −a −a

−r cosϕ3 −l −l

0 1 1



θ̇3

η̇3

ϕ̇3

 (6.3)


vx

vy

ω

 =


−r sinϕ4 a a

r cosϕ4 −l −l

0 1 1



θ̇4

η̇4

ϕ̇4

 (6.4)

It can be seen that the matrix equations (Equation 6.1) through (Equation 6.4) should

map the wheel parameters – each mechanism’s rates of rotation about its axes – to the de-

sired robot velocity. Normally at this point Yi suggests the selection of actuated joints as

independent variables so that the forward kinematics of the system can be derived for the

remaining joint variables [39]. While this is a useful method for deriving the kinematics

of a redundantly actuated mobile robot, the controllable joint parameters are the steering

angle, ϕi, and the drive speed of each wheel mechanism, θ̇i, so developing a relationship

for the steering rates of the wheel mechanisms would not serve the necessary purpose. For

this, the kinematic relationships themselves can individually be examined in order to derive

the working relationship between the robot velocity and the parameters of interest because

the wheel mechanisms are decoupled from one another. This is to say that the selection of

variables ϕ1 and θ̇1 have little impact on the selection of the variables ϕ2 and θ̇2 insofar as

each pair of variables satisfies the system of equations represented in (Equation 6.1) and

(Equation 6.2).

In order to find a pair of variables to satisfy any of the matrix equations, the system

needs to be corrected so as to properly parallel the actuated mechanics of the robotic

system. The rate at which the wheel mechanism rotates within the inertial frame can be

described as the sum of two rates of rotation η̇i and ϕ̇i. The former, being the angular dis-

placement between the drive direction of the wheel mechanism and the inertial coordinate

frame, is non-actuated due to zero-length caster-offset in the mechanism and exists as a
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consequence of the robot’s planar motion within the inertial reference frame. For this, it

becomes impossible to decouple the steering rate of the wheel mechanism, ϕ̇i, from η̇i;

this is further evident in the redundant columns in the kinematic relationships shown in

(Equation 6.1) through (Equation 6.4). Furthermore, the rotation rate of the wheel relative

to the robot-frame, ϕ̇i, is unrelated to the rotational speed of the robot based on the kine-

matic relations above, therefore the redundant columns in these relations can be removed

and the systems can be reshaped as shown in (Equation 6.5) - (Equation 6.8) [47]. This al-

lows for the inverse kinematics relationship between the robot twist and the desired wheel

mechanism parameters to be actualized.

vx
vy

 =

−r sinϕ1 a

r cosϕ1 l


θ̇1

ω

 (6.5)

vx
vy

 =

 r sinϕ2 −a

−r cosϕ2 l


θ̇2

ω

 (6.6)

vx
vy

 =

 r sinϕ3 −a

−r cosϕ3 −l


θ̇3

ω

 (6.7)

vx
vy

 =

−r sinϕ4 a

r cosϕ4 −l


θ̇4

ω

 (6.8)

6.2.4 Inverse Kinematics Solutions

Proceeding with the linear equations shown in (Equation 6.5)-(Equation 6.8), singularities

(where the determinate of the matrix portion equals to 0) can be identified at configura-

tions that place the drive axes of diagonal pairs of wheels colinear and passing through

the geometric center of the robot platform. Mechanically, this would occur when ϕ1 =
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ϕ3 = arctan
(
−a

l

)
or when ϕ2 = ϕ4 = arctan

(
a
l

)
, shown for ϕ1 in Figure 6.12. This

couples the planar x-axis and y-axis velocities of the wheel mechanisms, locking the robot

into traveling along those diagonals in the case of only one pair in singularity, or force

the robot into rotation in the case of both pairs in singularity. At any of these angles the

inverse-matrix based solution for inverse kinematics does not exist. Note that the preceding

Figure 6.12: Singularity condition for ϕ1 = ϕ3 = arctan
(−a
l

)
. (a) is graphical represen-

tation of singularity, and (b) shows the condition number of the matrix (Equation 6.5). As
the singularity angle is approached, the condition number peaks.

formulation is well-known in mobile robotics literature. The joint-variable solution of this

system requires consideration.

Upon re-arranging the systems as pairs of linear equations, they are solved pair-wise to

obtain the inverse kinematics solution:

θ̇1 = ±1

r

√
(vx − aω)2 + (vy − lω)2 (6.9)

θ̇2 = ±1

r

√
(vx + aω)2 + (vy − lω)2 (6.10)

θ̇3 = ±1

r

√
(vx + aω)2 + (vy + lω)2 (6.11)

θ̇4 = ±1

r

√
(vx − aω)2 + (vy + lω)2 (6.12)

ϕ1 = ∓2 arctan
±2(lω − vy) + 2

√
(vx − aω)2 + (vy − lω)2

2(vx − aω)
(6.13)
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ϕ2 = ∓2 arctan
±2(lω − vy) + 2

√
(vx + aω)2 + (vy − lω)2

2(vx + aω)
(6.14)

ϕ3 = 2 arctan
2(vy − lω)∓ 2

√
(vx + aω)2 + (vy + lω)2

2(vx + aω)
(6.15)

ϕ4 = 2 arctan
2(vy − lω)∓ 2

√
(vx + aω)2 + (vy − lω)2

2(vx − aω)
(6.16)

These direct solutions joint-variable solutions allow for the resolution of joint parameters

along the singularity angles from the inverse-matrix based solution. For velocity com-

mands that would require the platform be put in a singularity state, the direct solutions

will resolve to correct sets of joint angles. Note that while this formulation is successful

in identifying the inverse kinematics of a degenerate mobile robot system, it only works

for quasi-static system descriptions. Consideration of second-order dynamics will require

more consideration into the transit of each of the desired system states.

6.3 Results

6.3.1 Qualitative Evaluation of Solutions

As detailed above in (Equation 6.9) to (Equation 6.16), when the 2× 2 systems are solved

with an equation solver, the result is sets of two bifurcating equations that represent the

positive and negative solutions of the steering angle and the drive speed of the centered,

orientable wheel.

In left of Figure 6.13(a,c) it is seen that as the desired velocity tends along each of the

XY-axes the function saturates at 0 radians or −π
2

radians to align the wheel with the j

and i axes of the robot body respectively.This surface has the range of 0 to −π
2

radians (Z-

axis top-to-bottom), which is acceptable given the orientation of the wheel reference frame,

this would orient the wheel into the first quadrant of the robot coordinate frame and allow

the wheel to properly align itself with the desired translational velocity. The “negative”

solution, shown on right of Figure 6.13, shows the same geometry, but the scale goes from
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Figure 6.13: Steering Angle and Drive-Speed Solutions for Wheel 1 of Example Robot
under Strict Translation (Left: postive pair of solutions, Right:negative pair of solutions)
(ω = 0)

π
2

to π radians (Z-axis bottom-to-top). This suggests that for the same input velocity the

output steering angle would be in the third quadrant along the same reference angle as the

positive solution, but on the opposite angle (a π radian offset).

In Figure 6.13(b,d) it can be seen that for a strict robot translation the surface forms an

upward facing infinite cone that describes the required rate of rotation of wheel 1 for a given

translation command (a monotonically increasing, concave surface). When considering this

as a possible drive-speed solution to match with a steering angle solution, it can be seen

that each solution for the steering angle is not compatible with each solution for the wheel

drive-speed. For example, the solution shown in Figure 6.13(d) would not generate the goal

velocity if used with the positive steering angle solution shown in Figure 6.13(a). For this

it becomes essential that the solutions are matched properly pairwise in order to provide an
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accurate motion solution.

6.3.2 Quantitative Results of Experimentation

Data was collected with the Optitrack system at about 16 samples a second. Encoder data

was sampled at the speed of the robot’s control loop, about 10Hz. The path followed by the

robot is shown in Figure 6.14; this was processed to get the robot’s planar twist by means of

numerical differentiation. The robot planar velocity was reconstructed using the collected

encoder data.

From the provided figure, the planar mobility of the robot can be qualitatively assessed.
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Figure 6.14: Motion Capture of Robot Motion Under Control, Color Varies with Time as
Red→ Green→ Blue

Point “A” on Figure 6.14 refers to the ICR-based motion the robot is capable of. As the

robot moves about the curve its orientation remains consistent with its direction of travel.

This is similar to the point of interest “C” where the cusp shown in blue is the result of

the robot changing directions and ICR locations instantaneously, illustrating the ability

for this robot to change directions of travel without turning around and without utilizing
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omnidirectional motion. While the robot can change its direction of travel instantaneously

using the ICR-based motions, the point of interest “B” shows a closed loop made by the

robot when it was traveling while maintaining orientation toward the negative-Y direction.

The resulting velocity and angular velocity profiles are shown in Figure 6.15. While
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Figure 6.15: X, Y, and Angular Velocities of the Robot and the Motion Capture

numerical comparisons would yield inconclusive results, it is important to note that the

waveforms have similar patterns, but are shifted in time from one another, which can be

attributed to mismatches in purported data rate wduring reconstruction. In order to provide

some metric for the likeness of the two data sets, a cross correlation was computed for each

pair of velocity profiles. The zero-lag correlation value for each set of signals is a metric of

the similarity between the reconstructed velocity command from the encoder data matches

the commanded velocity. The presence of non-zero lag magnitude on the cross-correlation

plots implies that there is a difference in sampling time between the two signals.
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Figure 6.16: Cross Correlation of the Commanded and Captured X,Y, and Angular Veloci-
ties, sampled at about 10 Hz.

From the cross-correlation in angular velocity shown in right Figure 6.16, it can be seen

that there is a strong, positive correlation at zero lag with a cross-correlation coefficient of

0.873m, where 1.0 is a total positive correlation. This implies that there is some variation

between the two signals, but as the two are shifted relative to one another, there is less

correlation. This ultimately implies that the signals are consistent with one another.

The top row of Figure 6.16 are the cross correlations for the x and y velocity respec-

tively. In each, the maximum zero-lag cross correlation coefficient is 0.604 and 0.545,

indicating there is correlation between the signals. The wider bands as the lag is shifted off

of zero indicate there is mismatch in the data rate for either of the signals that is causing

them to have a high correlation at a nonzero lag. This spike at zero still holds statistical

significance as it indicates that there is a similarity in waveform shape between the signals

with no shift in time.

104



6.3.3 Extrapolation to More Degrees of Freedom

The method employed in the kinematic analysis is readily expandable to robots with N

wheel modules or branches in that the other branches are considered to be more parallel

connections between the ground and the center of the robot [37]. While the size of the total

system grows with the addition of more wheels, it can be seen that the complexity of the

problem remains the same as each additional wheel, assuming it is the same single link

wheel mechanism as with the robot in this paper; the number of 2×2 systems increases but

the size of the systems remains the same. Even if the additional wheels have some form of

extra link between the center of the robot and the wheel contact point, the system will grow

in complexity proportional to the number of links and would present itself as more terms

in the velocity equations and would increase the domain of solutions to the system (which

could then be limited by other factors or parameters).

Being that this method uses first order dynamics to construct a system of equations that

relates the velocity of a single wheel structure to the velocity of the center of the robot, it is

possible to use the construction of moving reference frames in order to capture the motion

of parts of the robot with respect to the chassis or some other stationary part of the robot.

In describing a reference frame as the addition of some linear velocity term (either a linear

velocity or the effect of a rotation at some distance), it becomes as simple as subtracting

the non-joint term to create some augmented robot twist that has now taken into account

the motion of the parts of the robot so that the remaining velocity can be made up by the

motion of the wheel module.

6.4 Contribution of Work

This work is an expansion on pre-existing inverse kinematics methods for mobile robots

that is tolerant to singularities that would arise from degenerate wheel structures being the
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primary form of locomotion for the robot. This analytical approach allows for a closed

form description of robot configuration parameters for an otherwise unsolvable kinematic

system. The direct solution provided in this work does not have the singularity problems

the inverse-matrix based solution does.

This work has been published in Mechanism and Machine Theory, [92].
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CHAPTER 7

CONCLUDING REMARKS

In this thesis, degenerate mobile robot inverse kinematics were analyzed and the underlying

concept of stabilizing a system with flexible modes is addressed. A candidate degenerate

mobile robotic platform is introduced and its inverse kinematics were solved analytically

so as to avoid numerical singularity found with matrix methods. These inverse kinematics

were experimentally validated using motion capture experiments. Introduced as a compos-

ite mobile manipulator system, the mobile robotic base, dynamically, is abstracted away to

an equivalent flexible base. The robustness of the manipulator is described using two met-

rics: the normalized-coprime factor stability margin and the modal passivity index. The

former describes energy transmission through a balanced description of the system and

therefore can determine a system’s resilience to external disturbance. The latter is a mea-

sure of a particular mode’s passivity. Between these two values it is shown that it is possible

to determine postures that are robust to the induced oscillations in the flexible base.

Numerical experiments highlighted the gap in knowledge regarding the application of

these metrics to manipulator systems. As such, the conditions defining when a system is

in a robust posture were found, as well as those to remain in a robust posture. A constant

value for rigid systems is found for the NCF stability margin and found that for SISO flex-

ible systems this is the minimum value for minimum phase systems. Application of these

metrics to a manipulator system reveals the utility of redundancy in the composite system

that allows the system to pose itself in a more robust posture while maintaining the same

end-point position.

The research described in this dissertation can be summarized in the list below.

• Theory surrounding the minimum NCF stability margin for robust configurations of

the the manipulator. Conditions that generate the robust configuration are quanti-
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fied as well as perturbations in the end-point that keep the manipulator in a robust

posture. The NCF stability margin for rigid systems is proven to be constant to be

equal to 1√
4+2
√

2
. This value was shown to be the minimum NCF stability margin

for flexi-rigid systems in robust postures. The special case involving simultaneous

diagonalization of modes in the system is presented and analyzed, with consideration

for asymmetrical rigid modes.

• Several case studies highlighting the use of the aforementioned properties were pre-

sented for the RR, RP, and parallel-drive manipulators mounted upon flexible bases.

The case of a flexible link within a rigid system is explained to never be passive due

to internal dynamics.

• Stability margins were used with Jacobian inverse nullspace augmentation to pose

the mobile manipulation system in a locally optimal posture so it can complete its

positioning task while maintaining low amounts of induced base oscillation. Closed

form solutions for the gradient of the modal space stability index with respect to

the state variables are derived and used for the objective function in the nullspace

augmentation.

• The transformable degenerate pseudo omnidirectional wheeled mobile robotic plat-

form is introduced and it its shown that existing matrix methods will not solve its

inverse kinematics. Due to this the inverse kinematics are solved analytically and

used to define the necessary wheel states to satisfy the desired twist. Motion capture

experiments are performed to validate the generated motion commands given to the

platform. A high cross correlation between the captured robot motion and provided

velocity commands shows that the generated inverse kinematics are valid solutions.
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7.1 Future Work

7.1.1 Extensions to Other Systems

The context of the work in this thesis focuses on the aggregate flexible-rigid system gen-

erated through mounting a rigid system upon a wheeled mobile base (presumably with

some suspension, thus creating the flexible base). The redundancy here is provided by the

wheeled base, and in this work we showed that we can use this to better pose the manip-

ulator to increase its robustness. Extending this concept to other systems would look at

systems with virtual elastic bases: namely a manipulator on a UAV or a manipulator on

satellite. The virtual flexibility originates from position control of the base in space; as the

base is perturbed either by the environment or by excited motion, the position controller

will correct it, introducing an oscillation through the system akin to the base flexibility seen

in this work. While the frequency of the virtual flexibility of this oscillation may already be

outside the control bandwidth for the manipulator, there are some situations where this may

not be the case and control like this would be valuable. Investigation as to the validity of

the modally decomposed transfer function for this application would need to be conducted

as the dynamics for these systems are inherently nonlinear.

7.1.2 Extensions to Motion Control

Recent work in motion planning uses Riemmanian geometry to generate an optimal path

through a known environment in accordance with various policies [93, 94]. These policies

can be anything from a cost function to a potential field relaying obstacles in the local

environment. Implementing the stability margins presented in this work along with RMP

will allow for the optimal tracking through the “robustness field” in a similar fashion to

the Jacobian inverse nullspace augmentation work conducted with the remote excavation

system, but will enable the use of other control schemes aside from the Jacobian inverse

control.
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7.1.3 Further Analysis of Flexible System NCF Stability Margin Solution

The work conducted in this thesis took a numerical approach to the solution of the flexible

system NCF stability margin. For the SISO case a good approximation was found and

was used to get an idea of how the solution looked, however there was no real progress

made for the MIMO case. The NCF stability margin requires the solution of two algebraic

Riccati equations and the quadratic nature of these equations makes a closed form solution

often difficult. For that it may be beneficial to look at the geometry of the equations [95] or

revisiting any of the invariant subspace solution methods using Sylvester’s Law of Inertia

[96, 97] to help estimate the spectra of the Hermitian (perhaps even the Gershgorin circle

theorem may be of assistance).
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APPENDIX A

ROBUST STABILITY MARGIN BY NORMALIZED COPRIME FACTOR

DESCRIPTIONS

Given a plant P̃(s) , krP = M̃−1Ñ, where kr is a scalar servo gain (kr > 0) (as kr

increases, the analysis is performed with higher gain). A system with variation of its left

coprime factors is considered. The transfer function is defined as: Tzw(s) ,

Kc(s)

I

(I+

P̃(s)Kc(s))
−1
) [

I P̃(s)

]
, where Kc is the stabilizing controller for P̃(s). The robust

stability margin, εmax, is

εmax ,

(
inf
Kc(s)

‖Tzw(s)‖∞
)−1

=

√
1−

∥∥∥∥[Ñ M̃

]∥∥∥∥2

H

(A.1)

where ‖A‖H is the Hankel norm of A. Where robustness to modeling error is high when

εmax is large [59].
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APPENDIX B

NUMERICAL VERIFICATION OF SELECTED RESULTS

B.1 Verification of Rigid System NCF Stability Margin

The presented solutions in chapter 3 for the GCARE and GFARE can easily be verified

using the icare command in Maltab (Mathworks). Consider the following cases of rigid

manipulator system with with parameters

1. R0 = 4, with F =
√
R0
−1

= 0.5

2. R0 =

 23.6758 −5.0429

−5.0429 4.6265

, with F =
√
R0
−1

=

 0.220286 0.0805138

0.0805138 0.524423


B.1.1 Case 1: SISO

Given the system structure in (Equation 3.41)-(Equation 3.45), the state space representa-

tion of the SISO case is:

A =

 0 1

0 0

 (B.1)

B =

 0

2

 (B.2)

C =

[
2 0

]
(B.3)

113



The solution to the GFARE, Z, analytically is:

Z =

√2F (R0R
T
0 )

1
4F T F (R0R

T
0 )

1
2F T

F (R0R
T
0 )

1
2F T

√
2F (R0R

T
0 )

3
4F T

 =

 0.70711 1.0

1.0 2.8284

 (B.4)

Using the icare command:

[Zicare,∼,∼] = icare(AT , [],BBT , [], [], [],−CTC) (B.5)

Zicare =

 0.70711 1.0

1.0 2.8284

 (B.6)

And finally, the matrix sign function [65]. Defining the Hamiltonian matrix for the GFARE

and its matrix sign:

Hf =

 AT −CTC

−BBT −A



=



0 0 −4.0 0

1.0 0 0 0

0 0 0 −1.0

0 −4.0 0 0


(B.7)

sign(Hf ) = Hf

(√
H2

f

)−1

=

Sf11 Sf12

Sf21 Sf22

 (B.8)

The solution to the GFARE is given by [98] (Thm 2.2):

Zsign = −Sf21 (Sf22 − I))−1 =

 0.70711 1.0

1.0 2.8284

 (B.9)
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It is clear that these three solutions match for the SISO case. Repeating the above for the

GCARE:

X =


√

2F
−T

(R0R
T
0 )−

1
4F−1 F−T (R0R

T
0 )−

1
2F−1

F−T (R0R
T
0 )−

1
2F−1

√
2F
−T

(R0R
T
0 )−

3
4F−1

 =

 2.8284 1.0

1.0 0.70711


(B.10)

Using the icare command:

[X icare,∼,∼] = icare(A, [],CTC, [], [], [],−BBT ) (B.11)

X icare =

 2.8284 1.0

1.0 0.70711

 (B.12)

Using the matrix sign:

Hc =

 A −BBT

−CTC −AT



=



0 1.0 0 0

0 0 0 −4.0

−4.0 0 0 0

0 0 −1.0 0


(B.13)

sign(Hc) = Hc

(√
H2

c

)−1

=

Sc11 cS12

Sc21 Sc22

 (B.14)

Xsign = −Sc21 (Sc11 − I))−1 =

 2.8284 1.0

1.0 0.70711

 (B.15)
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B.1.2 Case 2: MIMO

Repeating the above section for the new system defined by the MIMO rigid mode and

distribution factor in case 2:

A =



0 0 1.0 0

0 0 0 1.0

0 0 0 0

0 0 0 0


(B.16)

B =



0 0

0 0

4.8094 −0.73838

−0.73838 2.0202


(B.17)

C =

 4.8094 −0.73838 0 0

−0.73838 2.0202 0 0

 (B.18)

The solutions for the GCARE and GFARE become:

Z =



0.31153 0.11386 1.0 0

0.11386 0.74165 0 1.0

1.0 0 6.8016 −1.0442

0 1.0 −1.0442 2.857


(B.19)

Zicare =



0.31153 0.11386 1.0 0

0.11386 0.74165 0 1.0

1.0 0 6.8016 −1.0442

0 1.0 −1.0442 2.857


(B.20)
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Zsign =



0.31153 0.11386 1.0 0

0.11386 0.74165 0 1.0

1.0 0 6.8016 −1.0442

0 1.0 −1.0442 2.857


(B.21)

X =



6.8016 −1.0442 1.0 0

−1.0442 2.857 0 1.0

1.0 0 0.31153 0.11386

0 1.0 0.11386 0.74165


(B.22)

X icare =



6.8016 −1.0442 1.0 0

−1.0442 2.857 0 1.0

1.0 0 0.31153 0.11386

0 1.0 0.11386 0.74165


(B.23)

Xsign =



6.8016 −1.0442 1.0 0

−1.0442 2.857 0 1.0

1.0 0 0.31153 0.11386

0 1.0 0.11386 0.74165


(B.24)

As demonstrated, there is a consistency in solution between three different solution meth-

ods of the ARE’s for the rigid system, thus indicating the validity of the analytical solution.

B.2 Bode Plots for In-Phase Systems

The inclusion of an in-phase flexible mode will improve performance in a system beyond

that of a purely rigid system. This is demonstrated clearly in the NCF stability margin

(Figure 3.3). Furthermore, it is also demonstrable in a classical controls sense. Given an

SISO flexible system P (s):

P (s) =
κ0

s2
+

κ1

s2 + 2ζωns+ ω2
n

(B.25)
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Figure B.1: Bode plots for SISO system with single flexible mode and parameters: κ0 = 1;
ω = 1; ζ = 0.2.

κ1 φm
−1 −110.7801
0 0

2.5 11.0286
5 8.728

7.5 7.4609
10 6.6286

Table B.1: Phase Margin For κ0 = 1; ω = 1; ζ = 0.2

with parameters: κ0 = 1; ω = 1; ζ = 0.2, the bode plots for a range of κ1 can be

generated, shown in Figure B.1. With the phase margins of each of the system shown in

Table B.1. Looking at the phase margins of each system, when κ1 > 0, indicating an in-

phase flexible mode, it has positive phase margin. This means that the in-phase flexible

system can sustain more feedback gain than the rigid system before instability occurs.

Conversely, the inclusion of an out-of-phase flexible mode will always be unstable when

exposed to negative feedback.
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APPENDIX C

DERIVATION OF GRADIENT OF MODAL STABILITY INDEX

Given the classic eigenvalue problem Gν = λν, where G = Ri + RT
i , we can take the

gradient of both sides with respect to qB: ∂G
∂qB

ν+G ∂ν
∂qB

= ν ∂λ
∂qB

+λ ∂ν
∂qB

. Enforcing ν to be

a unit eigenvector, we can use the orthogonality of ∂ν
∂qB

and ν to reduce the number of terms

in the equation. Taking the inner-product of each side with ∂ν
∂qB

yields ∂λ
∂qB

=
〈
ν, ∂G

∂qB
ν
〉

.
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