1,347 research outputs found

    Dipolophoresis and Travelling-Wave Dipolophoresis of Metal Microparticles

    Get PDF
    We study theoretically and numerically the electrokinetic behavior of metal microparticles immersed in aqueous electrolytes. We consider small particles subjected to non-homogeneous ac electric fields and we describe their motion as arising from the combination of electrical forces (dielectrophoresis) and the electroosmotic flows on the particle surface (induced-charge electrophoresis). The net particle motion is known as dipolophoresis. We also study the particle motion induced by travelling electric fields. We find analytical expressions for the dielectrophoresis and induced-charge electrophoresis of metal spheres and we compare them with numerical solutions. This validates our numerical method, which we also use to study the dipolophoresis of metal cylinders.Spanish Research Agency MCI under contract PGC2018-099217-B-I00

    Advances in colloidal manipulation and transport via hydrodynamic interactions

    Get PDF
    In this review article, we highlight many recent advances in the field of micromanipulation of colloidal particles using hydrodynamic interactions (HIs), namely solvent mediated long-range interactions. At the micrsocale, the hydrodynamic laws are time reversible and the flow becomes laminar, features that allow precise manipulation and control of colloidal matter. We focus on different strategies where externally operated microstructures generate local flow fields that induce the advection and motion of the surrounding components. In addition, we review cases where the induced flow gives rise to hydrodynamic bound states that may synchronize during the process, a phenomenon essential in different systems such as those that exhibit self-assembly and swarming

    PROBING AND CONTROLLING FLUID RHEOLOGY AT MICROSCALE WITH MAGNETIC NANORODS

    Get PDF
    This Dissertation is focused on the development of new methods for characterization and control of fluid rheology using magnetic nanorods. This Dissertation consists of five chapters. In the first chapter, we review current microrheologial methods and develop a Magnetic Rotational Spectroscopy (MRS) model describing nanorod response to a rotating magnetic field. Using numerical modeling, we analyze the effects of materials parameters of nanorods and fluids on the MRS characteristic features. The model is designed for a specific experimental protocol. We introduce and examine physical parameters which can be measured experimentally. The model allows identification of MRS features enabling the calculation of fluid viscosity. The MRS of Non-Newtonian fluids with exponentially increasing viscosity is discussed for the first time. In the second chapter, we review the techniques for magnetic nanorods synthesis. We describe a setup and experimental protocol to synthesize nickel nanorods with the desired geometrical properties, in particular, with the controlled length to diameter ratio. We review magnetic systems used for manipulation of magnetic nanoparticles. A multifunctional magnetic rotator is introduced and described in detail in this chapter. We believe that this multifunctional magnetic system will be useful not only for micro and nanorheological studies, but will find much broader applications requiring remotely controlled manipulation of micro and nanoobjects. In the third chapter, we describe the MRS experiments and use the model developed in the first chapter for characterization of magnetic properties of synthesized nickel nanorods. The same setup is used to measure viscosity of microdroplets. We show that the diffraction pattern from the suspension of nickel nanorods aligned in a magnetic field can be rotated by a spinning magnetic field. This effect opens up an opportunity for the MRS using much smaller nanorods. Another practical application of the controlled diffraction patterns is discussed: the use of this pattern in medical optofluidic devices producing stationary illuminating spots, for example, in endoscopes. In the fourth chapter, we report on a new MRS method which can be used for the in-situ (or in-vivo) rheological measurements of fluids and polymer systems when the fluid viscosity increases exponentially with time. We use this method to measure the exponential change of the viscosity of HEMA (2-hydroxyethyl-methacrylate) undergoing photopolymerization. Remarkably, an exponential increase of viscosity can be traced beyond the point when the polymer system undergoes transition to a gel and the gel domains start to appear. We expect that this method will open up new horizons in the quantitative rheological analysis of fluids inside living cells, microorganisms, and aerosol droplets with thickeners. In the fifth chapter, we describe a physical principle of self-assembly of magnetic nanorods into droplets of different sizes. These droplets can be formed on demand using magneto-static interactions between magnetic nanorods and a magnetic field gradient. We theoretically and experimentally confirmed that the cluster of nanorods at the top of the droplet is acting as a cone-shape solid body deforming the top part of the droplet when moving towards the magnet. The developed model allows one to selectively concentrate a finite amount of magnetic nanorods at the free surface and print multiple microdroplets on demand

    Integration of Nanostructures into Microsensor Devices on Whole Wafers

    Get PDF
    Chemical sensors are used in a wide variety of applications, such as environmental monitoring, fire detection, emission monitoring, and health monitoring. The fabrication of chemical sensors involving nanostructured materials holds the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently are limited in the ability to control their location on the sensor, which in turn hinders the progress for batch fabrication. This report discusses the advantages of using nanomaterials in sensor designs, some of the challenges encountered with the integration of nanostructures into microsensor / devices, and then briefly describes different methods attempted by other groups to address this issue. Finally, this report will describe how our approach for the controlled alignment of nanostructures onto a sensor platform was applied to demonstrate an approach for the mass production of sensors with nanostructures

    Assembly of multicellular constructs and microarrays of cells using magnetic nanowires

    Get PDF
    An approach is described for controlling the spatial organization of mammalian cells using ferromagnetic nanowires in conjunction with patterned micromagnet arrays. The nanowires are fabricated by electrodeposition in nanoporous templates, which allows for precise control of their size and magnetic properties. The high aspect ratio and large remanent magnetization of the nanowires enable suspensions of cells bound to Ni nanowires to be controlled with low magnetic fields. This was used to produce one- and two-dimensional field-tuned patterning of suspended 3T3 mouse fibroblasts. Self-assembled one-dimensional chains of cells were obtained through manipulation of the wires\u27 dipolar interactions. Ordered patterns of individual cells in two dimensions were formed through trapping onto magnetic microarrays of ellipsoidal permalloy micromagnets. Cell chains were formed on the arrays by varying the spacing between the micromagnets or the strength of fluid flow over the arrays. The positioning of cells on the array was further controlled by varying the direction of an external magnetic field. These results demonstrate the possibility of using magnetic nanowires to organize cells
    corecore