69 research outputs found

    Coupled Human-machine Tele-manipulation

    Get PDF
    AbstractRobots are primarily deployed for tasks which are dirty, dull, or dangerous. While the former two are already highly automated, many dangerous tasks such as explosive ordnance disposal or inspection in hazardous environments are predominantly done via tele-operation. Usually, such tasks require the manipulation of objects in a way that cannot be done reliably with automated systems. In this paper, we present a method to tele-operate the manipulator of a robot by transferring the operator's arm movement. The movement is recorded with inertial measurement units which can be sewn into clothing and need no external infrastructure like cameras or motion capture systems. The lack of intermediate user interfaces (e.g. joysticks) makes this control method very intuitive and easy to learn. We demonstrate this with two different NIST manipulation tests and as part of an integrated system for the ELROB robot competition

    3DLive: A multi-modal sensing platform allowing tele-immersive sports applications

    Get PDF
    http://www.eusipco2014.org/program/3DLive project is developing a user-driven mixed reality platform, intended for augmented sports. Using latest sens-ing techniques, 3DLive will allow remote users to share a three-dimensional sports experience, interacting with each other in a mixed reality space. This paper presents the multi-modal sensing technologies used in the platform. 3DLive aims at delivering a high sense of tele-immersion among remote users, regardless of whether they are indoors or outdoors, in the context of augmented sports. In this paper, functional and technical details of the first prototype of the jogging scenario are presented, while a clear separation between indoor and outdoor users is given, since different technologies need to be employed for each case.This work was supported by the EU funded project 3DLive, GA 31848

    Intuitive Teleoperation of an Intelligent Robotic System Using Low-Cost 6-DOF Motion Capture

    Get PDF
    There is currently a wide variety of six degree-of-freedom (6-DOF) motion capture technologies available. However, these systems tend to be very expensive and thus cost prohibitive. A software system was developed to provide 6-DOF motion capture using the Nintendo Wii remote’s (wiimote) sensors, an infrared beacon, and a novel hierarchical linear-quaternion Kalman filter. The software is made freely available, and the hardware costs less than one hundred dollars. Using this motion capture software, a robotic control system was developed to teleoperate a 6-DOF robotic manipulator via the operator’s natural hand movements. The teleoperation system requires calibration of the wiimote’s infrared cameras to obtain an estimate of the wiimote’s 6-DOF pose. However, since the raw images from the wiimote’s infrared camera are not available, a novel camera-calibration method was developed to obtain the camera’s intrinsic parameters, which are used to obtain a low-accuracy estimate of the 6-DOF pose. By fusing the low-accuracy estimate of 6-DOF pose with accelerometer and gyroscope measurements, an accurate estimation of 6-DOF pose is obtained for teleoperation. Preliminary testing suggests that the motion capture system has an accuracy of less than a millimetre in position and less than one degree in attitude. Furthermore, whole-system tests demonstrate that the teleoperation system is capable of controlling the end effector of a robotic manipulator to match the pose of the wiimote. Since this system can provide 6-DOF motion capture at a fraction of the cost of traditional methods, it has wide applicability in the field of robotics and as a 6-DOF human input device to control 3D virtual computer environments
    • …
    corecore