109 research outputs found

    Damaged watermarks detection in frequency domain as a primary method for video concealment

    Get PDF
    This paper deals with video transmission over lossy communication networks. The main idea is to develop video concealment method for information losses and errors correction. At the beginning, three main groups of video concealment methods, divided by encoder/decoder collaboration, are briefly described. The modified algorithm based on the detection and filtration of damaged watermark blocks encapsulated to the transmitted video was developed. Finally, the efficiency of developed algorithm is presented in experimental part of this paper

    Error Correction and Concealment of Bock Based, Motion-Compensated Temporal Predition, Transform Coded Video

    Get PDF
    Error Correction and Concealment of Block Based, Motion-Compensated Temporal Prediction, Transform Coded Video David L. Robie 133 Pages Directed by Dr. Russell M. Mersereau The use of the Internet and wireless networks to bring multimedia to the consumer continues to expand. The transmission of these products is always subject to corruption due to errors such as bit errors or lost and ill-timed packets; however, in many cases, such as real time video transmission, retransmission request (ARQ) is not practical. Therefore receivers must be capable of recovering from corrupted data. Errors can be mitigated using forward error correction in the encoder or error concealment techniques in the decoder. This thesis investigates the use of forward error correction (FEC) techniques in the encoder and error concealment in the decoder in block-based, motion-compensated, temporal prediction, transform codecs. It will show improvement over standard FEC applications and improvements in error concealment relative to the Motion Picture Experts Group (MPEG) standard. To this end, this dissertation will describe the following contributions and proofs-of-concept in the area of error concealment and correction in block-based video transmission. A temporal error concealment algorithm which uses motion-compensated macroblocks from previous frames. A spatial error concealment algorithm which uses the Hough transform to detect edges in both foreground and background colors and using directional interpolation or directional filtering to provide improved edge reproduction. A codec which uses data hiding to transmit error correction information. An enhanced codec which builds upon the last by improving the performance of the codec in the error-free environment while maintaining excellent error recovery capabilities. A method to allocate Reed-Solomon (R-S) packet-based forward error correction that will decrease distortion (using a PSNR metric) at the receiver compared to standard FEC techniques. Finally, under the constraints of a constant bit rate, the tradeoff between traditional R-S FEC and alternate forward concealment information (FCI) is evaluated. Each of these developments is compared and contrasted to state of the art techniques and are able to show improvements using widely accepted metrics. The dissertation concludes with a discussion of future work.Ph.D.Committee Chair: Mersereau, Russell; Committee Member: Altunbasak, Yucel; Committee Member: Fekri, Faramarz; Committee Member: Lanterman, Aaron; Committee Member: Zhou, Haomi

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Investigating low-bitrate, low-complexity H.264 region of interest techniques in error-prone environments

    Get PDF
    The H.264/AVC video coding standard leverages advanced compression methods to provide a significant increase in performance over previous CODECs in terms of picture quality, bitrate, and flexibility. The specification itself provides several profiles and levels that allow customization through the use of various advanced features. In addition to these features, several new video coding techniques have been developed since the standard\u27s inception. One such technique known as Region of Interest (RoI) coding has been in existence since before H.264\u27s formalization, and several means of implementing RoI coding in H.264 have been proposed. Region of Interest coding operates under the assumption that one or more regions of a sequence have higher priority than the rest of the video. One goal of RoI coding is to provide a decrease in bitrate without significant loss of perceptual quality, and this is particularly applicable to low complexity environments, if the proper implementation is used. Furthermore, RoI coding may allow for enhanced error resilience in the selected regions if desired, making RoI suitable for both low-bitrate and error-prone scenarios. The goal of this thesis project was to examine H.264 Region of Interest coding as it applies to such scenarios. A modified version of the H.264 JM Reference Software was created in which all non-Baseline profile features were removed. Six low-complexity RoI coding techniques, three targeting rate control and three targeting error resilience, were selected for implementation. Error and distortion modeling tools were created to enhance the quality of experimental data. Results were gathered by varying a range of coding parameters including frame size, target bitrate, and macroblock error rates. Methods were then examined based on their rate-distortion curves, ability to achieve target bitrates accurately, and per-region distortions where applicable

    Robust mode selection for block-motion-compensated video encoding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 129-132).by Raynard O. Hinds.Ph.D

    Intra Coding Strategy for Video Error Resiliency: Behavioral Analysis

    Get PDF
    One challenge in video transmission is to deal with packet loss. Since the compressed video streams are sensitive to data loss, the error resiliency of the encoded video becomes important. When video data is lost and retransmission is not possible, the missed data should be concealed. But loss concealment causes distortion in the lossy frame which also propagates into the next frames even if their data are received correctly. One promising solution to mitigate this error propagation is intra coding. There are three approaches for intra coding: intra coding of a number of blocks selected randomly or regularly, intra coding of some specific blocks selected by an appropriate cost function, or intra coding of a whole frame. But Intra coding reduces the compression ratio; therefore, there exists a trade-off between bitrate and error resiliency achieved by intra coding. In this paper, we study and show the best strategy for getting the best rate-distortion performance. Considering the error propagation, an objective function is formulated, and with some approximations, this objective function is simplified and solved. The solution demonstrates that periodical I-frame coding is preferred over coding only a number of blocks as intra mode in P-frames. Through examination of various test sequences, it is shown that the best intra frame period depends on the coding bitrate as well as the packet loss rate. We then propose a scheme to estimate this period from curve fitting of the experimental results, and show that our proposed scheme outperforms other methods of intra coding especially for higher loss rates and coding bitrates

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Optimizing Selective ARQ for H.264 Live Streaming: A Novel Method for Predicting Loss-Impact in Real Time

    Full text link

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design
    corecore