27 research outputs found

    ViBe: A universal background subtraction algorithm for video sequences

    Full text link
    This paper presents a technique for motion detection that incorporates several innovative mechanisms. For example, our proposed technique stores, for each pixel, a set of values taken in the past at the same location or in the neighborhood. It then compares this set to the current pixel value in order to determine whether that pixel belongs to the background, and adapts the model by choosing randomly which values to substitute from the background model. This approach differs from those based on the classical belief that the oldest values should be replaced first. Finally, when the pixel is found to be part of the background, its value is propagated into the background model of a neighboring pixel. We describe our method in full details (including pseudocode and the parameter values used) and compare it to other background subtraction techniques. Efficiency figures show that our method outperforms recent and proven state-of-the-art methods in terms of both computation speed and detection rate. We also analyze the performance of a downscaled version of our algorithm to the absolute minimum of one comparison and one byte of memory per pixel. It appears that even such a simplified version of our algorithm performs better than mainstream techniques. There is a dedicated web page for ViBe at http://www.telecom.ulg.ac.be/research/vibe

    ROBUST BACKGROUND SUBTRACTION FOR MOVING CAMERAS AND THEIR APPLICATIONS IN EGO-VISION SYSTEMS

    Get PDF
    Background subtraction is the algorithmic process that segments out the region of interest often known as foreground from the background. Extensive literature and numerous algorithms exist in this domain, but most research have focused on videos captured by static cameras. The proliferation of portable platforms equipped with cameras has resulted in a large amount of video data being generated from moving cameras. This motivates the need for foundational algorithms for foreground/background segmentation in videos from moving cameras. In this dissertation, I propose three new types of background subtraction algorithms for moving cameras based on appearance, motion, and a combination of them. Comprehensive evaluation of the proposed approaches on publicly available test sequences show superiority of our system over state-of-the-art algorithms. The first method is an appearance-based global modeling of foreground and background. Features are extracted by sliding a fixed size window over the entire image without any spatial constraint to accommodate arbitrary camera movements. Supervised learning method is then used to build foreground and background models. This method is suitable for limited scene scenarios such as Pan-Tilt-Zoom surveillance cameras. The second method relies on motion. It comprises of an innovative background motion approximation mechanism followed by spatial regulation through a Mega-Pixel denoising process. This work does not need to maintain any costly appearance models and is therefore appropriate for resource constraint ego-vision systems. The proposed segmentation combined with skin cues is validated by a novel application on authenticating hand-gestured signature captured by wearable cameras. The third method combines both motion and appearance. Foreground probabilities are jointly estimated by motion and appearance. After the mega-pixel denoising process, the probability estimates and gradient image are combined by Graph-Cut to produce the segmentation mask. This method is universal as it can handle all types of moving cameras

    Human Pose Tracking from Monocular Image Sequences

    Get PDF
    This thesis proposes various novel approaches for improving the performance of automatic 2D human pose tracking system including multi-scale strategy, mid-level spatial dependencies to constrain more relations of multiple body parts, additional constraints between symmetric body parts and the left/right confusion correction by a head orientation estimator. These proposed approaches are employed to develop a complete human pose tracking system. The experimental results demonstrate significant improvements of all the proposed approaches towards accuracy and efficiency

    Automated Remote Sensing Image Interpretation with Limited Labeled Training Data

    Get PDF
    Automated remote sensing image interpretation has been investigated for more than a decade. In early years, most work was based on the assumption that there are sufficient labeled samples to be used for training. However, ground-truth collection is a very tedious and time-consuming task and sometimes very expensive, especially in the field of remote sensing that usually relies on field surveys to collect ground truth. In recent years, as the development of advanced machine learning techniques, remote sensing image interpretation with limited ground-truth has caught the attention of researchers in the fields of both remote sensing and computer science. Three approaches that focus on different aspects of the interpretation process, i.e., feature extraction, classification, and segmentation, are proposed to deal with the limited ground truth problem. First, feature extraction techniques, which usually serve as a pre-processing step for remote sensing image classification are explored. Instead of only focusing on feature extraction, a joint feature extraction and classification framework is proposed based on ensemble local manifold learning. Second, classifiers in the case of limited labeled training data are investigated, and an enhanced ensemble learning method that outperforms state-of-the-art classification methods is proposed. Third, image segmentation techniques are investigated, with the aid of unlabeled samples and spatial information. A semi-supervised self-training method is proposed, which is capable of expanding the number of training samples by its own and hence improving classification performance iteratively. Experiments show that the proposed approaches outperform state-of-the-art techniques in terms of classification accuracy on benchmark remote sensing datasets.4 month

    Context Driven Scene Understanding

    Get PDF
    Understanding objects in complex scenes is a fundamental and challenging problem in computer vision. Given an image, we would like to answer the questions of whether there is an object of a particular category in the image, where is it, and if possible, locate it with a bounding box or pixel-wise labels. In this dissertation, we present context driven approaches leveraging relationships between objects in the scene to improve both the accuracy and efficiency of scene understanding. In the first part, we describe an approach to jointly solve the segmentation and recognition problem using a multiple segmentation framework with context. Our approach formulates a cost function based on contextual information in conjunction with appearance matching. This relaxed cost function formulation is minimized using an efficient quadratic programming solver and an approximate solution is obtained by discretizing the relaxed solution. Our approach improves labeling performance compared to other segmentation based recognition approaches. Secondly, we introduce a new problem called object co-labeling where the goal is to jointly annotate multiple images of the same scene which do not have temporal consistency. We present an adaptive framework for joint segmentation and recognition to solve this problem. We propose an objective function that considers not only appearance but also appearance and context consistency across images of the scene. A relaxed form of the cost function is minimized using an efficient quadratic programming solver. Our approach improves labeling performance compared to labeling each image individually. We also show the application of our co-labeling framework to other recognition problems such as label propagation in videos and object recognition in similar scenes. In the third part, we propose a novel general strategy for simultaneous object detection and segmentation. Instead of passively evaluating all object detectors at all possible locations in an image, we develop a divide-and-conquer approach by actively and sequentially evaluating contextual cues related to the query based on the scene and previous evaluations---like playing a ``20 Questions'' game---to decide where to search for the object. Such questions are dynamically selected based on the query, the scene and current observed responses given by object detectors and classifiers. We first present an efficient object search policy based on information gain of asking a question. We formulate the policy in a probabilistic framework that integrates current information and observation to update the model and determine the next most informative action to take next. We further enrich the power and generalization capacity of the Twenty Questions strategy by learning the Twenty Questions policy driven by data. We formulate the problem as a Markov Decision Process and learn a search policy by imitation learning

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Texture analysis of multimodal magnetic resonance images in support of diagnostic classification of childhood brain tumours

    Get PDF
    Primary brain tumours are recognised as the most common form of solid tumours in children, with pilocytic astrocytoma, medulloblastoma and ependymoma being found most frequently. Despite their high mortality rate, early detection can be facilitated through the use of Magnetic Resonance Imaging (MRI), which is the preferred scanning technique for paediatric patients. MRI offers a variety of imaging sequences through structural and functional imaging, as well as providing complementary tissue information. However visual examination of MR images provides limited ability to characterise distinct histological types of brain tumours. In order to improve diagnostic classification, we explore the use of a computer-aided system based on texture analysis (TA) methods. TA has been applied on conventional MRI but has been less commonly studied on diffusion MRI of brain-related pathology. Furthermore, the combination of textural features derived from both imaging approaches has not yet been widely studied. In this thesis, the aim of the research is to investigate TA based on multi-centre multimodal MRI, in order to provide more comprehensive information and develop an automated processing framework for the classification of childhood brain tumours
    corecore