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ABSTRACT OF DISSERTATION 

 

 

ROBUST BACKGROUND SUBTRACTION FOR MOVING CAMERAS AND THEIR 

APPLICATIONS IN EGO-VISION SYSTEMS 

 

 Background subtraction is the algorithmic process that segments out the region of 

interest often known as foreground from the background. Extensive literature and 

numerous algorithms exist in this domain, but most research have focused on videos 

captured by static cameras. The proliferation of portable platforms equipped with cameras 

has resulted in a large amount of video data being generated from moving cameras. This 

motivates the need for foundational algorithms for foreground/background segmentation 

in videos from moving cameras. In this dissertation, I propose three new types of 

background subtraction algorithms for moving cameras based on appearance, motion, and 

a combination of them. Comprehensive evaluation of the proposed approaches on publicly 

available test sequences show superiority of our system over state-of-the-art algorithms. 

The first method is an appearance-based global modeling of foreground and 

background. Features are extracted by sliding a fixed size window over the entire image 

without any spatial constraint to accommodate arbitrary camera movements. Supervised 

learning method is then used to build foreground and background models. This method is 

suitable for limited scene scenarios such as Pan-Tilt-Zoom surveillance cameras. The 

second method relies on motion. It comprises of an innovative background motion 

approximation mechanism followed by spatial regulation through a Mega-Pixel denoising 

process. This work does not need to maintain any costly appearance models and is therefore 

appropriate for resource constraint ego-vision systems. The proposed segmentation 

combined with skin cues is validated by a novel application on authenticating hand-

gestured signature captured by wearable cameras. The third method combines both motion 

and appearance. Foreground probabilities are jointly estimated by motion and appearance. 

After the mega-pixel denoising process, the probability estimates and gradient image are 

combined by Graph-Cut to produce the segmentation mask. This method is universal as it 

can handle all types of moving cameras.   



KEYWORDS: Background Subtraction, Foreground Segmentation, Freely Moving 

Cameras, Pan-Tilt-Zoom, Ego-motion Compensation, Mega-Pixels. 
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Chapter 1 Introduction 

 

Background subtraction (BS) is one of the most widely used pre-processing steps in 

computer vision applications. The goal is to segment out the foreground (FG) from 

background (BG) in any given scene. It is a well-researched area in computer vision with 

significant amount of literature and numerous state of the art algorithms [1]. The focus of 

most research in background subtraction has been on stationary cameras. On the other 

hand, most videos captured in real life are from moving cameras, ranging from traditional 

Pan-Tilt-Zoom (PTZ) cameras and hand-held camcorders to the latest smart phones, 

wearables and dashboard cameras. BS is far more challenging in the case of moving camera 

as neither FG nor BG pixels are stationary. As large percentage of video content is 

produced by moving camera, the need for foundational algorithms that can isolate 

interesting areas in such videos is becoming increasingly pressing. 

 There are three general approaches for BS: model-based, motion-based and hybrid 

methods. Model-based approaches construct a model of the background and then compares 

the pixels of an input image with the model to label them as FG or BG. The main 

assumption of these algorithms is that the camera remains static and therefore are 

unsuitable to handle moving camera problem. To overcome this limitation, ego-motion 

compensation is first applied followed by application of conventional BS algorithm for FG 

detection [2, 3, 4, 5]. Despite motion compensation, these approaches fail when the 

assumption of homographic camera motion does not hold, i.e. when the camera center is 

moving or the complex BG cannot be approximated as a planar surface.        
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 Motion-based algorithms exploit different motion patterns of FG objects and BG. 

They are more commonly referred to as motion segmentation. In motion segmentation, the 

moving objects are continuously present in the scene, and the background may also change 

due to camera motion. In general, motion-based approaches [6, 7, 8, 9] use motion vectors 

or track feature points followed by a clustering step.  The use of these methods is limited 

by requirement of prior information such as number of FG objects and post-processing to 

obtain dense segmentation mask. Apart from the aforementioned limitations, such methods 

fail entirely when both FG and BG are at rest or FG has the same motion as the BG.    

Hybrid methods such as [10] and [11] combine both appearance and motion 

information in an online framework. Motion information in the initial frames is used to 

initialize FG and BG appearance models, which are then continuously maintained and 

updated overtime. Classification is done using the appearance model. Although these 

methods are more powerful than motion-based and appearance-based algorithms, they are 

prone to view geometric degeneracies such as small frame-to-frame motion, planar scene, 

and zero camera translation. The need for special initialization procedures and 

computationally expensive nature limits their applications in real world scenarios.  

An ideal BS algorithm should be able handle the aforementioned limitations of 

model-based, motion-based and hybrid methods. It should have five key traits. First, the 

algorithm should rely on both motion and appearance. It must be able to continuously 

update as well as maintain the BG model for constantly changing BG. This offers numerous 

advantages. First, it allows the algorithm to deal with scenarios, when there is no FG 

motion or FG and BG exhibit similar motion. Second, the use of BG model in conjunction 

with motion allows to cope up with dynamic background by exploiting appearance.  
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The second important trait is the ability to perform online segmentation rather than 

offline. The offline algorithm requires all frames for segmentation, which is not feasible in 

many real world applications and can easily become intractable for long videos sequences. 

Therefore, a universal BS algorithm must be able to do online segmentation for live feed 

or arbitrarily long video sequences.  

   The third key trait is the independence from special initialization procedures. It 

should not rely on any explicit camera motion models nor should it make any assumptions 

about the scene. This is one of the inherent limitation of existing model-based and hybrid 

methods.  

 The fourth trait is non-requirement of any prior information such as number of FG 

objects, contours etc. The algorithm should be able to automatically identify the correct 

number of FG objects. 

 The fifth trait is that such algorithms in addition to being online are computationally 

inexpensive and efficient. This is very critical taking into account the emerging market and 

potential growth of resource constrained wearable devices. Head Mounted Wearable 

Computer (HMWC) such as Google-Glass and Microsoft's HoloLens are particularly 

popular due to their ability in capturing the viewing perspective of the user and hence open 

up multiple avenues for research and applications ranging from personal use to law 

enforcement and healthcare to name a few.  

Traditional segmentation algorithms fail on these devices because of the unique 

challenges associated with wearable cameras. First, wearable camera is likely to be 

constantly moving and very little assumption can be made about the scene in the video. In 
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Figure 1.1, the middle and rightmost images show the captured frame and the segmentation 

mask using the SuBSENSE [12], one of the best background subtraction algorithms as 

evaluated at the CDnet website [13]. The white region in the mask is supposed to represent 

the foreground. One can see that the background segmentation is unable to identify the 

hand at all. Second, the existing segmentation algorithms either for static or moving camera 

are computationally expensive and cannot cater for real time applications.  

   

Figure 1.1 Left: Signing with Google-Glass. Middle: Image captured from Google-Glass. 

Left: SuBSENSE Segmentation of the middle image. 

 In context of HMWCs, we aim to test the motion based segmentation on well-

known Google-Glass platform. The pervasiveness, size and portability of such devices 

make them prone to theft and hence purport the need of a robust authentication mechanism. 

The lack of physical interfaces such as keyboards or touch pads limits the choice of 

authentication mechanisms. The most natural way to introduce a robust authentication 

mechanism in wearable devices is to exploit the built-in hardware among which color 

camera is the most common sensor and is found in almost every wearable device. 

Therefore, we propose Virtual-Signature (VSig) [14], a hand-gestured signature performed 

by an individual and recognized via the wearable camera. This approach combines the 
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strength of familiar knowledge-based authentication mechanism [15] based on a person’s 

own signature and the ultra-portability of a HMWC without the need of a writing surface.  

   Apart from moving camera segmentation, this application poses additional 

challenges including localization of the fingertip, robust algorithms to handle the 

variability of hand signing, and adequate visual feedback to user to stay within the field of 

view of the camera. However, the most important component for success is the underlying 

segmentation. A picture of a user signing his name with our VSig system while walking 

outdoor is shown in the leftmost image of Figure 1.1.   

1.1. Broader Impact and Applications 

Background subtraction allows to identify the important parts/objects in an image or a 

video. The availability of compact yet powerful computing platforms has made camera an 

integral part of virtually every device surrounding us. The types of camera ranges from 

PTZ cameras, hand-held camcorders, dashboard cameras, smart phones to head mounted 

cameras that support prolonged and high-quality recording. The pervasiveness of cameras 

and amount of video data generated on daily basis has on one side opened up multiple 

research opportunities and applications but at the same time poses unique challenges in 

terms of privacy invasion and computational requirements associated with large amounts 

of multimedia data. 

 This dissertation provides a complete range of background subtraction algorithms 

for platforms with very low to high computational capabilities.  The wearable technology 

is expected to have significant growth in the coming years. The head mounted wearable 

devices are limited in terms of computational capability and lack physical interface. The 
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low complexity motion-based algorithm can be used to accurately segment out an 

individual’s hands to recognize gestures for hands-free control and operation of such 

devices. In the wake of fatal encounters between police and citizens, the officers are now 

equipped with wearable cameras. The use of wearable camera by law enforcement raises 

privacy concerns. Such segmentation algorithms can not only ensure privacy but also assist 

in focusing on potential threats. One can imagine endless possibilities in healthcare, 

automotive, entertainment industries.    

 The hybrid method offers a much powerful algorithm for research into high level 

problems. For example combined with radio frequency technology it can be used for 

privacy protected video surveillance. Such a system can be employed in clinic as well 

natural settings for behavioral studies, which is not possible otherwise. Likewise, it can 

serve an important tool for security and surveillance while ensuring an individual's right to 

privacy.   

 The proposed technology with capability to handle camera movements allows for 

security and surveillance, behavior monitoring, anomaly detection with additional 

perspectives and information unavailable before. It can be used to segment different types 

of actions and fed to a learning engine. The automatic segmentation of huge amounts of 

data make many of previously intractable problems because of labor intensive labeling now 

possible. It offers limitless possibilities for scene understanding, in robotics, visual 

surveillance (e.g. anomaly detection, people counting), smart environments (e.g. fall 

detection, parking occupancy) and video retrieval (tracking, localization). 
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1.2. Contribution of Dissertation 

The main contribution of this dissertation is a complete set of Background Subtraction 

algorithms, which can robustly handle videos generated from Hand-Held, PTZ as well as 

freely moving cameras. The first BS algorithm is purely an appearance-based approach 

that can robustly identify FG objects from PTZ camera sequences. The proposed method 

extracts multiple features (color, intensity, texture and gradient) by sliding a fixed size 

window over the entire image and learns a global FG/BG model without any spatial 

constraint. Foregoing spatial constraint is advantageous for moving camera scenarios 

where BG is continuously changing. The proposed algorithm is in contrast to existing 

methods which impose spatial constraint and maintain individual models for each pixel. 

The second BS algorithm primarily relies on motion to differentiate FG/BG and 

uses color information only to denoise motion vectors at pixel level. This methods involves 

two key innovations. The first innovation is an iterative low rank approximation of BG 

motion, which is compared with original motion vectors to yield initial FG probability 

estimates. The second innovation is the Mega-Pixel denoising process, which performs 

spatial regulation over the initial FG probability estimates to produce accurate FG 

probability estimates. Unlike other methods, the algorithm does not require any special 

initialization procedure nor does it need to maintain an appearance model, making it 

computationally efficient.  

The third and most powerful algorithm combines both motion and appearance 

based algorithms in an online framework. Using a set of initial frames, a set of highly 

reliable FG and BG candidates are obtained from the motion module. Corresponding color 
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features are extracted for these candidates and separate FG and BG appearance models are 

learnt. For FG/BG labelling both motion-based and appearance-based probability estimates 

are first denoised and then average of two probability estimates is computed. Unlike 

existing methods, it does not require any prior information nor does it restrict camera 

motion or scene geometry. The proposed method builds global models for FG and BG, 

which makes it computationally more efficient than existing hybrid and model-based 

methods that build pixel-wise models. 

 The second major contribution is an In-Air signature Recognition and 

Authentication mechanism for HMWCs. It is a direct application of proposed motion-based 

segmentation on wearable devices. Additionally, we introduce a new dataset named 

SIGAIR, which comprises of signatures captured from Head Mounted Wearable Computer 

(HMWC). 

1.3. Organization 

The dissertation is organized into the following chapters: Chapter 2 details the related work 

on motion-based, model-based and hybrid BS algorithms as well as authentication 

mechanisms. Chapter 3 presents the background subtraction algorithm for camera jitter. In 

Chapter 4 the appearance-based BS algorithm is detailed, which is followed by motion-

based BS algorithm in chapter 5. The hybrid method is detailed in chapter 6. In chapter 7, 

the In-Air Signature Recognition and Authentication mechanism for Google-Glass is 

presented. The dissertation is concluded in chapter 8. 
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Chapter 2 Related Works 

 

In this chapter, we provide an in depth review of existing state-of-the-art background 

subtraction algorithms as well as authentication mechanisms.  

2.1. Background Subtraction Algorithms 

The existing background subtraction methods can be broadly divided into three categories: 

model-based, motion-based and hybrid algorithms. 

2.1.1. Model-based algorithms 

Model-based methods construct a statistical model of the background scene. The statistics 

can range from simple mean to complex multi-modal distributions. Pixel-based algorithms 

form a statistical model for each pixel in an image by considering its color only. The most 

popular algorithms in this category are Gaussian Mixture Model (GMM) [16, 17, 18] and 

Kernel Density Estimates (KDE) [19, 20]. GMM models each pixel distribution using a 

mixture of Gaussians. In [21] authors introduce shareable GMM models. Each pixel 

dynamically searches for the best matched model in its neighborhood, which is then used 

for classification. Many variants of GMM based methods have been proposed and they are 

summarized in [1]. KDE accumulates pixel's recent history and estimates a non-parametric 

probability distribution for each pixel. This approach overcomes the problem of 

determining the appropriate number of components used in GMM.  

Sample consensus is another non-parametric method that relies on recently 

observed pixels to determine if the incoming pixel is a FG or BG. PAWCS is an example 
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of sample consensus methods that introduces word based model capable of capturing and 

retaining color and Local Binary Similarity Pattern (LBSP) features over long periods of 

time. A novel pixel-level feedback loop mechanism is an integral part of the system, which 

allows to continuously update and maintain the pixel’s model [22]. The spatiotemporal 

LBSP feature descriptor increases the segmentation accuracy but entails high 

computational costs. 

Codebook is another class of techniques that has been reported in [23] [24]. It 

comprises of a codebook for each pixel which is a compressed form of background. Each 

codebook has multiple codewords that are based on a sequence of training images using a 

color distortion metric. Incoming pixels are matched against all background codewords for 

classification.   

Another class of algorithms take into account inter-pixel spatial dependencies and 

assume that a pixel undergoes the same change as its neighbor. In [25], the authors 

incorporate spatial information by using statistical circular shift moments (SCSM) in image 

regions. In [26], the authors present a block based approach that compares a block in 

current frame to its reconstruction from PCA coefficients, and labels it as BG if the 

reconstruction is close. In [12], the authors consider a 5 x 5 grid to compute local binary 

pattern features and combine them with color. Another approach is presented in [27] in 

which the authors not only consider the history of intensity values of pixel itself but also 

its neighbors. Although region based methods take into account the inter-pixel spatial 

dependencies, they typically assume static camera and fail to handle videos from moving 

camera as there is no explicit mechanism to account for the movement of the BG regions. 
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Machine learning based FG/BG classification methods have also been reported in 

literature [28, 29, 30, 31, 32]. In [29] a one-class SVM is trained for each pixel over a 

number of frames. [28] proposes a single class SVM for handling dynamic background by 

extracting features from the neighborhood around each pixel. [31] divides an image into a 

predefined number of equally sized blocks and trains one class SVM for each block. [32] 

is another block-based method that builds and maintains model for each block. These 

methods train models for each pixel or block thereby imposing spatial constraint and 

therefore prone to failure in case of a moving camera. In [30], the authors tackle the moving 

camera problem by introducing two one-class SVMs to separately model FG and BG color 

distributions for each pixel. Unlike our frame-based approach, their classifier is trained on 

local neighborhood, making it both computationally expensive and brittle for large camera 

movements. Additionally, the need for manual labeling limits its application for real world 

scenarios. 

To cope with the moving camera problem, another set of algorithms estimate BG 

through ego-motion compensation [2, 33, 3, 34, 35, 4, 36, 5]. These methods estimate 

camera motion and then apply conventional background subtraction algorithms to detect 

FG [2, 33, 3, 34, 35]. More recent work estimates a homography between successive image 

frames, followed by a registration process to compensate motion [4, 36, 5]. Residual pixels 

can be further registered using parallax estimation [4]. Most of these methods work well 

when the scene can be approximated as a planar surface or the camera center is fixed, such 

as a PTZ surveillance camera.  
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2.1.2. Motion-based algorithms 

The motion-based algorithms rely on the assumption that for any given number of images, 

the foreground moves differently from the background [37, 38]. These algorithms exploit 

the difference in motion patterns to segregate FG from the BG. These algorithms are able 

to handle large camera motions but assume rigid or smooth motion in all BG regions. This 

is however not true since dynamic background can comprise of non-rigid motions such as 

waving trees. Another challenge is when the foreground object itself is at rest and follows 

the same camera motion as the rest of the static background. Other motion-based algorithm 

estimates background by finding regions that do not change in the sequence [39]. While it 

alleviates the static foreground problem, such an approach would fail in the case of 

dynamic background.  

Motion-based algorithms can be divided into two categories: layer-based and point 

trajectory based. Layer-based methods [6, 40, 7, 41, 42, 43, 44, 8, 45] compute dense or 

sparse optical flows and then cluster them based on some measure of motion consistency. 

The problem of these approaches is that motion analysis can be quite erroneous in the 

presence of real world problems such as occlusion and video noise [46]. Methods based on 

sparse flows are further restricted by the need of an initialization step to establish prior 

information such as contours, number of objects, etc.  

The point trajectory based methods [47, 9, 48] segment images based on point 

trajectory analysis. First, sparse feature points are detected and tracked in a sequence 

followed by clustering via spectral [49] or subspace [50] methods. Although these methods 

are robust in handling large camera motion, they only produce a segmentation of sparse 
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points, which need to be post-processed for dense segmentation [49]. Hence, the results of 

these algorithms rely heavily on point tracking throughout the video sequence and post-

processing for dense segmentation, making them feasible only for offline processing. 

2.1.3. Hybrid algorithms 

Hybrid methods use the combination of motion, color and appearance. Lim et al. [51] 

proposed a block-based iterative appearance modeling method that combines temporal 

model propagation and spatial model decomposition. Fundamental matrix is used for the 

initial FG/BG labeling, which is iteratively refined by spatial and temporal smoothness. 

The proposed method fails to detect small FG objects and is prone to degeneracies in 

estimating fundamental matrix. Kwak et al. [10] improved the initialization procedure 

using belief propagation. They introduced a Bayesian filtering framework that combined 

block-based color appearance models with separate motion models for the BG and FG to 

estimate labels at each pixel. Although it resulted in better post-processing procedure but 

the proposed method is still prone to view geometric degeneracies such as small frame-to-

frame motion, planar scene, and zero camera translation. The need for special initialization 

procedures limits their applications in real world scenarios. In order to overcome the 

limitations associated with fundamental matrix and homography transform, Zamalieva et 

al. [52] adopted a complementary approach and combined both of them. The proposed 

method performed a Bayesian selection of appropriate geometric relation between two 

consecutive frames. Based on selected transformation, the appearance models were 

propagated and maintained. Despite the improvement, the proposed method is sensitive to 

the presence of FG objects during initialization phase and requires FG free frames.  
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Elqursh et al. [11] proposed an online method that maintains pixel based models 

for both FG and BG. It relies on long term trajectories in low dimensional space, which are 

modelled as a mixture of Gaussians. The trajectories that do not lie in the space belong to 

the FG. The long term trajectories, motion and appearance models are combined in a 

Bayesian filtering framework to obtain the final labels. The shortcoming of proposed 

method lies in the number of components of parametric Gaussian mixture model, which 

can vary from scene to scene. In [53], Narayana et al. proposed another hybrid method that 

primarily uses optical flow orientations to group pixels based on their orientations. A 

probabilistic framework is employed to automatically identify the correct number of FG 

objects. The orientation based segmentation is further refined by the use of FG and BG 

color appearance models for each pixel from previous frames. The proposed method is 

robust against pure camera translation but fails in case of rotation. Explicit modeling of 

camera rotation is required to handle such cases.   

2.2. Authentication mechanisms 

Numerous authentication mechanisms have been reported in literature. We focus our 

attention on authentication mechanisms which are closely related or applicable to wearable 

devices. Two dominant methods exist: the first approach is based on vision sensors using 

either color or depth. The second approach is based on sensors such as accelerometers. 

The first type of authentication mechanisms such as [15, 54, 55] rely on image 

sensors and employ color and depth information to track or segment out hand or fingertip 

of a person. This is followed by post processing to extract trajectories and features such as 

position, velocity and acceleration. Finally, signature is matched against pre-stored 
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signatures for authentication. Although these systems produce accurate results, their usages 

are limited to a well-controlled indoor environment. Also, they are computationally 

expensive with requirement of depth in addition to color information. It is important to note 

that most existing wearable devices do not have any built-in depth sensor and would 

therefore incur additional hardware cost, making this approach unsuitable for resource 

constraint wearable devices.   

The second type of authentication mechanisms such as [56, 57] are based on readily 

available accelerometers. This approach requires additional hardware and circuit to capture 

the hand movement and extract trajectory, which is then transmitted to main device. More 

recent smart phones have built in accelerometers and can perform gesture recognition 

without additional hardware. However, accelerometer is a much coarser device compared 

to camera and is capable only to differentiate simple gestures. For authentication, the user 

is required to remember lengthy gesture sequences, which are not as straightforward and 

natural as gestures that are based on the hand-written signature.   

The most natural way to introduce a robust authentication mechanism in wearable 

devices is to exploit the built-in hardware among which color camera is the most common 

sensor and is found in almost every wearable device. The proposed approach is based on 

this theme. 
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Chapter 3 Background Subtraction for Videos with Camera Jitter 

 

In this chapter, we present a novel BS algorithm that can robustly handle videos affected 

by camera jitter or shaking. We also compare our algorithm with several other state-of-the-

art algorithms on camera jitter category of the CDnet-2014 dataset, which is a 

comprehensive dataset for BS evaluation [13]. 

3.1. Algorithm Overview 

The proposed approach comprises of multiple innovative mechanisms in background 

modeling, pixel classification and the use of multiple color spaces. The system first creates 

multiple background models of the scene and stores them in a Background Model Bank 

(BMB). This is followed by coarse FG probability estimation for each pixel.  Next, the 

image pixels are merged together to form mega-pixels, which are used to spatially denoise 

the coarse probability estimates to generate binary masks for each of the color channels of 

both RGB and YCbCr color spaces. The masks generated after processing these input 

images are then combined to separate foreground pixels from the background. The 

proposed system consists of five steps as shown in Figure 3.1. Each step is described below.  

Step 1: BG Model Selection 

The first step is to select an appropriate BG Model for the incoming frame. The selection 

criterion is based on identifying the BG model in Background Model Bank (BMB) that 

maximizes the correlation with input image 𝐼(𝑋). BMB simply comprises of multiple 

background models of the scene. The BMB formation process is detailed in section 3.3. 
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Figure 3.1 System Overview. 

 

𝐶𝑜𝑟𝑟 = arg max
𝑛=1,…,𝑁

(
(𝐼 − 𝜇𝐼)(𝜇𝑛 − 𝜇)′

√(𝐼 − 𝜇𝐼)(𝐼 − 𝜇𝐼)′√(𝜇𝑛 − 𝜇)(𝜇𝑛 − 𝜇)′
) 

where, 𝐼 and 𝜇𝑛 are vector forms of 𝐼(𝑋) and 𝜇𝑛(𝑋) respectively. 𝜇𝐼 and 𝜇 are defined as: 

𝜇𝐼 =
1

|𝑋|
∑𝐼𝑗
𝑗

 and  𝜇 =
1

|𝑋|
∑𝜇𝑛𝑗
𝑗

 

 

Step 2: Binary Mask (BM) Generation  

The input image and the selected BG model are first used to generate coarse FG probability 

estimate for each pixel. The probability estimates and input image are then passed to the 

Mega-Pixel formation and probability denoising module. It segments the image into 

arbitrary number of MPs and uses the coarse probability estimates to calculate average 

probability estimate for each MP. The more accurate probability estimates are then 
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thresholded to generate Binary Mask (BM) for each color channel. We denote the BM for 

color channel 𝐷 as 𝐷𝑚𝑎𝑠𝑘(𝑋). The BM generation is discussed in detail in section 3.4. 

Step 3: Binary Masks Aggregation/Fusion  

The BMs are then used to form Foreground Detection (FGD) masks for RGB and YCbCr 

color spaces: 

𝐹𝐺𝐷𝑚𝑎𝑠𝑘
𝑐𝑜𝑙𝑜𝑟𝑠𝑝𝑎𝑐𝑒(𝑋) =  [∑ (𝐷𝑚𝑎𝑠𝑘(𝑋))

𝐷
] >  1 

For YCbCr color space, if Cb and Cr channels are deactivated then 𝐹𝐺𝐷𝑚𝑎𝑠𝑘
𝑌𝐶𝑏𝐶𝑟will be 

reduced to the Y channel BM alone. Finally the two FGD masks are combined by taking 

logical AND between dilated versions of the two to obtain the actual FGD mask:  

𝐹𝐺𝐷𝑚𝑎𝑠𝑘(𝑋) = Dilate(𝐹𝐺𝐷𝑚𝑎𝑠𝑘
𝑅𝐺𝐵 (𝑋))& Dilate(𝐹𝐺𝐷𝑚𝑎𝑠𝑘

𝑌𝐶𝑏𝐶𝑟(𝑋)) 

The dilated versions are to ensure that all true foreground pixels are captured in the FGD 

mask.   

Step 4: Binary Masks Purging  

The FGD mask is then applied to each of the BMs obtained in step 3. This removes all of 

the falsely detected foreground regions and increases our confidence in classifying FG and 

BG pixels in the final step. The resulting component masks are defined as follows: 

𝐷𝑚𝑎𝑠𝑘
𝑛𝑒𝑤 (𝑋) = 𝐷𝑚𝑎𝑠𝑘(𝑋) ∙ Dilate(𝐹𝐺𝐷𝑚𝑎𝑠𝑘(𝑋)) 
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Step 5: Foreground Mask  

In the final step of the process, FG mask is obtained by the logical OR of all the 𝐷𝑚𝑎𝑠𝑘
𝑛𝑒𝑤 (𝑋) 

masks. 

Our innovations primarily fall in the use of multiple color spaces, background 

model bank for modelling the background and Mega-Pixel denoising for accurate 

foreground detection. In the following sections, we detail each of these innovations 

3.2. Multiple Color Spaces for Background Subtraction 

The choice of color space is critical to the accuracy of foreground segmentation. Many 

different color spaces including RGB, YCbCr, HSV, HSI, lab2000, normalized-RGB (rgb) 

have been used for background subtraction. Among these color spaces, we focus on the 

four most widely-used color spaces: RGB, YCbCr, HSV and HSI [58] [59]. 

RGB is a popular choice for a number of reasons: (a) the brightness and color 

information are equally distributed in all three color channels; (b) it is robust against both 

environmental and camera noise [58]; (c) it is the output format of most cameras and its 

direct usage in BS avoids the computation cost of color conversion [59].  

The use of the three other color spaces: YCbCr, HSV and HSI are motivated by 

human visual system (HVS). The defining color perception in HVS is that it tends to assign 

a constant color to an object even under changing illumination over time or space [58] [60]. 

These color spaces segregate the brightness and color information, with YCbCr on 

Cartesian coordinates whereas HSV and HSI on polar coordinates. While the color 

constancy makes the BS process more robust against shadow, highlights and illumination 
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changes, the foreground detection is less discriminatory if brightness information is not 

used [58][60][61][62].  

In comparative studies on color spaces [58][59][63][61], YCbCr has been shown 

to outperform RGB, HSI and HSV color spaces and is considered to be the most suitable 

color space for foreground segmentation [58][61][59].  Due to its independent color 

channels, YCbCr is the least sensitive to noise, shadow and illumination changes. RGB is 

ranked second with HSI and HSV at the bottom as their polar coordinate descriptions are 

quite prone to noise [58]. The conversion from RGB to YCbCr is also computationally less 

expensive than to HSI or HSV.  

Based on the above comparison, YCbCr is a natural choice for segmentation. 

However, [60] and [61] also identify potential problems with the YCbCr color space: when 

current image contains very dark pixels, the chance of misclassification increases since 

dark pixels are close to the origin in RGB space. The fact that all chromaticity lines in RGB 

space meet at the origin makes dark pixels close or similar to any chromaticity line. Such 

scenario does not occur only when illumination levels are low globally, but also happens 

when portion of the image becomes darker. This is common especially in indoor scenes 

with complex illumination sources and scene geometry. Shadows casted by objects is one 

such example. The exclusive use of YCbCr color space in such situations will result in a 

decrease in foreground segmentation accuracy. 

To address this issue, we propose a solution motivated by our own color vision. In 

human visual system, color vision is provided through two types of cells; rods and cones. 

Rods are used for vision under low light known as scotopic, in which color vision is not 
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possible. At intermediate light levels (0.01 - 1 cd/m2), our vision is mesopic, in which both 

rods and cones are active. Under mesopic light conditions color discrimination is poor. At 

high levels (>1cd/m2), our vision becomes photopic, where cone activity is best and allows 

for good color discrimination [64]. There are two key observations that motivates our 

design: (1) the use of two different types of cells, and (2) selection of appropriate cells for 

different lighting conditions. 

Like the human visual system, we propose to use two color spaces: RGB and 

YCbCr to emulate the two types of cells. We then choose the appropriate channels for the 

scene in question. This is different from all existing techniques that employ all channels 

and only one color space. Analogous to the rod cells, RGB and Y channels are used under 

poor lighting conditions since chromatic information is uniformly distributed across RGB 

channels and Y represents intensity only. Similar to the cone cells under sufficient lighting 

condition, we additionally employ the color channels (Cb and Cr) of YCbCr color space to 

increase foreground segmentation accuracy. During intermediate lighting conditions, both 

RGB and YCbCr color spaces complement each other in providing a robust FG/BG 

classification. 

3.3. Background Modelling  

BG modelling is one of most important steps in a BS process and the accuracy of the model 

used directly impacts the segmentation results. Most BG models use a variant of multi-

modal pixel-wise statistical background model. Such an approach has two problems: first, 

it is difficult to determine the correct number of modes for modelling the pixel probability 

distribution function. Second, and more importantly, inter-pixel dependencies are 

overlooked, which leads to poor segmentation results. 
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In order to model the BG, we propose Background Model Bank (BMB), which 

comprises of multiple BG models instead of a single BG model. To form BMB, each 

background training image is treated as a BG model with selected color channels stacked 

together as a vector. This initial set of BG models are then merged together into a number 

of average BG models using an iterative sequential clustering procedure. Two BG mean 

models (p and q in vector form) with correlation measure greater than the pre-defined 

parameter 𝑐𝑜𝑟𝑟_𝑡ℎ are merged and replaced by their average. The correlation measure is 

defined as    

𝐶𝑜𝑟𝑟(𝑝, 𝑞) =

(

 
(𝑝 − 𝜇𝑝)(𝑞 − 𝜇𝑞)′

√(𝑝 − 𝜇𝑝)(𝑝 − 𝜇𝑝)′√(𝑞 − 𝜇𝑞)(𝑞 − 𝜇𝑞)′)

  

where 𝜇𝑝 and 𝜇𝑞 are defined as: 

𝜇𝑝 =
1

|𝑋|
∑𝑝𝑗
𝑗

 and  𝜇𝑞 =
1

|𝑋|
∑𝑞𝑗
𝑗

 

This process continues in an iterative fashion unless there are no more average BG 

models with 𝐶𝑜𝑟𝑟 > 𝑐𝑜𝑟𝑟_𝑡ℎ . 

The use of frame-level clustering is motivated by physical laws that govern scene 

geometry. Typically real-life scenes comprise of different types of objects. The variety in 

configurations and interactions between different types of matter and objects generate very 

intricate and infinite scene geometry. Examples include variations caused by illumination 

changes, dynamic changes, camera shaking, camera movement etc. This diversity makes 
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it difficult to accurately capture and model the scene. The use of multiple BG models allows 

us to capture scene more accurately while keeping spatial dependencies intact. 

Another advantage of BMB is that it is computationally simpler than other multi-

mode approaches since we choose a model at frame level and ignore the rest of the BG 

models in the BMB. While there is an additional cost on choosing the model at frame level, 

it incurs minimal cost because of simple comparison with average BG models than those 

that rely on pixel-based multi-mode distributions. The experimental results in section 3.5 

demonstrate the effectiveness of multiple BG models in capturing scene diversity and 

camera variations accurately.  

3.4. Binary Classification 

In this section, we discuss the binary mask generation for each of the selected color 

channels. It involves color channel activation/deactivation, pixel-level probability 

estimation, MP formation and probability denoising. 

3.4.1. Color-channels Activation/Deactivation 

This step is responsible to activate/deactivate the color channels Cb and Cr. Both color 

channels are used if the mean intensity of input image is greater than empirically 

determined parameter channel_th, which otherwise are not employed.  

3.4.2. Pixel-level Probability Estimation 

Pixel-wise error, 𝑒(𝑋) is calculated between each color channel from both RGB and 

YCbCr spaces and the chosen BG model as follows.  

𝑒(𝑋) = |𝐼𝐷(𝑋) − 𝜇𝐷𝑛(𝑋)| 
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 where D denotes the color channel in question, 𝐼𝐷(𝑋) is the input image, and 

𝜇𝐷𝑛(𝑋) is the chosen average BG model. 

 Once we have calculated the error for each individual pixel, we estimate coarse 

probability 𝑝𝑟 for each pixel by passing them through the activation function.  

𝑝𝑟(𝑋) =  
2

(1 + 𝑒−(2∗𝑒(𝑋)))
− 1 

 The rationale behind this conversion is that the higher the error the more likely that 

the pixel belongs to the FG. 

3.4.3. Mega-Pixel De-noising 

The Mega-Pixel de-noising process performs spatial regulation over raw probability 

estimates to produces more accurate probability estimates. The final probability estimates 

are calculated by taking mean of denoised probability estimates over a MP. It consists of 

two main steps: Mega-Pixel (MP) formation and probability de-noising. Figure 3.2 depicts 

the proposed MP de-noising process.  

Step 1: Mega-Pixel Formation 

The notion of Super-Pixel (SP) segmentation is increasingly popular due to its capability 

in capturing local context and significant reduction in computational complexity. These 

algorithms combine neighboring pixels into one pixel based on similarity measure such as 

color, texture, size etc.  
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Figure 3.2 Mega-Pixel Formation and Probability Denoising. 

In proposed method, we use ERS algorithm [65] to segment the input frame into 𝑅 

Super-Pixels (SP). The SP segmentation is formulated as a graph partitioning problem. For 

a graph 𝐺 = (𝑉, 𝐸) and 𝑅 number of SPs, the goal is to find a subset of edges 𝐴 ⊆ 𝐸 to 

approximate a graph 𝐺 = (𝑉, 𝐴) with 𝑅 connected sub-graphs. The vertex corresponds to 

a pixel in an image and an edge is formed by 4-connected neighborhood with weights 

computed based on similarity between connected vertices. The clustering objective 

function comprises of two terms: the entropy rate 𝐻 of random walk and a balancing 

term 𝐵.   

max
𝐴
𝐻(𝐴) + 𝜆𝐵(𝐴), 

 𝑠. 𝑡. 𝐴 ⊆ 𝐸 𝑎𝑛𝑑 𝑁𝐴 ≥  𝑅 
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where 𝑁𝐴, is the number of connected components in �̅�. The entropy term encourages 

compact and homogeneous clusters, whereas the balancing term encourages clusters with 

similar size. Finally, to overcome exact optimization difficulty, a greedy algorithm is used 

to solve the problem that always provides 
1

2
 approximation bound. For more details, we 

refer readers to [65]. 

 Once SPs are formed, these are combined together to form much bigger Mega-

Pixels (MPs) using DBSCAN [66] clustering. DBSCAN is a density based clustering 

algorithms in which clusters are defined as high density areas, whereas the sparse regions 

are treated as outliers or borders to separate clusters. For DBSCAN clustering, we use 

implementation in [67]. For any 2 adjacent SPs 𝑝 and  𝑞, distance function is based on 

mean Lab color difference and is defined as: 

𝑑(𝑝, 𝑞) = |𝜇𝑝
𝐿 − 𝜇𝑞

𝐿| +  |𝜇𝑝
𝑎 − 𝜇𝑞

𝑎| + |𝜇𝑝
𝑏 − 𝜇𝑞

𝑏| 

𝜇𝑝
𝑐 = 

1

|𝑝|
∑𝑐(𝑥)

𝑥∈𝑝

 

where, 𝜇𝑝
𝑐   represents the mean value of one of the color channels (𝑐 = {𝐿, 𝑎, 𝑏}) of SP 𝑝. 

|𝑝| is the total number of pixels in SP 𝑝. Two SPs 𝑝 and  𝑞 are merged together into a MP 

if they are adjacent and 𝑑(𝑝, 𝑞) ≤ 𝜏𝑐𝑜𝑙𝑜𝑟 where 𝜏𝑐𝑜𝑙𝑜𝑟 is an empirically determined 

constant. Figure 3.2 depicts the overall MP formation process. Notice the road SPs 

correctly merged as a single MP. 
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Figure 3.3 Comparison of segmentation with probability measure of each pixel individually 

(left), SP based average motion probability estimation (middle), and MP based average 

motion probability estimation (right). 

Step 2: Probability De-noising  

MP formation is followed by averaging probability estimation for each MP. Average 

probability (𝑝𝑟̅̅ ̅)of a MP 𝑞  is defined as: 

𝑝𝑟̅̅ ̅ =
1

|𝑞|
∑𝑝𝑟(𝑥)

𝑥∈𝑞

 

where, 𝑝𝑟 represents the coarse FG probability estimate for each pixel. The average 

probability (𝑝𝑟̅̅ ̅) is then assigned to each pixel belonging to that MP. Finally, to obtain 

Binary Mask 𝐷𝑚𝑎𝑠𝑘(𝑋) for each color channel D, the average probability measure is 

thresholded using an empirically determined parameter 𝑝𝑟𝑜𝑏_𝑡ℎ.  
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  The use of MP and its respective 𝐴𝑃 allow us to assign the same probability to each 

pixel belonging to the same object and therefore increases the segmentation accuracy. For 

example, all the pixels belonging to the road in Figure 3.3 should be BG. Clearly, in Figure 

3.3, as we move from left to right, road pixels with erroneous probability estimates would 

be averaged out using neighboring pixels via SPs or MP, thereby improving the 

segmentation accuracy. As MPs respect edge integrity, the average probability of a MP 

represents the same object or part rather than using FG/BG probability estimates for each 

individual pixel or SPs.  

3.5. Experiments and Results 

In this section, we evaluate the proposed method with state of the art algorithms on CDnet 

2014 dataset camera jitter category. The dataset, parameter setting and quantitative 

evaluation are detailed below: 

3.5.1. Dataset and Evaluation Metrics 

The CDnet 2014 dataset [13] is one of the most comprehensive datasets available for 

evaluating BS algorithms.  

Table 3.1 CDnet 2014 Camera Jitter test sequence details. 

Test Sequence Image Resolution Training Data 

(Frame #s) 

Testing Data 

(Frame #s) 

CJ-badminton 720 x 480 1-799 800-1150 

CJ-boulevard 352 x 240 1-789 790-2500 

CJ-sidewalk 352 x 240 1-799 800-1200 

CJ-traffic 320 x 240 1- 899 900-1570 
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Table 3.1 details the test sequences for Camera Jitter (CJ) category. The dataset 

specifies training and testing data to ensure consistency when comparing different 

algorithms. For evaluation purposes, CDnet recommends seven evaluation metrics. Let 

𝑇𝑃 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝐹𝑃 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑇𝑁 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and 𝑇𝑃 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒. The metrics are defined as: 

1. Recall:  𝑅𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

2. Specificity:  𝑆𝑝 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
 

3. False Positive Rate:  𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

4. False Negative Rate:  𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑃+𝑇𝑁
 

5. Percentage of Wrong Classifications:  𝑃𝑊𝐶 = 100 .  
𝐹𝑁+𝐹𝑃

𝐹𝑃+𝐹𝑁+𝑇𝑁+𝑇𝑃
 

6. Precision:  𝑃𝑟 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

7. F-Measure:  𝐹𝑀 =
2.𝑃𝑟.𝑅𝑒

𝑃𝑟+𝑅𝑒
 

An additional metric called average rank R is also defined to aggregate all seven metrics 

together, which is simply the average of each metric from all 4 test sequences in one 

category. 

3.5.2. Parameter Selection 

One set of parameters are used for the entire dataset:  corr_th=0.99, prob_th=0.75, R=300, 

𝜏𝑐𝑜𝑙𝑜𝑟=3 and channel_th=100. The parameter setting is based on the set that yields overall 

best results across all test sequences.  
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3.5.3. Quantitative Comparison 

For quantitative evaluation we consider the top 3 methods reported on the CDnet website 

in CJ category: EFIC [68], PAWCS [22] and SharedModel [21]. Table 3.2 to Table 3.5 

contain the results of proposed method and the top 3 algorithms on four test sequences, 

whereas the overall results are presented in Table 3.6. It is important to note that the results 

reported in this paper are official results computed by the CDnet administrator based on 

our submission of the binary masks. The ground-truth used in the evaluation are withheld 

by the administrator and unavailable to us.  

Table 3.2 Results for badminton test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

MBS [69] [70] 0.8972 0.9967 0.0032 0.1027 0.6676 0.9021 0.9070 1.57 

EFIC [68] 0.9340 0.9930 0.0069 0.0659 0.9007 0.8767 0.8259 3.14 

PAWCS [22] 0.9107 0.9953 0.0046 0.0892 0.7561 0.8920 0.8740 2.71 

SharedModel [21]  0.8922 0.9966 0.0033 0.1077 0.6887 0.8988 0.9054 2.57 

 

Table 3.3 Results for boulevard test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

MBS [69] [70] 0.8731 0.9930 0.0069 0.1268 1.2550 0.8672 0.8613 2.14 

EFIC [68] 0.8592 0.9985 0.0014 0.1407 0.7958 0.9101 0.9676 1.28 

PAWCS [22] 0.8025 0.9951 0.0048 0.1974 1.3879 0.8444 0.8909 2.57 

SharedModel [21]  0.7168 0.9921 0.0078 0.2831 2.0810 0.7638 0.8172 4 
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Table 3.4 Results for sidewalk test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

MBS [69] [70] 0.9324 0.9962 0.0037 0.0675 0.5440 0.8993 0.8685 1.85 

EFIC [68] 0.7375 0.9958 0.0041 0.2624 1.0854 0.7798 0.8273 3.14 

PAWCS [22] 0.5580 0.9984 0.0015 0.4419 1.3049 0.6904 0.9050 2.71 

SharedModel [21]  0.7366 0.9970 0.0029 0.2633 0.9698 0.7984 0.8715 2.28 

 

Table 3.5 Results for traffic test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

MBS [69] [70] 0.6255 0.9854 0.0145 0.3744 3.6963 0.6781 0.7404 2.85 

EFIC [68] 0.8524 0.9684 0.0315 0.1475 3.8789 0.7323 0.6418 3.28 

PAWCS [22] 0.8645 0.9851 0.0148 0.1354 2.2390 0.8278 0.7940 1.28 

SharedModel [21]  0.8383 0.9821 0.0178 0.1616 2.6848 0.7953 0.7566 2.57 

 

Our algorithm ranks first for both badminton and sidewalk test sequences, second 

for boulevard test sequence, and third for traffic test sequence. The multiple BG model 

approach and Mega-Pixel denoising innovation allows our algorithm to minimize false 

positives as a result of unwanted camera movements caused by jitter and shake. 

Table 3.6 Overall comparison on CDnet 2014 Camera Jitter Category. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

MBS [69] [70] 0.8321 0.9928 0.0071 0.1678 1.5407 0.8367 0.8443 1.85 

EFIC [68] 0.8458 0.9889 0.0110 0.1541 1.6652 0.8247 0.8157 2.85 

PAWCS [22] 0.7839 0.9935 0.0064 0.2160 1.4220 0.8136 0.8660 2.28 

SharedModel [21]  0.7960 0.9919 0.0080 0.2039 1.6061 0.8141 0.8377 3 
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The overall comparison in Table 3.6 clearly indicates the superiority of our 

proposed algorithm: it ranks second in six out of seven metrics and achieves highest F-

Measure of 83.67%. Red font in all tables represent the top, whereas blue font represents 

the second best. Lastly, Figure 3.4 shows sample qualitative results on the CDnet 2014 CJ 

test sequences. 

 

Figure 3.4 Input image (Row 1), Ground truth (Row 2) and Proposed method (Row3). 

Results on CDnet 2014 CJ category. 
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Chapter 4 Appearance-based Background Subtraction 

 

In this chapter, we detail the appearance-based BS algorithm named BoFs-SVM that can 

robustly identify FG objects from PTZ camera sequences. We also compare our algorithm 

with several other state-of-the-art algorithms on pan-tilt-zoom and baseline categories of 

the CDnet-2014 dataset, which is a comprehensive dataset for BS evaluation [13], and 

Hopkins155 dataset, which is a specialized dataset for 3D motion segmentation [47]. 

4.1. Algorithm Overview 

The proposed algorithm learns the background entirely based on the appearance features 

and their attributes extracted by a sliding window over each pixel to encode the BG into a 

Bag-of-Features (BoFs). The sliding window captures spatial dependencies at the local 

level. The extracted features then undergo Principal Component Analysis (PCA). The 

selected features are then concatenated into feature vectors to train a global FG/BG SVM 

model for classification. Our algorithm has a number of unique traits to handle moving 

camera scenes. The extraction of multiple features from image patches instead of individual 

pixels is the first key trait that makes our algorithm robust to a moving camera. The second 

key trait is the absence of any global spatial constraint on the features. This is advantageous 

for moving camera scenarios where BG is continuously changing and spatial constraints 

do not hold. This is in contrast to existing methods which impose spatial constraint and 

maintain individual models for each pixel. The selection of the most informative, scene-

specific feature set is the third key trait of our algorithm. To avoid the ambiguity of 
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dynamic background and static foreground, our work focuses exclusively on appearance 

features. Our algorithm assumes the following: 

1. The dominant motion from the scene is due to the camera's movement. 

2. A small number of training frames, which can be externally provided or obtained 

through motion segmentation, are needed.  

As a consequence of assumption 2, the proposed algorithm works best when the 

moving BG scene is predictable, such as those from a pan-tilt-zoom camera. Other moving 

cameras such as ego-vision cameras would require frequent retraining and adaptation, 

which is beyond the scope of this method. The proposed algorithm has three main 

components: Feature extraction, Model formation and Classification. Each component and 

its functional role are detailed in following sections. Figure 4.1 provides the system 

overview. 

 

Figure 4.1 BoFs-SVM. 
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4.2. Feature Extraction 

This component is responsible to extract features and perform PCA to select the most 

significant principal components. For each pixel, a number of image features are extracted 

from the neighborhood of size 𝑣 ×  𝑣 pixels. We use four types of appearance-based 

features: color, intensity, gradient and texture. 

A color feature vector of size 𝑣 ×  𝑣 ×  3 is formed by concatenating three color 

channels: R, G and B. Likewise, intensity is the grayscale values of 𝑣 ×  𝑣 neighborhood 

resulting in a feature vector of size 𝑣 ×  𝑣. 

Texture features are based on Local Binary Patterns (LBP). In LBP, the center pixel 

is compared with its eight neighbors and a label of '1' is assigned if the center pixel is 

greater than the neighboring pixel and '0' otherwise. This results in an 8-bit binary pattern. 

Histogram of these patterns is then calculated for all the pixels in the neighborhood, which 

is then used as a texture descriptor. Multiple improvements and variations such as reduction 

in feature vector length, invariance to change of scale and rotation as well as robustness 

against noise and illumination changes have been reported in literature [71, 72]. We use 

the scale and rotation invariant uniform LBPs introduced in [73] and its implementation in 

[74]. This particular choice allows us to meet real time requirements while incorporating 

texture information into our algorithm. Based on a recent comparison of different LBP 

schemes in [72], the chosen LBP implementation has significant computational advantage 

over its counterparts.  
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A gradient feature vector is formed by first calculating spatial gradients in both x 

and y directions using the Sobel operator. The magnitudes and directions of the gradient 

vectors are then used to form feature vectors of size 𝑣 ×  𝑣 ×  2 at each pixel location. 

The choice of window parameter 𝑣 is critical since a smaller neighborhood can 

generalize well to different background scenes but can easily lead to frivolous matches. A 

larger neighborhood can capture unique features for specific background regions but 

become useless when those regions are no longer in the field of view. We select a 7 ×  7 

neighborhood that represents an empirically-optimal compromise for the sequences we 

have tested. 

To find the optimal set of features, the extracted features undergo PCA and we 

retain the top components. The number of components is based on the percentage of 

variance explained by the selected subset of principal components, which must exceed a 

pre-defined 𝑣𝑎𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 parameter. This rich ensemble of selected features are then 

combined together to form a Bag-of-Features (BoFs). Our use of BoFs capture only the 

local contexts which, unlike global spatial contexts, are invariant to small to medium 

camera and object movement. Nonetheless, local context would fail in the case of drastic 

scene changes such as going from outdoor to indoor. 

4.3. Model Formation 

In this step, feature vectors encoded into Bag-of-Features (BOFS) along with their FG/BG 

labels are used to train a single SVM classifier with 5-fold cross validation. The choice of 

SVM is deliberate as the high dimensional feature vectors from different image attributes 
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and large patch size can easily lead to over-fitting problems. SVM classifiers provide 

automatic safeguard against over-fitting. 

The training data comprises of feature vectors of input images and corresponding 

FG/BG label for each pixel. To automatically generate FG/BG labels, the motion-based BS 

algorithm proposed in chapter 4 is employed. Apart from the aforementioned unsupervised 

mode, the proposed method can also take advantage of supervised mode i.e. manually label 

images yielding more accurate results. 

These feature vectors and labels are then used to train a single SVM. Using 

LIBSVM [75], the problem is formulated as a two-class soft-margin Support Vector 

Classification with regularization parameter 𝐶. The kernel is set to be the radial basis 

function (RBF) defined as follows: 

𝐾(𝑥𝑖, 𝑥𝑗)  =  𝑒
−𝛾‖𝑥𝑖−𝑥𝑗‖

2

 

The setting of parameters 𝐶 and shape parameter γ is based on the combination that 

yields the best overall performance with a 5-fold cross-validation over training data. During 

each iteration of the cross validation process, 10% of data is randomly retained for 

validation purpose, whereas remaining data is used to train the SVM model. For further 

details of SVM we refer readers to [75]. 

4.4. Classification 

For any given image, we extract feature vectors as described in section 4.2 and pass onto 

the SVM model. The model returns FG and BG probability estimates for each pixel, which 

are then classified into FG/BG as follows: 
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𝑀(𝑥, 𝑦) = {
𝐵𝐺   𝑖𝑓 𝑃𝑟(𝑥, 𝑦) ≥ 𝑡ℎ

𝐹𝐺   𝑖𝑓 𝑃𝑟(𝑥, 𝑦) < 𝑡ℎ 
 

where 𝑀(𝑥, 𝑦) represents the binary FG/BG decision of the pixel at location (𝑥, 𝑦) of the 

input image, 𝑃𝑟(𝑥, 𝑦) is the BG probability estimate returned by the SVM classifier, and 

𝑡ℎ is an empirically-determined threshold parameter. A 7 ×  7 median filter is applied to 

the binary mask to remove isolated FG pixels. 

4.5. Evaluation on CDnet 2014 Dataset 

In this section, we compare BoFs-SVM with state of the art algorithms on CDnet 2014 

dataset pan-tilt-zoom (PTZ) and baseline (BL) categories. Our goal is to demonstrate the 

advantages of our algorithm on PTZ sequences over the state-of-the-art from the CDnet 

comparison website. As static cameras are special case of moving cameras, we use the BL 

sequences to show that our algorithm is comparable to these algorithms as well. The 

dataset, parameter setting and quantitative evaluation are detailed below: 

4.5.1. Dataset and Evaluation Metrics 

The CDnet 2014 dataset [13] is one of the most comprehensive datasets available for 

evaluating BS algorithms. Table 4.1 details the test sequences for both PTZ and BL 

categories. The dataset specifies training and testing data to ensure consistency when 

comparing different algorithms.  

4.5.2. Parameter Selection 

In order to systematically find the optimal set of parameters, exhaustive search is conducted 

during the offline training phase to identify the optimal 𝐶, 𝑡ℎ, 𝑣𝑎𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and γ. The 
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set of parameters that yields the best result in terms of F-Measure over the validation data 

is chosen. This process has resulted in a single set of parameters to be used for all PTZ 

sequences in CDnet2014 dataset: 𝐶 = 1, 𝑡ℎ = 0.97, 𝑣𝑎𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  90% and 𝛾 =

0.25. 

Table 4.1 CDnet 2014 PTZ and BL test sequence details. 

Test Sequence Image Resolution Training Data 

(Frame #s) 

Testing Data 

(Frame #s) 

PTZ-continuousPan 704x480 1-599 600-1700 

PTZ-intermittentPan 560x368 1-1199 1200-3500 

PTZ-twoPositionPTZ 570x340 1-799 800-2300 

PTZ-zoomInZoomOut 320x240 1- 499 500-1130 

BL-highway 320x240 1-469 470-1700 

BL-office 360x240 1-569 570-2050 

BL-pedestrians 360x240 1-299 300-1099 

BL-PETS2006 720x576 1-299 300-1200 

 

4.5.3. Quantitative Comparison 

For quantitative evaluation we consider the top 4 methods reported on the CDnet website 

in PTZ category: EFIC [68], PAWCS [22], MBS [69] and SharedModel [21]. Table 4.2 to 

Table 4.5 contain the results of BoFs-SVM and the top 4 algorithms on four test sequences, 

whereas the overall results are presented in Table 4.6. It is important to note that the results 

reported in this paper are official results computed by the CDnet administrator based on 

our submission of the binary masks. The ground-truth used in the evaluation are withheld 

by the administrator and unavailable to us. For evaluation purposes, CDnet recommends 
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seven evaluation metrics: Recall (Re), Specificity (Sp), False Positive Rate (FPR), False 

Negative Rate (FNR), Percentage of Wrong Classifications (PWC), Precision (Pr) and F-

Measure (FM), which are defined in section 3.5. An additional metric called average rank 

R is also defined to aggregate all seven metrics together, which is simply the average of 

each metric from all 4 test sequences in one category. 

Our algorithm ranks first for both ZoomInZoomOut and twoPositionPTZCam test 

sequences, second for intermittentPan test sequence, and third for continuousPan test 

sequence. The results in intermittentPan and continuousPan test sequences is affected by 

the presence of parked cars in the scene. The lack of spatial constraint and the similarity in 

features of the parked cars and moving FG cars decreases the segmentation accuracy.  

Table 4.2 Results for continuousPan test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

BoFs-SVM [76] 0.4551 0.9992 0.0007 0.5448 0.3762 0.5756 0.7829 2.71 

EFIC [68] 0.6880 0.9984 0.0015 0.3119 0.3298 0.7005 0.7134 2.14 

PAWCS [22] 0.7664 0.9811 0.0188 0.2335 2.0014 0.3004 0.1868 3.14 

MBS [69] 0.5168 0.9990 0.0009 0.4831 0.3661 0.6128 0.7525 2.57 

SharedModel [21]  0.6814 0.9674 0.0325 0.3185 3.4128 0.1829 0.1056 4.42 

 

Table 4.3 Results for intermittentPan test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

BoFs-SVM [76] 0.5633 0.9988 0.0011 0.4366 0.5275 0.6669 0.8172 2.57 

EFIC [68] 0.9070 0.9998 0.0001 0.0929 0.1039 0.9424 0.9806 1 

PAWCS [22] 0.4504 0.9980 0.0019 0.5495 0.7044 0.5452 0.6907 3.57 

MBS [69] 0.7072 0.9914 0.0085 0.2927 1.1258 0.5409 0.4379 3.71 

SharedModel [21]  0.7649 0.9840 0.0159 0.2350 1.7961 0.4440 0.3128 4.14 
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Table 4.4 Results for twoPositionPTZCam test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

BoFs-SVM [76] 0.8334 0.9985 0.0014 0.1665 0.3350 0.8532 0.8740 2.28 

EFIC [68] 0.9191 0.9965 0.0034 0.0808 0.4353 0.8315 0.7581 3.14 

PAWCS [22] 0.7414 0.9991 0.0008 0.2585 0.3887 0.8167 0.9091 2.71 

MBS [69] 0.8425 0.9967 0.0032 0.1574 0.5050 0.7959 0.7541 4.14 

SharedModel [21]  0.8770 0.9971 0.0028 0.1229 0.4288 0.8270 0.7823 2.71 

 

Table 4.5 Results for zoomInZoomOut test sequence. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

BoFs-SVM [76] 0.9362 0.9998 0.0001 0.0637 0.0298 0.9207 0.9058 1.28 

EFIC [68] 0.9601 0.5841 0.4158 0.0398 41.520 0.0084 0.0042 3.85 

PAWCS [22] 0.8322 0.9865 0.0134 0.1677 1.3700 0.1835 0.1031 3.28 

MBS [69] 0.3226 0.9978 0.0021 0.6773 0.3427 0.2583 0.2153 2.85 

SharedModel [21]  0.8644 0.9679 0.0320 0.1355 3.2286 0.0901 0.0475 3.71 

 

Table 4.6 Overall comparison on CDnet 2014 PTZ Category. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

BoFs-SVM [76] 0.6970 0.9991 0.0008 0.3029 0.3171 0.7541 0.8450 1.85 

EFIC [68] 0.8686 0.8947 0.1052 0.1313 10.597 0.6207 0.6143 3 

PAWCS [22] 0.6976 0.9912 0.0087 0.3023 1.1161 0.4615 0.4724 3.28 

MBS [69] 0.5973 0.9962 0.0037 0.4026 0.5849 0.5519 0.5400 3.14 

SharedModel [21]  0.7969 0.9791 0.0208 0.2030 2.2166 0.3860 0.3121 3.71 

 

The overall comparison in Table 4.6 clearly indicates the superiority of our 

proposed algorithm: it ranks first in five out of seven metrics and yields comparable results 
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in the Re and FNR metrics. In terms of the F-Measure, we have achieved 13.34% 

improvement over previous best score of 62.07%. Most of the aforementioned methods fail 

because of underlying static camera assumption and spatial constraint, whereas our 

algorithm does not impose any spatial constraint and therefore produces significantly more 

accurate results. Figure 4.2 and Figure 4.3 and show qualitative results of BoFs-SVM for 

PTZ test sequences. Note the challenging nature and large camera motion in these test 

sequences.  

Table 4.7 Overall comparison on CDnet 2014 Baseline Category. 

Method Re Sp FPR FNR PWC FM Pr Rank (R) 

BoFs-SVM [76] 0.9115 0.9978 0.0020 0.0884 0.4606 0.6210 0.9308 4.14 

EFIC [68] 0.9455 0.9970 0.0030 0.0545 0.5201 0.9309 0.9170 3.85 

PAWCS [22] 0.9408 0.9980 0.0020 0.0592 0.4491 0.9397 0.9394 2.71 

MBS [69] 0.9158 0.9979 0.0021 0.0842 0.4361 0.9287 0.9431 3.28 

SharedModel [21]  0.9545 0.9982 0.0018 0.0455 0.3344 0.9522 0.9502 1 

 

Table 4.7 details the overall results on baseline category of CDnet dataset. Although 

our algorithm does not outperform other methods. It produces comparable results across 

all seven metrics. Specifically, our algorithm produces a FM of 0.92 in comparison to top 

performing method with FM of 0.95. 
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Figure 4.2 Input Image (row 1), BoFs-SVM output (row 2), EFIC output(row 3), and 

subSENSE output(row 4). CDnet 2014 dataset: continuousPan test sequence(columns 1-4) 

and zoomInZoomOut(columns 5-7) test sequences. 

 

Figure 4.3 Input Image (row 1), BoFs-SVM output (row 2), EFIC output (row 3), and 

subSENSE output (row 4). CDnet 2014 dataset – twoPositionPTZCam (columns 1-4) and 

intermittentPan (columns 5-7) test sequences. 
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In order to highlight the importance of appropriate feature selection, we also tested 

our algorithm with color, LBP and gradient features individually. The results are detailed 

in Table 4.8.  

Table 4.8 Overall Results with different features on Cdnet 2014 PTZ category. 

Method Pr Re FM 

BoFs-SVM-Gradient 0.215 0.356 0.268 

BoFs-SVM-LBP 0.642 0.421 0.507 

BoFs-SVM-Color 0.839 0.623 0.69 

 

Clearly, color features offer significantly more robust solution than LBP and 

gradient feature vectors. The results for texture (LBP) and color features are affected by 

two test sequences in PTZ category: continuousPan and intermittentPan. Due to lack of 

spatial constraint, the proposed method is unable to distinguish moving cars in the 

foreground and parked cars in the background. The same texture of parked and moving 

cars results in poor performance when LBP features are chosen, however color features 

produce more accurate results since the color of moving and parked cars are not necessarily 

the same. This stresses the need to choose correct type of features depending on the type 

of the scene. 

Lastly, we compare the processing time of our algorithm with other methods in 

Table 4.9. The processing time for other methods are reported from official CDnet dataset 

website [7]. Our MATLAB implementation of the proposed method is able to achieve 15 

frames per second (fps). With code optimization and C++ implementation, the proposed 

method is expected to achieve 30 fps. 
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Table 4.9 Processing time comparison. 

Method Implementation Resolution fps 

BoFs-SVM [76] Matlab 320 × 240 15 

EFIC [68] C++ 320 × 240 16 

PAWCS [22] C++ 320 × 240 27 

MBS [69] Matlab 320 × 240 9 

SharedModel [21]  C++ 320 × 240 35 

 

4.6. Evaluation on Hopkins155 Dataset 

In this section, we compare BoFs-SVM with four state of the art algorithms on Hopkins155 

dataset. The dataset, parameter setting and quantitative comparison are detailed below. 

4.6.1. Dataset and Evaluation Metrics 

The reason to include this particular dataset is that these test sequences are taken from 

hand-held cameras and often used in motion segmentation literature. Although, 

Hopkins155 dataset comprises of 26 video sequences, most literature focuses on three test 

sequences: cars1, people1 and people2, since majority of test sequences have large number 

of frames with zero motion and despite multiple moving objects, only one or few are 

labeled for evaluation. 

Hopkins155 dataset has no FG-free or static frames for training purposes. Therefore 

similar to other algorithms, we employ first two frames of the sequence to obtain initial 

labels and train the SVM classifier. Precision (Pr), Recall (Re) and F-Measure (FM) are 

used for evaluation purposes. 
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4.6.2. Parameter Selection 

Exhaustive search is conducted during the offline training phase to identify the optimal 

𝐶, 𝑡ℎ, 𝑣𝑎𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and γ. The set of parameters that yields the best F-Measure over the 

validation data is chosen. 

This process has resulted in a single set of parameters to be used for all of the three 

test sequences in Hopkins155 dataset: 𝐶 = 1, 𝑡ℎ = 0.97, 𝑣𝑎𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 90% and 𝛾 =

0.25. 

4.6.3. Quantitative Comparison 

For quantitative evaluation, we consider 4 state of the art algorithms: Brox and Malik [48], 

Kwak et al. [10], Sheikh et al. [9], as well as Elqursh and Elgammal [11]. We tabulate 

individual as well as overall results in Table 4.10. Note that in each column of tables, red 

font represents the best result and blue font represents the second best. 

For cars1 test sequence, our algorithm produces a FM of 0.86, which is comparable 

to FM of 0.88 produced by the second best method Kwak et al. [10]. The slightly poorer 

result is due to the limitation of the training data, which are obtained in our experiments 

based on motion segmentation of first two frames. For cars1, part of the FG has the same 

motion as the BG and this contributes to the slight loss in performance. 

In people1 test sequences, our algorithm has second best recall, whereas for people2 

test sequence, it achieves highest recall and second best F-Measure of 0.88. It is important 

to mention that our current system uses only one set of parameters to train SVM model for 

consistency. Table 4.11 shows that the proposed method achieves the highest overall recall 
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and second best F-Measure of 0.87, which is comparable to top F-Measure of 0.89. Lastly, 

Figure 4.4 depicts results of BoFs-SVM for the three test sequences of Hopkins155 dataset. 

Table 4.10 Results for test sequences of Hopkins155 dataset. 

 Cars1 People1 People2 

Method Pr Re FM Pr Re FM Pr Re FM 

BoFs-SVM [76] 0.81 0.92 0.86 0.87 0.88 0.87 0.83 0.93 0.88 

Brox and malik [48] - - - 0.89 0.77 0.83 0.92 0.89 0.90 

Kwak et al [10] 0.92 0.84 0.88 0.95 0.93 0.94 0.85 0.89 0.87 

Sheikh et al. [9] 0.63 0.99 0.77 0.78 0.63 0.70 0.73 0.83 0.77 

Elqursh and Elgammal [11] 0.85 0.97 0.91 0.97 0.88 0.92 0.87 0.88 0.87 

 

Table 4.11 Overall results on Hopkins155 dataset. 

Method Pr Re FM 

BoFs-SVM [76] 0.837 0.910 0.872 

Kwak et al - with NBP [10] 0.906 0.886 0.896 

Sheikh et al. [9] 0.713 0.816 0.748 

Elqursh and Elgammal [11] 0.896 0.910 0.896 

 

 

Figure 4.4 Input Image (row 1) and BoFs-SVM output(row 2). Hopkins155 dataset: 

Cars1(column 1-2), people1(column 3-4) and people2(column5-6). 
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Table 4.12 Overall Results with different features on Hopkins155 dataset. 

Method Pr Re FM 

BoFs-SVM-Gradient 0.215 0.356 0.268 

BoFs-SVM-LBP 0.642 0.421 0.507 

BoFs-SVM-Color 0.839 0.623 0.69 

 

We also tested our algorithm with color, LBP and gradient features individually. 

Table 4.12 details the overall performance on Hopkins155 dataset. Like CDnet 2014, color 

features offer the most robust segmentation. LBP and gradient feature vectors yield better 

results on Hopkins155 in comparison to their performance on CDnet 2014 dataset since 

Hopkins155 does not involve large camera movements as that of CDnet 2014 and FG 

objects similar to BG do not appear in the scene. 
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Chapter 5 Motion-based Background Subtraction 

 

In this chapter, we present an online algorithm for foreground/background segmentation of 

videos captured from moving cameras. It provides algorithm overview and details the two 

major innovations: iterative low rank approximation of background motion and Mega-

Pixel denoising. The last section provides the comparison of proposed method against 

state-of-the-art motion-based methods on publicly available test sequences. 

5.1. Algorithm Overview 

The proposed algorithm primarily relies on motion to differentiate FG/BG and uses color 

information only to denoise motion vectors at pixel level. Color and other appearance 

attributes are not used for BS to accommodate fast moving scene. It has two main modules: 

Motion Segmentation (MS) module and Mega-Pixel Motion Correction module (MP-MC). 

The MS module first performs an iterative low rank approximation of background motion, 

which is then compared with original motion vectors to yield initial FG/BG probability 

estimates. These probability estimates and the input image are then passed onto the MP-

MC module. Using an innovative mega-pixel motion correction (MP-MC) process, the 

image is decomposed into megapixels (MP) and average FG probability for each MP is 

computed based on the coarse motion-based probability from MS module. These 

probability measures (data term) and image intensity gradient (smoothness term) are then 

combined together in Graph-Cut energy minimization framework to obtain the final 

segmentation mask. Compared with other motion-based approaches, which are feasible for 

offline processing and require prior information such as number of FG objects, the 
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proposed algorithm is online and requires no initialization or training. Figure 5.1 provides 

an overview of the proposed system. Detailed descriptions of each module are provided in 

the following sections. 

 

Figure 5.1 System Overview. 

5.2. Motion Segmentation Module 

The main task of Motion Segmentation (MS) module is to produce an initial coarse 

probability estimates of FG label for each pixel. It comprises of three main steps: Motion 

feature extraction, Iterative Polynomial Fitting and FG probability estimation. Figure 5.2 

provides a detailed insight into MS module. The technical details of all the components are 

described in Section 5.2.1 to 5.2.2.  
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Figure 5.2 Motion Segmentation Module. 

5.2.1. Motion Feature Extraction 

First, optical flow [77] is used to compute a dense motion vector field between successive 

frames. The horizontal (𝑉𝑥) and vertical (𝑉𝑦) motion vectors are then used to calculate 

magnitude (𝑉𝑚𝑎𝑔) and direction (𝑉𝑎𝑛𝑔) as follows: 

𝑉𝑚𝑎𝑔 = √𝑉𝑥
2 + 𝑉𝑦

2 and 𝑉𝑎𝑛𝑔 = tan
−1 𝑉𝑦

𝑉𝑥
 

The motion feature (Vx,  Vy, Vmag,  Vang) extraction process is followed by Principal 

Component Analysis (PCA) and the top principal component is chosen for further 

processing. The choice of using the most significant principal component is twofold: first, 

empirical testing indicates that additional components do not improve performance. 

Second, there exist very efficient algorithm for finding the top principal component. 

5.2.2. Iterative Polynomial Fitting 

In this step, we perform an iterative low rank approximation of the motion features, 

motivated by the observations that BG pixels exhibits a smooth and spatially varying 
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motion, whereas FG pixels are represented by outliers. Specifically, we use the following 

second-order to fit the motion features after PCA: 

𝑓(𝑥, 𝑦)  = 𝑎𝑥2 +  𝑏𝑦2  +  𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 

where 𝑓(𝑥, 𝑦) represents the estimated BG motion. Polynomial coefficients (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓) 

are estimated by minimizing the sum of the absolute residual 𝐸: 

argmin
𝑎,𝑏,𝑐,𝑑,𝑒,𝑓

𝐸 = ∑|𝑓𝐵𝐺
(𝑡)(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)|

∀ 𝑥,𝑦

 

where 𝑓𝐵𝐺
(𝑡)(𝑥, 𝑦) represents the 𝑡th iterated pixel motion at location (𝑥, 𝑦) with outliers 

removed in each iteration. 

 During the first iteration, 𝑓𝐵𝐺
(1)(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) where 𝑓(𝑥, 𝑦) is the original motion 

feature after PCA. The presence of outliers, i.e. FG, does not guarantee the best fit of the 

actual BG motion, and therefore we propose an iterative fit rather than a simple polynomial 

fitting. This is achieved by removing the set of outlier pixels from 𝑓(𝑥, 𝑦) in each iteration 

until the change of residual error between consecutive iterations becomes less than a small 

threshold 𝜖. The outlier removal criteria is based on mapping the residue to probability 

measure and pixels with probability higher than an empirically determined constant  

𝜏𝑚𝑜𝑡𝑖𝑜𝑛 are considered as outliers.   

Once converged, pixel wise motion error denoted as 𝑒(𝑥, 𝑦) is calculated between 

actual and estimated motion as follows: 

𝑒(𝑥, 𝑦) = |𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)| 
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The pixels with small error represent BG, whereas pixels with large error belong to 

FG. Finally, this pixel-wise motion error is passed through sigmoid activation function to 

estimate motion based FG probability measure denoted as 𝑝𝑚. The same criteria is used to 

calculate FG probability of each pixel during iterative 𝑓(𝑥, 𝑦) approximation.  

𝑝𝑚(𝑥, 𝑦) =  
2

(1 + 𝑒−(2∗𝑒(𝑥,𝑦)))
− 1 

 

Figure 5.3 shows the effectiveness and increase in segmentation accuracy with 

increasing iteration. The red colored pixels correspond to those that are retained for the 

next iteration. During iteration one, clearly many pixels belonging to car, which is 

considered FG are still part of BG and only few pixels on car are removed as outliers. The 

reason is that the polynomial fit is corrupted by outliers, however when the outliers are 

removed in each subsequent iteration, the polynomial fit gets better and the car pixels are 

correctly identified as FG. Lastly, the plot indicates the decreasing error with increasing 

number of iterations. The algorithm converges in seven iterations on this cars1 test 

sequence sample frame. On average, the algorithm is able to converge within ~5 iterations. 
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Figure 5.3 Motion segmentation accuracy and decreasing residual error with increasing 

number of iterations. 

 

5.3. Mega-Pixel De-noising 

The Mega-Pixel de-noising process performs spatial regulation over raw probability 

estimates to produces more accurate probability estimates. The final probability estimates 

are then calculated by taking mean of denoised probability estimates over a MP. It consists 

of two main steps: Mega-Pixel (MP) formation and probability de-noising. Figure 5.4 

depicts the proposed MP de-noising process.  

 

Figure 5.4 Mega-Pixel formation, Motion Correction and Graph-Cut optimization. 



55 

 

5.3.1. Mega-Pixel Formation 

The Mega-Pixel formation process is detailed in chapter 3, section 3.4.3. Figure 5.5 depicts 

the resulting Super-Pixels, Mega-Pixels formed and corresponding masks. Notice the 

ground SPs correctly merged as a single MP. 

 

Figure 5.5 Comparison of segmentation with motion probability measure only (column 1), 

SP based average motion probability measure (column 2), and MP based average motion 

probability measure (column 3). 

5.3.2. Probability De-noising  

MP formation is followed by averaging motion probability estimation for each MP. 

Average motion probability (�̅�𝑚) of a MP 𝑞  is defined as: 

�̅�𝑚 =
1

|𝑞|
∑𝑝𝑚(𝑥)

𝑥∈𝑞

 

where, 𝑝𝑚 represents the initial motion-based FG probability estimate from MS module. 

The average motion (�̅�𝑚) probability is then assigned to each pixel belonging to that MP.  
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The use of MP and the respective �̅�𝑚 can be motivated by 2 reasons. First, the pixels 

belonging to the same object should have same foreground/background classification, 

however due to limitations of the algorithms and real world non-idealities such as non-

rigidity and illumination variation, the probability measure varies and results in decreased 

segmentation accuracy. For example, as depicted in Figure 5.5, the tennis player hands 

might have larger motion vectors associated with them due to swinging action, whereas 

torso region may have different motion vectors. Hence, the nature of motion in real world 

can result in high misclassification and decreased segmentation accuracy. If we consider 

appearance, the change in the intensity due to illumination variations results in many of the 

ground pixels falsely labelled as FG. To reduce such effects, we estimate average 

probability of a MP that represents the same object or part rather than using FG probability 

estimates for each individual pixel or SPs. Figure 5.5 shows segmentation masks, using 

probabilities from individual pixels, SP, and MP respectively. As expected, the pixel based 

segmentation results in too many false positives.  In SP based segmentation, many falsely 

positive ground pixels and around the tennis player are averaged out by true negative pixels 

thus increasing segmentation accuracy. Lastly, when all ground SPs are merged into a MP, 

the dominant true positive SPs probability averages out false positive SPs probability 

measures, thus reducing misclassification and significantly increasing segmentation 

accuracy along with low computational cost. 

Secondly, the SP-MP formation largely respects/preserves edges and thus noisy 

motion pixel probability measures along edges due to motion blur are also averaged out, 

thus preserving edge integrity and increasing segmentation accuracy.  
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5.4. Graph-Cut Optimization 

In this final step, the Mega-Pixel based pixel-wise probability estimates and image intensity 

are formulated as an energy minimization problem. Graph-Cut implementation is based on 

[78, 79, 80]. The overall goal is to seek label 𝑙 ∈ {𝐵𝐺, 𝐹𝐺} that minimizes energy: 

𝐸(𝑙) = ∑𝐷𝑝(𝑙𝑝)

𝑝∈𝑃

+ ∑ 𝑉𝑝,𝑞(𝑙𝑝, 𝑙𝑞)

{𝑝,𝑞}∈𝑂

 

 The first term (𝐷𝑝(𝑙𝑝)) is the data term i.e. T-link that connects each pixel to FG 

and BG nodes. The weight of the T-link between a pixel 𝑝 ∈ 𝑃 and FG and BG nodes 

are 𝑃𝑟𝑝 and 1 − 𝑃𝑟𝑝 respectively. The smoothness term, 𝑉𝑝,𝑞(𝑙𝑝, 𝑙𝑞), often known as N-link 

represents the relationship between adjacent pixels. For any two adjacent pixels 𝑝 and 𝑞, it 

is defined as 

𝑉𝑝,𝑞(𝑙𝑝, 𝑙𝑞) = |𝑙𝑝 − 𝑙𝑞|. 𝑒
−(|𝑝𝑅−𝑞𝑅|+|𝑝𝐺−𝑞𝐺|+|𝑝𝐵−𝑞𝐵|) 

 The data term provides an initial estimate of a pixel's tendency towards FG and BG 

node, whereas the smoothness term encourages same labelling to similar colored pixels. 

This is achieved by high penalty in case of label switch for similar color pixels, whereas 

low penalty for label switch in case of different colored pixels. This allows the 

segmentation to preserve edge integrity and further refines the segmentation results at pixel 

level. 

5.5. Experiments and Results 

We evaluate our algorithm on six challenging test sequences, comparing performance with 

three state-of-the-art algorithms. Five test sequences: Cars1, Cars2, People1, People2 and 
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Tennis are taken from Hopkins155 dataset [47] and drive test sequence from [11].  The 

choice of test sequences is based on the popularity of these sequences for evaluation 

purposes and the availability of results from previous methods. Cars1, Cars2, People1, 

People2 are short test sequences with a maximum of 40 frames, whereas tennis and drive 

test sequences are longer with 466 and 456 frames respectively. These sequences include 

a variety of challenges such as fast camera motion, clutter, zooming, multiple moving 

objects and large FG areas. Although, Hopkins155 dataset contains 26 video sequences, 

we believe most of other algorithms avoid using all test sequences for evaluation purposes 

because of following reasons: 

 majority of test sequences have large number of frames with no motion, 

 there are multiple moving objects but only a subset is labelled for evaluation and 

 the majority of the image (>70%) is occupied by FG, making initialization difficult. 

Our system has only four parameters: 𝜏𝑚𝑜𝑡𝑖𝑜𝑛 to remove outliers during iterative BG 

motion approximation, 𝜖 to control convergence during iterative BG approximation, 𝜏𝑐𝑜𝑙𝑜𝑟 

to merge SPs into MP and 𝑅 to segment image into arbitrary number of SPs. We used only 

one set of parameters for all test sequences: 𝜏𝑚𝑜𝑡𝑖𝑜𝑛 = 0.8, 𝜏𝑐𝑜𝑙𝑜𝑟 = 7, 𝜖 = 0.1 𝑎𝑛𝑑 𝑅 =

300. The relatively few number of parameters indicate strength of our method and its 

scalability in terms of real world deployment and applicability. 

Table 5.1 provides a quantitative comparison of the proposed method with three 

state-of-the-art motion-based algorithms: Brox and Malik [48], Sheikh et al. [9] and 

Narayana et al. [53]. F-Measure (FM) is used for evaluation purposes. In cars2, people1, 

people2, tennis and drive test sequences, our algorithm outperforms all other algorithms. 
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Our worst performance is in cars1 test sequence, which is primarily due to same motion of 

FG and BG and optical flow fails to identify any FG motion.  

Table 5.1 Comparison of Proposed method with other methods. Red font is for best, 

whereas blue font represents second best method. 

F-Measure 

Method Drive Cars2 People1 People2 Tennis Cars1 

Ours 0.72 0.85 0.94 0.91 0.76 0.70 

Brox and malik [48] - - 0.83 0.90 - - 

Sheikh et al. [9] 0.04 - 0.70 0.77 0.40 0.77 

Narayana et al [53] - 0.56 0.69 0.88 0.67 0.50 

 

Overall, unlike other methods, our algorithm is able to produce superior or 

comparable results across different types of challenges. Figure 5.6 depicts sample 

qualitative results of proposed method on different test sequences. 

 

Figure 5.6 Input image (row 1), Ground truth (row 2), and proposed system output (row 

3). Cars2 (column 1), people1 (column 2), tennis (column 3), people2 (column 4), drive 

(column 5). 
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Chapter 6 Hybrid Background Subtraction 

 

In this chapter, we present a powerful hybrid algorithm for foreground/background 

segmentation of videos captured from PTZ, hand-held and freely moving cameras. It 

provides algorithm overview, details the motion and appearance modules and their fusion. 

The last section provides the comparison of proposed method against six state-of-the-art 

algorithms on publicly available test sequences. 

6.1. Algorithm Overview 

The proposed algorithm comprises of two main modules: Motion Segmentation Module 

(MS) and Appearance Module (AM). The MSM module takes the current and previous 

frames as input and performs an iterative low rank approximation of background motion, 

which is then compared with original motion vectors to yield coarse motion-based FG 

probability estimate for each pixel. The AM module takes the input image and two separate 

FG and BG Gaussian mixture models as input. Color features are extracted by sliding a 

window of fixed size over the entire image. The appearance models and color features are 

then used to compute log-likelihood ratio to generate coarse appearance-based FG 

probability estimate for each pixel. The coarse motion and appearance based probability 

estimates then undergo Mega-Pixel (MP) denoising process. The current frame is 

decomposed into MPs, and the probability at each pixel within a MP is replaced by the 

average over the whole MP. The denoised motion and appearance probability estimates are 

then combined together at pixel level by taking mean of both probability measures. The 

final FG/BG probability measures are then combined with the gradient image in the Graph-

Cut energy minimization to produce the final segmentation mask.  
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 The proposed algorithm automatically trains separate appearance-based Gaussian 

mixture model for FG and BG. For model initialization, motion-based probability estimates 

and Mega-Pixel denoising process is applied on first few frames to extract highly probable 

FG and BG pixels. Model parameters are estimated through an iterative expectation-

maximization (EM) algorithm. During the online phase, the appearance models are 

continuously updated based on highly probable FG and BG pixel candidates from previous 

frame. In contrast to existing methods, the proposed method does not rely on explicit 

camera motion models nor does it make any assumptions about the scene, it is online, does 

not require any prior information and computationally efficient since it needs to maintain 

only two global models instead of pixel-wise models. Figure 6.1 provides an overview of 

the proposed algorithm. Each component of algorithm is detailed in following sections. 

 

Figure 6.1 Algorithm Overview. 
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6.2. Motion Segmentation Module 

The Motion Segmentation (MS) module takes the current and previous images as input 

and generates coarse motion-based probability estimates 𝑝𝑚. This module is same as the 

motion segmentation module for motion-based algorithm. We refer readers to chapter 5, 

section 5.2 for details. 

6.3. Appearance Module 

The appearance module takes the current frame as input and produces an initial FG 

probability estimate for each pixel. We discuss model initialization, pixel-wise probability 

estimation and appearance model update in following sub-sections. 

6.3.1. Model Initialization and Formation 

The first step is to form global Gaussian mixture models for both FG and BG. For this 

purpose, we use the first 𝑀 frames to obtain a set of highly probable FG and BG pixels 

based on motion vectors. We assume that during these initial frames: 

 FG and BG differ in terms of motion.  

 The major motion in the scene belongs to BG and outliers are considered as FG. 
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Figure 6.2 GMM appearance model initialization and formation. 

Figure 6.2 depicts the overall model formation process. The current and previous 

frames are passed onto MSM module, which generates pixel-wise but coarse FG 

probability estimates. These probability estimates then undergo MP denoising (detailed in 

chapter 5, section 5.3), which yields more accurate FG probability estimates for each pixel. 

In parallel, for each pixel, a neighborhood of size 𝑣 ×  𝑣 is considered and the three color 

channel: R, G and B are concatenated to form a feature vector of size 𝑣 ×  𝑣 × 3. The 

feature vector of the pixels with probability measure higher than parameter 𝑝ℎ form the 

subset of reliable FG features, whereas feature vector of pixels less than parameter 𝑝𝑙 form 

the subset of reliable BG features. These subset of reliable FG and BG features from all 𝑀 

frames are then used to build GMM for both FG and BG.   

For a set of 𝑁 feature vectors (𝑥) with dimensionality 𝐷 = 𝑣 × 𝑣 × 3, the feature 

vectors are modelled by a mixture of K components, defined by the probability density 

function: 
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𝑝(𝑥𝑗) = ∑𝑝(𝑘) 𝑝(𝑥𝑗|𝑘)

𝐾

𝑘=1

 

where, 𝑝(𝑘) is the prior and 𝑝(𝑥𝑗|𝑘) is the conditional probability density function. The 

parameters are defined as: 

𝑝(𝑘) = 𝑤𝑘  

 𝑝(𝑥𝑗|𝑘) =
1

√(2𝜋)𝐷|∑𝑘|
𝑒−
1
2
((𝑥𝑗−µ𝑘)

𝑇∑𝑘
−1(𝑥𝑗−µ𝑘)) 

The parameters of GMM are prior probability (𝑤𝑘 ), mean vector (µ𝑘 ), covariance 

matrix (∑𝑘 ) and cumulated posterior probability (𝐸𝑘 ), defined as: 

𝐸𝑘 =∑𝑝(𝑘|𝑥𝑗)

𝑁

𝑗=1

 

using Bayes theorem, 

𝑝(𝑘|𝑥𝑗) =
𝑝(𝑘)𝑝(𝑥𝑗|𝑘)

∑ 𝑝(𝑖)𝑝(𝑥𝑗|𝑖)
𝐾
𝑖=1

 

The GMM parameters are learnt using the iterative Expectation-Maximization 

(EM) algorithm. As a starting point, we use k-means algorithm to estimate parameters:𝑤𝑘 , 

µ𝑘 , ∑𝑘 and 𝐸𝑘 .  

E-step: 

𝑝𝑘,𝑗
(𝑡+1)

=
𝑤𝑘
(𝑡)
 𝑁(𝑥𝑗; µ𝑘

(𝑡), ∑𝑘
(𝑡)
)

∑ 𝑤𝑖
(𝑡)
 𝑁(𝑥𝑗; µ𝑖

(𝑡), ∑𝑖
(𝑡)𝐾

𝑖=1 )
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𝐸𝑘
(𝑡+1)

=∑ 𝑝𝑘,𝑗
(𝑡+1)

𝑁

𝑗=1
 

M-step: 

𝑤𝑘
(𝑡+1)

=
𝐸𝑘
(𝑡+1)

𝑁
 

µ𝑘
(𝑡+1)

=
∑ 𝑝𝑘,𝑗

(𝑡+1)𝑁
𝑗=1 𝑥𝑗

𝐸𝑘
(𝑡+1)

 

∑𝑘
(𝑡+1)

=
∑ 𝑝𝑘,𝑗

(𝑡+1)(𝑥𝑗 − µ𝑘
(𝑡+1)

)(𝑥𝑗 − µ𝑘
(𝑡+1)

)𝑇𝑁
𝑗=1

𝐸𝑘
(𝑡+1)

 

The iteration stops when
𝐿(𝑡+1)

𝐿(𝑡)
≤ 𝐶, with log-likelihood defined as: 

𝐿 =
1

𝑁
∑log (𝑝(𝑥𝑗))

𝑁

𝑗=1

 

It is important to note that the FG and BG models are learnt without any spatial 

constraint on features. The global nature not only handles moving camera problem but also 

makes it computationally inexpensive in comparison to conventional methods, which 

maintain separate models for each pixel. The inclusion of neighborhood pixels allows us 

to capture local context and further increases the strength of appearance models. The choice 

of window parameter 𝑣 is critical. A smaller neighborhood increases the chances of false 

positives, whereas a larger neighborhood can easily over fit by learning unique features. 

Based on extensive experimentation, we chose an empirically optimal neighborhood of 

size 3 × 3.  
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The effectiveness of our automatic initialization procedure is demonstrated by 

results presented in the experiment section. Another important advantage associated with 

its unsupervised nature is its capability for out of the box real world deployment. 

6.3.2. Pixel-wise Probability Estimation 

The first step is to extract color features for each pixel in the current frame. Using FG and 

BG GMM models, Log-Likelihood Ratio (𝐿𝐿𝑅) is calculated for each feature vector: 

𝐿𝐹𝐺=
1

𝑁
∑log (𝑝𝐹𝐺(𝑥𝑗))

𝑁

𝑗=1

 

 𝐿𝐵𝐺=
1

𝑁
∑log (𝑝𝐵𝐺(𝑥𝑗))

𝑁

𝑗=1

 

𝐿𝐿𝑅 =
𝐿𝐹𝐺
𝐿𝐵𝐺

 

Finally, the 𝐿𝐿𝑅 undergoes activation function to yield appearance-based 

probability 𝑝𝑎 estimate for each pixel. 

𝑝𝑎(𝑥, 𝑦) =  
2

(1 + 𝑒−(2∗𝐿𝐿𝑅(𝑥,𝑦)))
− 1 

6.3.3. Model Update 

The constantly changing FG and BG pixels makes model update an integral part of the 

proposed algorithm. During model initialization phase, all of the training data is used and 

model parameters (𝑤𝑘
(𝑇)
, µ𝑘
(𝑇)
, ∑𝑘

(𝑇)
, 𝐸𝑘
(𝑇)

) are estimated in T EM steps until convergence. 
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However, for online model update, it is computationally infeasible to retain all of the 

previous data and then update model parameters.  

 Inspired by [81], we follow the incremental learning process, where we consider 

the previously learnt parameters and current data to update model parameters. When new 

data is available, another �̃� EM steps are performed to update model parameters starting 

from previously estimated parameters (�̃�𝑘
(0)
, µ̃𝑘
(0)
, ∑̃𝑘

(0)
, �̃�𝑘
(0)
) = (𝑤𝑘

(𝑇)
, µ𝑘
(𝑇)
, ∑𝑘

(𝑇)
, 𝐸𝑘
(𝑇)

). 

The iterative EM update stops when
𝐿(𝑡+1)

𝐿(𝑡)
≤ 𝐶. 

E-step: 

𝑝𝑘,𝑗
(𝑡+1)

=
�̃�𝑘
(𝑡)
 𝑁(�̃�𝑗; µ̃𝑘

(𝑡), ∑̃𝑘
(𝑡)
)

∑ �̃�𝑖
(𝑡)
 𝑁(�̃�𝑗; µ̃𝑖

(𝑡), ∑̃𝑖
(𝑡)𝐾

𝑖=1 )
 

�̃�𝑘
(𝑡+1)

=∑ 𝑝𝑘,𝑗
(𝑡+1)

�̃�

𝑗=1
 

M-step: 

�̃�𝑘
(𝑡+1)

=
�̃�𝑘
(0)
+ �̃�𝑘

(𝑡+1)

𝑁 + �̃�
 

µ̃𝑘
(𝑡+1)

=
�̃�𝑘
(0)
µ̃𝑘
(0)
+ ∑ 𝑝𝑘,𝑗

(𝑡+1)�̃�
𝑗=1 𝑥𝑗

�̃�𝑘
(0)
+ �̃�𝑘

(𝑡+1)
 

∑̃𝑘
(𝑡+1)

=
�̃�𝑘
(0)
(∑̃𝑘

(0)
+ (µ̃𝑘

(0)
− µ̃𝑘

(𝑡+1)
)(µ̃𝑘

(0)
− µ̃𝑘

(𝑡+1)
)𝑇)

�̃�𝑘
(0)
+ �̃�𝑘

(𝑡+1)

+ 
∑ 𝑝𝑘,𝑗

(𝑡+1)�̃�
𝑗=1 (�̃�𝑗 − µ̃𝑘

(𝑡+1)
)(�̃�𝑗 − µ̃𝑘

(𝑡+1)
)𝑇

�̃�𝑘
(0)
+ �̃�𝑘

(𝑡+1)
 



68 

 

6.4. Mega-Pixel Denoising and Probability Fusion 

The coarse motion-based 𝑝𝑚 and appearance-based 𝑝𝑎 probability estimates are very noisy 

due to the imprecision of the motion estimation process and appearance modeling. To 

obtain accurate segmentation boundary, these probability estimates need to be denoised 

first and therefore undergo Mega-pixel denoising process. The denoising process 

essentially performs spatial regulation over coarse probability measures to produces more 

accurate probability estimates. The Mega-Pixel formation and probability denoising 

processes are detailed in chapter 3, section 3.4.3 and chapter 5, section 5.3. The final 

probability estimates are then calculated by taking mean of denoised probability estimates 

over a MP. Figure 6.3 depicts the proposed MP formation and denoising process. 

 

Figure 6.3 Mega-Pixel formation, Denoising and Graph-Cut optimization. 

MP denoising process results in more accurate average motion and appearance probability 

estimates for each MP. Average motion probability (�̅�𝑚) and average appearance 

probability (�̅�𝑎) of a MP 𝑞  are defined as: 
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�̅�𝑚 =
1

|𝑞|
∑𝑝𝑚(𝑥)

𝑥∈𝑞

 

�̅�𝑎 =
1

|𝑞|
∑𝑝𝑎(𝑥)

𝑥∈𝑞

 

 where, 𝑝𝑚 represents the coarse motion-based FG probability estimate from MS 

module and 𝑝𝑎 represents the coarse appearance-based FG probability estimate from AM 

module. The average motion (�̅�𝑚) and appearance (�̅�𝑎) probabilities are then assigned to 

each pixel belonging to that MP. For each pixel, the denoised motion and appearance 

probabilities are fused together as follows: 

𝑃𝑟𝑝 = 0.5 × �̅�𝑚 + 0.5 × �̅�𝑎 

6.5. Graph-Cut Optimization 

In this final step, the Mega-Pixel based pixel-wise probability estimates and image intensity 

are formulated as an energy minimization problem. Graph-Cut implementation is based on 

[78, 79, 80]. The overall goal is to seek label 𝑙 ∈ {𝐵𝐺, 𝐹𝐺} that minimizes energy: 

𝐸(𝑙) = ∑𝐷𝑝(𝑙𝑝)

𝑝∈𝑃

+ ∑ 𝑉𝑝,𝑞(𝑙𝑝, 𝑙𝑞)

{𝑝,𝑞}∈𝑂

 

 The first term (𝐷𝑝(𝑙𝑝)) is the data term i.e. T-link that connects each pixel to FG 

and BG nodes. The weight of the T-link between a pixel 𝑝 ∈ 𝑃 and FG and BG nodes 

are 𝑃𝑟𝑝 and 1 − 𝑃𝑟𝑝 respectively. The smoothness term, 𝑉𝑝,𝑞(𝑙𝑝, 𝑙𝑞), often known as N-link 

represents the relationship between adjacent pixels. For any two adjacent pixels 𝑝 and 𝑞, it 

is defined as 
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𝑉𝑝,𝑞(𝑙𝑝, 𝑙𝑞) = |𝑙𝑝 − 𝑙𝑞|. 𝑒
−(|𝑝𝑅−𝑞𝑅|+|𝑝𝐺−𝑞𝐺|+|𝑝𝐵−𝑞𝐵|) 

 The data term provides an initial estimate of a pixel's tendency towards FG and BG 

node, whereas the smoothness term encourages same labelling to similar colored pixels. 

This is achieved by high penalty in case of label switch for similar color pixels, whereas 

low penalty for label switch in case of different colored pixels. This allows the 

segmentation to preserve edge integrity and further refines the segmentation results at pixel 

level. 

6.6. Experiments and Results 

We evaluate our algorithm on twelve challenging test sequences against six state-of-the-

art algorithms. Eleven test sequences: Cars1, Cars2, Cars3, Cars4, Cars5, Cars6, Cars7, 

Cars8, People1, People2 and Tennis are taken from Hopkins155 dataset [47] and drive test 

sequence from [11].   

 The choice of test sequences is based on the popularity of these sequences for 

evaluation purposes and the availability of results from previous methods. All of the test 

sequences from Hopkins155 dataset except tennis test sequence are short test sequences 

with a maximum of 50 frames, whereas tennis and drive test sequences are longer with 466 

and 456 frames respectively. These sequences include a variety of challenges such as fast 

camera motion, clutter, zooming, multiple moving objects and large FG areas. Although, 

Hopkins155 dataset contains 26 video sequences, we believe most of other algorithms 

avoid using all test sequences for evaluation purposes because of following reasons: 

 majority of test sequences have large number of frames with no motion, 
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 there are multiple moving objects but only a subset is labelled for evaluation and 

 the majority of the image (>70%) is occupied by FG, making initialization difficult 

The proposed method comprises of a number of parameters. For fair evaluation of our 

method, we use only one set of parameters: 

 𝜏𝑚𝑜𝑡𝑖𝑜𝑛 = 0.8, the outlier removal threshold for iterative BG motion 

approximation, 

 𝜖 = 0.1, minimum error to stop iterative BG approximation process, 

 𝜏𝑐𝑜𝑙𝑜𝑟 = 3, color similarity to merge SPs into a MP, 

 𝑅 = 300, the number of SPs an image is segmented into, 

 𝐶 = 0.01, termination threshold for iterative EM algorithm, 

 𝑣 = 3, size of color feature extraction window, 

 𝑝𝑙 = 0.5, threshold for reliable BG pixel candidates, 

 𝑝ℎ = 0.9, threshold for reliable FG pixel candidates, 

 𝑛𝑏𝑔 = 9, number of components for BG GMM, 

 𝑛𝑓𝑔 = 7, number of components for FG GMM and 

 𝑀 = 5, number of frames for appearance model initialization.  

 The same set of parameters for all test sequences indicate the strength of our method 

and its scalability in terms of real world deployment and applicability. Table 6.1 and Table 

6.2 shows quantitative comparison of proposed method with six state-of-the-art algorithms: 

Kwak et al. [10], Sheikh et al. [9], Elqursh et al. [11], Narayana et al. [53],  Zamalieva et 

al. [52] and Lim et al. [51]. F-measure (FM) is used for evaluation purposes. The results 

for [9], [51], [10], and [52] are reported from [52], whereas the results for remaining 

methods are obtained from original papers. 
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Table 6.1 Comparison of Proposed method with other methods on short test sequences. 

Red font is for best, whereas blue font represents second best method. 

 F-Measure 

 Cars1 Cars2 Cars3 Cars4 Cars5 Cars6 Cars7 Cars8 People1 People2 

Ours 0.92 0.90 0.92 0.85 0.79 0.91 0.93 0.87 0.93 0.93 

Sheikh et al.[9] 0.68 0.63 0.76 0.76 0.66 0.80 0.87 0.82 0.52 0.78 

Narayana et al.[53] 0.51 0.57 0.73 0.48 0.71 0.84 0.43 0.87 0.70 0.88 

Zamalieva et al.[52] 0.82 0.79 0.88 0.89 0.87 0.90 0.87 0.83 0.86  0.91 

Kwak et al.[10] 0.78 0.70 0.80 0.62 0.64 0.73 0.69 0.76 0.56 0.80 

Lim et al.[51] 0.72 0.85 0.78 0.75 0.75 0.68 0.86 0.75 0.50 0.80 

Elqursh et al.[11] 0.91 - - - - - - - 0.89 0.77 

 

We first compare the results of short test sequences: cars1, cars2, cars3, cars4, 

cars5, cars6, cars7, cars8, people1 and people2. A characteristics of these short sequences 

is that the FG objects are always in motion. In these test sequences, our algorithm 

outperforms all other algorithms except cars4 and cars5 test sequences. In cars4 test 

sequence, the proposed method produces second best result of 0.85, which is comparable 

to top result of 0.89. For cars5 test sequence, our algorithm is placed at second position, 

however we observed that the result is effected by the false positives of a similar colored 

car parked in the scene as that of the moving FG car.  

In long test sequences: tennis and drive, the proposed method outperforms other 

algorithms. We would like to highlight the drive test sequence which is captured by a 

camera mounted on a car travelling on actual highway. This test sequence is particularly 

challenging since cars keep entering and exiting the field of view at different points in the 

video and due to forward motion. The motion-based Sheikh et al. [9] entirely fails due to 
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underlying orthographic projection assumption failure, whereas Elqursh et al. [11] 

performs better since it exploits long term trajectories. 

Table 6.2 Comparison of Proposed method with other methods on long test sequences. Red 

font is for best, whereas blue font represents second best method. 

 F-Measure 

 Tennis Drive 

Ours 0.92 0.80 

Sheikh et al.[9] 0.40 0.04 

Narayana et al.[53] 0.68 - 

Zamalieva et al.[52] - - 

Kwak et al.[10] - - 

Lim et al.[51] - - 

Elqursh et al.[11] 0.89 0.70 

 

The tennis test sequence allows us to test our algorithm for cases when there is no 

FG and/or BG motion. The tennis player stops to wait for the ball and sometimes moves 

fast to intercept the ball. Both methods that heavily rely on motion i.e. Sheikh et al. [9] and 

Narayana et al. [53] fail since the tennis player stops and there is no motion. Again, Elqursh 

et al. [11] due to their long term trajectory analysis are able to cope such cases. The 

continuous update and maintenance of appearance model allows us to handle such type of 

cases as evident from outperforming results.  Overall unlike other methods our algorithm is 

able to produce superior results across different types of challenges. 
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Chapter 7 Application: In-Air Signature Recognition and Authentication 

 

In this chapter, we detail one of the applications of the low complexity motion-based 

algorithm for development of a novel authentication mechanism aimed at Head Mounted 

Wearable Devices (HMWCs). The authentication mechanism, dataset and results are 

presented in following sections. 

7.1. Introduction 

User authentication is key to security and access control for any computer system. Broadly, 

user authentication can be classified into three categories based on their authentication 

mechanisms [15]. The first category is the knowledge-based methods that rely on 

passwords, passcode or gesture. The second category is token-based. As the name suggests, 

this category relies on a pre-assigned token such as a RFID tag or a smart card. Lastly, we 

have biometric-based systems which exploit physiological characteristics such as 

fingerprints, face and iris patterns for authentication [15]. Each of these mechanisms has 

its advantages and disadvantages. For example, knowledge-based methods are simple but 

require users to memorize password. Token-based authentication is prone to token theft. 

Biometric-based authentication is not prone to identity theft but are less preferred by users 

due to privacy concerns of being tracked.   

The recent push towards wearable technology has resulted in proliferation of 

wearable cameras that support prolonged and high-quality recording. Head mounted 

cameras are particularly popular due to their ability in capturing the viewing perspective 

of the user. Many wearable cameras are now equipped with networking and computing 
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capabilities. Google Glass and Microsoft’s Hololens are perfect examples of Head 

Mounted Wearable Computer (HMWC) that neatly combine wearable camera, computing 

platform and display in creating augmented reality experience. The wearable technology is 

expected to have significant growth in the coming years, with applications ranging from 

personal use to law enforcement and healthcare to name a few.   

In the context of HMWCs, the pervasiveness, size and portability of such devices 

make them prone to theft and hence purport the need of a robust authentication mechanism. 

The lack of physical interfaces such as keyboards or touch pads limits the choice of 

authentication mechanisms. To overcome this problem, we propose Virtual-Signature 

(VSig), a hand-gestured signature performed by an individual and recognized via the 

wearable camera. This approach combines the strength of familiar knowledge-based 

authentication mechanism based on a person’s own signature and the ultra-portability of a 

HMWC without the need of a writing surface. 

7.2. SIGAIR Dataset 

This section details the SIGAIR dataset. Google-Glass is used as the wearable device for 

recording hand-gestured signatures from ten individuals and building the SIGAIR dataset. 

Google-Glass is a head mounted wearable device empowered with a processor, color 

camera, microphone, display and a touchpad as depicted in Figure 7.1. 
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Figure 7.1 Google-Glass design and display (courtesy of Martin Missfeldt at 

http://www.brille-kaufen.org/en/googleglass) 

We have collected a total of 96 hand-gestured signatures from 10 different 

individuals. Out of 96 hand-gestured signatures, 38 are stored for matching purposes during 

authentication process, whereas remaining 58 hand-gestured signatures are used for testing 

the proposed system. Each individual is instructed to use his/her index finger to sign in the 

air while wearing Google-Glass. The camera preview is displayed simultaneously on the 

prism display and the user is asked to ensure that the tip of the index finger is always visible 

in the preview. Figure 7.2 depicts example frames of an individual while doing signature 

in the space as captured by the color camera on Google-Glass. The reason to use fingertip 

instead of hand’s center or any other point is that it offers a more natural analogy to using 

a pen. This has also been suggested in previous work [15].  
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Figure 7.2 Left: Signing with Google-Glass. Right: Image captured from Google-Glass. 

To ensure variance in dataset and to test the effectiveness of the proposed method, 

virtual signatures are captured in different environmental settings and scenarios based on 

whether the hand signing is done in indoor or outdoor environment, background is static 

or dynamic, and individual himself is stationary or moving. Typical scenarios are tabulated 

in Table 7.1. 

Table 7.1 SIGAIR Dataset Variation and Scenarios. 

 Environment Person Background 

1 Indoor Stationary Static 

2 Indoor Stationary Dynamic 

3 Indoor Moving Static 

4 Indoor Moving Dynamic 

5 Outdoor Stationary Static 

6 Outdoor Stationary Dynamic 

7 Outdoor Moving Static 

8 Outdoor Moving Dynamic 
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7.3. Proposed System 

In the proposed VSig system, an individual uses the index finger to perform signature in 

the space, which is captured through the color camera of HMWC and compared with the 

stored signatures for authentication. The reliance on HMWC poses a number of unique 

challenges in the design.  First, unlike stationary camera, wearable camera is likely to be 

constantly moving and very little assumption can be made about the scene in the video. 

Traditional background segmentation algorithms, which are mostly designed for stationary 

cameras, cannot be used to accurately segment the hand. Other challenges include 

localization of the fingertip, robust algorithms to handle the variability of hand signing, 

and adequate visual feedback to user to stay within the field of view of the camera. The 

proposed system comprises of two main modules: Signature Extraction Module (SEM) and 

Signature Verification Module (SVM). They are described below: 

7.3.1. Signature Extraction Module 

As the name suggests, the SEM is responsible for extracting signatures from the video. 

This is achieved in a two-step process: Video Segmentation and hand & fingertip detection. 

Step 1: Video Segmentation 

The application of proposed method violates the static camera assumption since it is a 

wearable device and thus makes the segmentation a harder problem. Furthermore, a person 

with wearable device can be anywhere and for each scenario getting foreground free frames 

and constructing a background model is impractical and computationally expensive for 

resources constrained wearable devices. Therefore, we use the motion-based algorithm 
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presented in chapter 5. It neither relies on static camera assumption i.e the camera can be 

moving, nor does it require a construction of a background model. For details of 

segmentation algorithm we refer readers to chapter 5.  

Step 2: Hand and Fingertip Detection 

In this step, we exploit skin color as a cue for hand segmentation. Skin color has been 

exploited for many purposes including image segmentation, face and gesture recognition 

to name a few. In general, YCbCr color space is considered to be the most appropriate 

choice and yields accurate results for detecting pixels belonging to skin [82, 83]. These 

studies have shown that the typical range of 𝑌, 𝐶𝑏 and 𝐶𝑟 for skin color detection are as 

follows: 

𝑌 > 80,  77 ≤ 𝐶𝑏 ≤ 127,133 ≤ 𝐶𝑟 ≤ 173 

These aforementioned ranges are then used to label each pixel as skin or non-skin. 

However, to ensure minimum number of False Negative (FN) skin pixels, we use a more 

relaxed range for 𝐶𝑏 𝑎𝑛𝑑 𝐶𝑟 components as follows: 

75 ≤ 𝐶𝑏 ≤ 135,  130 ≤ 𝐶𝑟 ≤ 180 

For implementation purposes, publicly available code1 is used. The result is a 

binary mask with white pixels representing skin, whereas black pixels represents non-skin 

pixels. Since our goal is to detect skin pixels belonging to hand only and there is possibility 

that there may be skin pixels because of presence of a person in a scene or any material 

such as wooden that falls in the same range as skin color, we combine motion and skin 

                                                 
1 http://www.mathworks.com/matlabcentral/fileexchange/28565-skin-detection 
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color information together to segment out hand by taking logical AND of motion-based 

binary mask BMmotion and skin color based binary mask BMskin. Figure 7.3 shows example 

motion based BMmotion and skin color based BMskin, segmented hand and fingertip tracking.    

Motion based  

Segmentation 

Skin Color based 

segmentation 

Motion and Skin Color 

based Segmentation 

Fingertip Detection 

    

    

    

    

    

Figure 7.3 Hand Segmentation and Fingertip tracking. 

Once the hand object is segmented out, the top 2D coordinates are extracted from 

the entire sequence as the fingertip location sequence. The 2D coordinates are post-

processed by removing outliers and smoothing. A 2D coordinate is labelled as an outlier if 

Euclidean distance between current position and next position is greater than 50 pixels, 

otherwise it is a reliable fingertip detection. This step is followed by filtering using a 

moving average filter with a window size of 7 frames for temporal smoothing. Finally, the 
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2D spatial coordinates are normalized such that we have a normal Gaussian distribution 

𝑁(0, 𝜎2) over all 2D positions. The normalization helps to reduce the possible variations 

in signatures of the same person. For example, a person might sometimes sign very 

compactly and at other times produce an elongated or stretched out signatures.  

Signatures captured on a Tablet Signatures extracted by proposed system from Air 

 
 

 
 

  

  

Figure 7.4 Signatures on tablet vs Signatures extracted from space by proposed system. 

Figure 7.4 shows samples of hand-gestured signatures extracted by SEM module 

side by side and compares them with signatures of the same individual captured on a tablet. 
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It is observed that there are strong resemblance between the two types of signatures and 

our proposed algorithm can recognize the signature trace with little distortion.  

7.3.2. Signature Verification Module 

There are two key requirements for signature matching. First, to enroll or register oneself 

with the device it should require minimal number of samples. Second, it should be able to 

take into account the variation in signatures of the same person both spatially and 

temporally. The spatial variation to a large extent is countered by normalization of spatial 

coordinates, whereas we propose to use Dynamic Time Warping (DTW) to overcome 

temporal variations.  Another benefit of DTW is that there is no need to collect a large 

number of signatures from each person to build an exclusive model for each individual. 

DTW provides similarity measure between two temporal signals varying over time in terms 

of distance. In our experiments, we choose Euclidean distance as similarity measure. Given 

two 2D signatures represented by their features as 𝑆𝑎(𝑡𝑎),where 𝑡𝑎 =

1, 2, …… , 𝑛1and 𝑆𝑏(𝑡𝑏),where 𝑡𝑏 = 1, 2, …… , 𝑛2,we construct a distance matrix 𝐷 of size 

𝑛1 × 𝑛2  such that each of its element 𝑑𝑡𝑎𝑡𝑏 is calculated as: 

𝑑𝑡𝑎𝑡𝑏 = ‖𝑆𝑎(𝑡𝑎) − 𝑆𝑏(𝑡𝑏)‖ 

The DTW algorithm finds a path between 𝑑11 and 𝑑𝑛1𝑛2 in a non-decreasing 

fashion such that the total sum of elements along this path is minimal. This minimum 

distance is the DTW distance between two 2D signatures and denoted as 𝑑(𝑆𝑎, 𝑆𝑏). 

For signature matching and recognition, 𝑑(𝑆𝑎, 𝑆𝑏) is calculated between input 

signature against all of the existing signatures in the database or on the wearable device 
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itself. The signature is matched to the one with minimum distance. If distance is beyond a 

certain threshold the user is asked to sign again because of poor quality. 

SIGAIR Dataset comprising of a total of 96 signatures was used to test the proposed 

method. The dataset had a total of 58 signatures from 10 individuals for testing purposes. 

The average accuracy for all 10 individuals achieved by our system is 97.5%, which is 

comparable to any existing approaches. Apart from reporting the accuracy, we also 

analyzed inter and intra person signatures DTW distances to demonstrate the feasibility of 

proposed method for large scale deployment and use.  

 

Figure 7.5 Normalized Intra(orange color) and Inter(blue color) Person DTW distance 

histogram. 
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Intra person signature is the DTW distances between signatures of the same person. 

Figure 6 depicts the histogram of intra person signature for all 10 individuals and they are 

below DTW distance of 85 with peak at 60. On the other hand, if we analyze the histogram 

of inter person signature DTW distances for all of 10 individuals, the histogram peaks at 

140 and has no overlap with intra DTW distance histogram. The inter and intra DTW 

distance segregation suggests that the proposed method could be scalable to a large dataset. 
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Chapter 8 Conclusion 

 

The increasing computational platforms equipped with powerful processors and cameras 

has resulted in exponential increase in videos from moving cameras. The isolation of 

interesting objects in a scene is one of the pre-processing requirements for many vision 

applications. The focus of existing algorithms on static camera has created void for 

processing videos from moving cameras. To fill this void, we have presented three 

background subtraction algorithms: model-based, motion-based and hybrid.  

The model-based algorithm extracts multiple appearance features by sliding a fixed 

size window over the entire image. A global FG/BG SVM model is then learnt without any 

spatial constraint. The choice of features and lack of spatial constraint makes our algorithm 

robust against moving BG. This is demonstrated by results on CDnet 2014 dataset with 

13.04% improvement in terms of F-Measure over second best method. The model-based 

algorithm for scenarios with finite set of scenes such as PTZ.   

The motion-based algorithm introduces an innovative motion segmentation scheme 

based on low rank BG motion approximation and MP based motion correction. Unlike 

other methods, it does not need to maintain/update the BG model, is computationally 

inexpensive, has few parameters and operates in an online fashion. The effectiveness of 

proposed method is demonstrated by evaluation on Hopkins155 dataset and more 

importantly its application and accuracy in hand segmentation for the hand-gestured 

signature recognition and authentication system developed for Google-Glass device. This 
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method is low complexity and therefore ideal for wearable devices. However it would fail 

if FG and BG have same motion or both are stationary  

 The hybrid approach combines the innovations of motion and appearance 

algorithms. The motion module comprises of an innovative motion segmentation scheme 

based on low rank BG motion approximation. The appearance module models the FG and 

BG appearance as two separate Gaussian mixture models, which are then used for 

incoming frame to generate appearance-based probability measure. Inspired by model-

based method, color features are extracted by considering neighborhood instead of 

individual pixel values. The motion and appearance based probability estimates undergo 

Mega-Pixel based spatial denoising process and are fused together. The combined 

probability estimate and gradient image under graph-cut optimization to produce 

segmentation mask.  Unlike other methods, the proposed method can automatically identify 

correct number of FG objects, it is online, does not require special initialization procedure 

and it is computationally inexpensive since it maintains only global models for FG and FG. 

Evaluation on challenging test sequences and comparison with six state-of-the-art 

algorithms demonstrates its superiority and real world applicability. The hybrid method is 

universal in nature since it can handle all type of scenarios but computationally more 

expensive than motion-based method. Currently, the proposed method gives equal 

weightage to both motion and appearance based probability measures, however dynamic 

weight assignment is under investigation as a part of future work 

The second major contribution aimed at application of low complexity motion-

based algorithm to wearable devices. It has resulted in the development of a novel virtual 

signature based authentication mechanism. Unlike other approaches, the proposed method 
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does not rely on additional hardware or sensors and depends only on the built-in color 

camera. The novel motion and skin based segmentation algorithm is successfully applied 

for hand segmentation and fingertip tracking to reconstruct signatures from space. The 

extracted signatures are then compared with pre-stored signatures using DTW. The 

proposed method offers convenient enrollment and achieves 97.5% accuracy.   

As a part of future work, we will provide the person with real time visual feedback 

of the signature in the space. In addition, the SIGAIR Dataset will be expanded in size with 

increased complexity and our algorithms will be tested using fake or forged signature 

attacks. 
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