142 research outputs found

    Support polygon in the hybrid legged-wheeled CENTAURO robot: modelling and control

    Get PDF
    Search for the robot capable to perform well in the real-world has sparked an interest in the hybrid locomotion systems. The hybrid legged-wheeled robots combine the advantages of the standard legged and wheeled platforms by switching between the quick and efficient wheeled motion on the flat grounds and the more versatile legged mobility on the unstructured terrains. With the locomotion flexibility offered by the hybrid mobility and appropriate control tools, these systems have high potential to excel in practical applications adapting effectively to real-world during locomanipuation operations. In contrary to their standard well-studied counterparts, kinematics of this newer type of robotic platforms has not been fully understood yet. This gap may lead to unexpected results when the standard locomotion methods are applied to hybrid legged-wheeled robots. To better understand mobility of the hybrid legged-wheeled robots, the model that describes the support polygon of a general hybrid legged-wheeled robot as a function of the wheel angular velocities without assumptions on the robot kinematics or wheel camber angle is proposed and analysed in this thesis. Based on the analysis of the developed support polygon model, a robust omnidirectional driving scheme has been designed. A continuous wheel motion is resolved through the Inverse Kinematics (IK) scheme, which generates robot motion compliant with the Non-Sliding Pure-Rolling (NSPR) condition. A higher-level scheme resolving a steering motion to comply with the non-holonomic constraint and to tackle the structural singularity is proposed. To improve the robot performance in presence to the unpredicted circumstances, the IK scheme has been enhanced with the introduction of a new reactive support polygon adaptation task. To this end, a novel quadratic programming task has been designed to push the system Support Polygon Vertices (SPVs) away from the robot Centre of Mass (CoM), while respecting the leg workspace limits. The proposed task has been expressed through the developed SPV model to account for the hardware limits. The omnidirectional driving and reactive control schemes have been verified in the simulation and hardware experiments. To that end, the simulator for the CENTAURO robot that models the actuation dynamics and the software framework for the locomotion research have been developed

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Full 3D motion control for programmable bevel-tip steerable needles

    Get PDF
    Minimally invasive surgery has been in the focus of many researchers due to its reduced intra- and post-operative risks when compared to an equivalent open surgery approach. In the context of minimally invasive surgery, percutaneous intervention, and particularly, needle insertions, are of great importance in tumour-related therapy and diagnosis. However, needle and tissue deformation occurring during needle insertion often results in misplacement of the needles, which leads to complications, such as unsuccessful treatment and misdiagnosis. To this end, steerable needles have been proposed to compensate for placement errors by allowing curvilinear navigation. A particular type of steerable needle is the programmable bevel-tip steerable needle (PBN), which is a bio-inspired needle that consists of relatively soft and slender segments. Due to its flexibility and bevel-tip segments, it can navigate through 3D curvilinear paths. In PBNs, steering in a desired direction is performed by actuating particular PBN segments. Therefore, the pose of each segment is needed to ensure that the correct segment is actuated. To this end, in this thesis, proprioceptive sensing methods for PBNs were investigated. Two novel methods, an electromagnetic (EM)-based tip pose estimation method and a fibre Bragg grating (FBG)-based full shape sensing method, were presented and evaluated. The error in position was observed to be less than 1.08 mm and 5.76 mm, with the proposed EM-based tip tracking and FBG-based shape reconstruction methods, respectively. Moreover, autonomous path-following controllers for PBNs were also investigated. A closed-loop, 3D path-following controller, which was closed via feedback from FBG-inscribed multi-core fibres embedded within the needle, was presented. The nonlinear guidance law, which is a well-known approach for path-following control of aerial vehicles, and active disturbance rejection control (ADRC), which is known for its robustness within hard-to-model environments, were chosen as the control methods. Both linear and nonlinear ADRC were investigated, and the approaches were validated in both ex vivo brain and phantom tissue, with some of the experiments involving moving targets. The tracking error in position was observed to be less than 6.56 mm.Open Acces

    A driver model with supervision aspects

    Get PDF
    Human driver compensatory reactions -- Driver intelligence and Path Tracking (supervision) -- From human decision making to design of control level -- Vehicle models -- History of driver models -- Controller for car-like mobile robots -- Control problems of vehicle cartesian coordiantes -- Independent speed control with geometric lateral-offset tracking -- Kinematics dynamics and control of a car-like mobile robot -- Looking ahead path tracking of a car-like mobile robot -- Geometric lateral-offset tracking and speed control of a car-like mobile robot -- Equations of motion of a car-like robot using autolev programming

    Differential Drive Mobile Robot Motion Accuracy Improvement with Odometry-Compass Sensor Fusion Implementation

    Get PDF
    The Implementation of wheeled robot technology in the development of transportation vehicles makes them capable for operating automatically. In order to operate automatically, a vehicle requires stable control system which including motion kinematic algorithm where is developed in a robotic system. With the aim of being able to build an Unmanned Grounded Vehicle (UGV), in this study an UGV prototype was made in the form of a wheeled robot with Differential Drive Mobile Robot (DDMR) system. The robot is controlled by motion kinematic control algorithm and a trajectory tracking system that is used to get an estimate of the position caused by the robot’s movement, beside it made the robot can operate automatically. To support the performance of the control system, the robot prototype is added with a compass sensor which used as the wheel odometry sensor’s support. The process of combining wheel odometry and compass sensor data is carried out by using the sensor fusion algorithm, where the limit value for the RMS error for the position accuracy is not more than 0.15 meters. As the result of the trials, by adding a compass sensor and implementing sensor fusion algorithm is able to reduce the average RMS (Root Mean Square) error value of the motion accuracy into below 0.15 meters which previously worth 0.392 meters decreased into 0.075 meters

    Modular Platform for Commercial Mobile Robots

    Get PDF

    Computing fast search heuristics for physics-based mobile robot motion planning

    Get PDF
    Mobile robots are increasingly being employed to assist responders in search and rescue missions. Robots have to navigate in dangerous areas such as collapsed buildings and hazardous sites, which can be inaccessible to humans. Tele-operating the robots can be stressing for the human operators, which are also overloaded with mission tasks and coordination overhead, so it is important to provide the robot with some degree of autonomy, to lighten up the task for the human operator and also to ensure robot safety. Moving robots around requires reasoning, including interpretation of the environment, spatial reasoning, planning of actions (motion), and execution. This is particularly challenging when the environment is unstructured, and the terrain is \textit{harsh}, i.e. not flat and cluttered with obstacles. Approaches reducing the problem to a 2D path planning problem fall short, and many of those who reason about the problem in 3D don't do it in a complete and exhaustive manner. The approach proposed in this thesis is to use rigid body simulation to obtain a more truthful model of the reality, i.e. of the interaction between the robot and the environment. Such a simulation obeys the laws of physics, takes into account the geometry of the environment, the geometry of the robot, and any dynamic constraints that may be in place. The physics-based motion planning approach by itself is also highly intractable due to the computational load required to perform state propagation combined with the exponential blowup of planning; additionally, there are more technical limitations that disallow us to use things such as state sampling or state steering, which are known to be effective in solving the problem in simpler domains. The proposed solution to this problem is to compute heuristics that can bias the search towards the goal, so as to quickly converge towards the solution. With such a model, the search space is a rich space, which can only contain states which are physically reachable by the robot, and also tells us enough information about the safety of the robot itself. The overall result is that by using this framework the robot engineer has a simpler job of encoding the \textit{domain knowledge} which now consists only of providing the robot geometric model plus any constraints

    Kinematics, motion analysis and path planning for four kinds of wheeled mobile robots

    Get PDF
    • …
    corecore