2,369 research outputs found

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    Segmentation-assisted detection of dirt impairments in archived film sequences

    Get PDF
    A novel segmentation-assisted method for film dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal and multistage median filtering approaches and provides efficient and robust detection for a wide variety of test material

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    Video analysis based vehicle detection and tracking using an MCMC sampling framework

    Full text link
    This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Study on Segmentation and Global Motion Estimation in Object Tracking Based on Compressed Domain

    Get PDF
    Object tracking is an interesting and needed procedure for many real time applications. But it is a challenging one, because of the presence of challenging sequences with abrupt motion occlusion, cluttered background and also the camera shake. In many video processing systems, the presence of moving objects limits the accuracy of Global Motion Estimation (GME). On the other hand, the inaccuracy of global motion parameter estimates affects the performance of motion segmentation. In the proposed method, we introduce a procedure for simultaneous object segmentation and GME from block-based motion vector (MV) field, motion vector is refined firstly by spatial and temporal correlation of motion and initial segmentation is produced by using the motion vector difference after global motion estimation
    • 

    corecore