108,233 research outputs found

    Motifs in Temporal Networks

    Full text link
    Networks are a fundamental tool for modeling complex systems in a variety of domains including social and communication networks as well as biology and neuroscience. Small subgraph patterns in networks, called network motifs, are crucial to understanding the structure and function of these systems. However, the role of network motifs in temporal networks, which contain many timestamped links between the nodes, is not yet well understood. Here we develop a notion of a temporal network motif as an elementary unit of temporal networks and provide a general methodology for counting such motifs. We define temporal network motifs as induced subgraphs on sequences of temporal edges, design fast algorithms for counting temporal motifs, and prove their runtime complexity. Our fast algorithms achieve up to 56.5x speedup compared to a baseline method. Furthermore, we use our algorithms to count temporal motifs in a variety of networks. Results show that networks from different domains have significantly different motif counts, whereas networks from the same domain tend to have similar motif counts. We also find that different motifs occur at different time scales, which provides further insights into structure and function of temporal networks

    On the motifs distribution in random hierarchical networks

    Full text link
    The distribution of motifs in random hierarchical networks defined by nonsymmetric random block--hierarchical adjacency matrices, is constructed for the first time. According to the classification of U. Alon et al of network superfamilies by their motifs distributions, our artificial directed random hierarchical networks falls into the superfamily of natural networks to which the class of neuron networks belongs. This is the first example of ``handmade'' networks with the motifs distribution as in a special class of natural networks of essential biological importance.Comment: 7 pages, 5 figure

    Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs

    Full text link
    We generalize the belief-propagation algorithm to sparse random networks with arbitrary distributions of motifs (triangles, loops, etc.). Each vertex in these networks belongs to a given set of motifs (generalization of the configuration model). These networks can be treated as sparse uncorrelated hypergraphs in which hyperedges represent motifs. Here a hypergraph is a generalization of a graph, where a hyperedge can connect any number of vertices. These uncorrelated hypergraphs are tree-like (hypertrees), which crucially simplify the problem and allow us to apply the belief-propagation algorithm to these loopy networks with arbitrary motifs. As natural examples, we consider motifs in the form of finite loops and cliques. We apply the belief-propagation algorithm to the ferromagnetic Ising model on the resulting random networks. We obtain an exact solution of this model on networks with finite loops or cliques as motifs. We find an exact critical temperature of the ferromagnetic phase transition and demonstrate that with increasing the clustering coefficient and the loop size, the critical temperature increases compared to ordinary tree-like complex networks. Our solution also gives the birth point of the giant connected component in these loopy networks.Comment: 9 pages, 4 figure

    Colored Motifs Reveal Computational Building Blocks in the C. elegans Brain

    Get PDF
    Background: Complex networks can often be decomposed into less complex sub-networks whose structures can give hints about the functional organization of the network as a whole. However, these structural motifs can only tell one part of the functional story because in this analysis each node and edge is treated on an equal footing. In real networks, two motifs that are topologically identical but whose nodes perform very different functions will play very different roles in the network. Methodology/Principal Findings: Here, we combine structural information derived from the topology of the neuronal network of the nematode C. elegans with information about the biological function of these nodes, thus coloring nodes by function. We discover that particular colorations of motifs are significantly more abundant in the worm brain than expected by chance, and have particular computational functions that emphasize the feed-forward structure of information processing in the network, while evading feedback loops. Interneurons are strongly over-represented among the common motifs, supporting the notion that these motifs process and transduce the information from the sensor neurons towards the muscles. Some of the most common motifs identified in the search for significant colored motifs play a crucial role in the system of neurons controlling the worm's locomotion. Conclusions/Significance: The analysis of complex networks in terms of colored motifs combines two independent data sets to generate insight about these networks that cannot be obtained with either data set alone. The method is general and should allow a decomposition of any complex networks into its functional (rather than topological) motifs as long as both wiring and functional information is available

    Subgraphs and network motifs in geometric networks

    Full text link
    Many real-world networks describe systems in which interactions decay with the distance between nodes. Examples include systems constrained in real space such as transportation and communication networks, as well as systems constrained in abstract spaces such as multivariate biological or economic datasets and models of social networks. These networks often display network motifs: subgraphs that recur in the network much more often than in randomized networks. To understand the origin of the network motifs in these networks, it is important to study the subgraphs and network motifs that arise solely from geometric constraints. To address this, we analyze geometric network models, in which nodes are arranged on a lattice and edges are formed with a probability that decays with the distance between nodes. We present analytical solutions for the numbers of all 3 and 4-node subgraphs, in both directed and non-directed geometric networks. We also analyze geometric networks with arbitrary degree sequences, and models with a field that biases for directed edges in one direction. Scaling rules for scaling of subgraph numbers with system size, lattice dimension and interaction range are given. Several invariant measures are found, such as the ratio of feedback and feed-forward loops, which do not depend on system size, dimension or connectivity function. We find that network motifs in many real-world networks, including social networks and neuronal networks, are not captured solely by these geometric models. This is in line with recent evidence that biological network motifs were selected as basic circuit elements with defined information-processing functions.Comment: 9 pages, 6 figure

    Evolution of Directed Triangle Motifs in the Google+ OSN

    Get PDF
    Motifs are a fundamental building block and distinguishing feature of networks. While characteristic motif distribution have been found in many networks, very little is known today about the evolution of network motifs. This paper studies the most important motifs in social networks, triangles, and how directed triangle motifs change over time. Our chosen subject is one of the largest Online Social Networks, Google+. Google+ has two distinguishing features that make it particularly interesting: (1) it is a directed network, which yields a rich set of triangle motifs, and (2) it is a young and fast evolving network, whose role in the OSN space is still not fully understood. For the purpose of this study, we crawled the network over a time period of six weeks, collecting several snapshots. We find that some triangle types display significant dynamics, e.g., for some specific initial types, up to 20% of the instances evolve to other types. Due to the fast growth of the OSN in the observed time period, many new triangles emerge. We also observe that many triangles evolve into less-connected motifs (with less edges), suggesting that growth also comes with pruning. We complement the topological study by also considering publicly available user profile data (mostly geographic locations). The corresponding results shed some light on the semantics of the triangle motifs. Indeed, we find that users in more symmetric triangle motifs live closer together, indicating more personal relationships. In contrast, asymmetric links in motifs often point to faraway users with a high in-degree (celebrities)

    How motifs condition critical thresholds for tipping cascades in complex networks: Linking Micro- to Macro-scales

    Full text link
    In this study, we investigate how specific micro interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erd\"os-R\'enyi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the zero loop and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled feed forward loops coincide with a strong 90% decrease of the critical coupling strength. For the highly clustered moisture recycling network in the Amazon, we observe regions of very high motif occurrence for each of the four investigated motifs suggesting that these regions are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erd\"os-R\'enyi network. This emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole
    • …
    corecore