352 research outputs found

    Sensitivity of asymmetric rate-dependent critical systems to initial conditions: Insights into cellular decision making

    Get PDF
    The work reported here aims to address the effects of time-dependent parameters and stochasticity on decision making in biological systems. We achieve this by extending previous studies that resorted to simple bifurcation normal forms, although in the present case we focus primarily on the issue of the system's sensitivity to initial conditions in the presence of two different noise distributions, Gaussian and Lévy. In addition, we also assess the impact of two-way sweeping at different rates through the critical region of a canonical Pitchfork bifurcation with a constant external asymmetry. The parallel with decision making in biocircuits is performed on this simple system since it is equivalent in its available states and dynamics to more complex genetic circuits published previously. Overall we verify that rate-dependent effects, previously reported as being important features of bifurcating systems, are specific to particular initial conditions. Processing of each starting state, which for the normal form underlying this study is akin to a classification task, is affected by the balance between sweeping speed through critical regions and the type of fluctuations added. For the heavy-tailed noise, two-way dynamic bifurcations are more efficient in processing the external signals, here understood to be jointly represented by the critical parameter profile and the external asymmetry amplitude, when compared to the system relying on escape dynamics. This is particular to the case when the system starts at an attractor not favored by the asymmetry and, in conjunction, when the sweeping amplitude is large

    Effect of color cross-correlated noise on the growth characteristics of tumor cells under immune surveillance

    Get PDF
    Based on the Michaelis-Menten reaction model with catalytic effects, a more comprehensive one-dimensional stochastic Langevin equation with immune surveillance for a tumor cell growth system is obtained by considering the fluctuations in growth rate and mortality rate. To explore the impact of environmental fluctuations on the growth of tumor cells, the analytical solution of the steady-state probability distribution function of the system is derived using the Liouville equation and Novikov theory, and the influence of noise intensity and correlation intensity on the steady-state probability distributional function are discussed. The results show that the three extreme values of the steady-state probability distribution function exhibit a structure of two peaks and one valley. Variations of the noise intensity, cross-correlation intensity and correlation time can modulate the probability distribution of the number of tumor cells, which provides theoretical guidance for determining treatment plans in clinical treatment. Furthermore, the increase of noise intensity will inhibit the growth of tumor cells when the number of tumor cells is relatively small, while the increase in noise intensity will further promote the growth of tumor cells when the number of tumor cells is relatively large. The color cross-correlated strength and cross-correlated time between noise also have a certain impact on tumor cell proliferation. The results help people understand the growth kinetics of tumor cells, which can a provide theoretical basis for clinical research on tumor cell growth

    Inferring ecosystem states and quantifying their resilience : linking theories to ecological data

    Get PDF
    The core of my thesis concerns addressing the ecosystem resilience in a data-driven manner. In this direction, I have tried to make a bridge between advanced mathematical models and existing ecological data. I could come up with some quantitative measures of resilience and applied them to some ecological field and experimental data. These measures are more exact compared with the classical measures mentioned by Holling. I show that Holling measures are just two extremes of the measure I introduced and they do not necessarily capture the notion of resilience in its real sense of the word. Furthermore, I could also address the resilience of low-resolution tropical satellite data across the tropics (South America, Africa, south east Asia and, Australia). Besides, my thesis also sheds more light on the concept of ‘alternative stable states’ which is an important concept in ecology. I argue that advanced ‘system reconstruction’ approaches should be applied first, from where one can better justify weather or not an ecosystem has alternative stable states. </p

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding
    • …
    corecore