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The work reported here aims to address the effects of time-dependent parameters and stochasticity on decision
making in biological systems. We achieve this by extending previous studies that resorted to simple bifurcation
normal forms, although in the present case we focus primarily on the issue of the system’s sensitivity to initial
conditions in the presence of two different noise distributions, Gaussian and Lévy. In addition, we also assess
the impact of two-way sweeping at different rates through the critical region of a canonical Pitchfork bifurcation
with a constant external asymmetry. The parallel with decision making in biocircuits is performed on this simple
system since it is equivalent in its available states and dynamics to more complex genetic circuits published
previously. Overall we verify that rate-dependent effects, previously reported as being important features of
bifurcating systems, are specific to particular initial conditions. Processing of each starting state, which for the
normal form underlying this study is akin to a classification task, is affected by the balance between sweeping
speed through critical regions and the type of fluctuations added. For the heavy-tailed noise, two-way dynamic
bifurcations are more efficient in processing the external signals, here understood to be jointly represented by the
critical parameter profile and the external asymmetry amplitude, when compared to the system relying on escape
dynamics. This is particular to the case when the system starts at an attractor not favored by the asymmetry and,
in conjunction, when the sweeping amplitude is large.
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I. INTRODUCTION

The fidelity with which cellular systems respond to external
signals has generated an increasing interest in quantifying
the resultant downstream effects that elicit dynamic responses
[1–4]. The idea of robustness in the face of external drivers has
also been prevalent in other areas, particularly in evolutionary
biology. There, systems are seen, to an extent, as being the
result of continuously changing environments determining
fitness [5,6]. In more clinically oriented applications, albeit
in the realm of evolutionary biology, the idea of an external
control has also been important in the design of adaptive
and optimal therapies [7,8]. Adding to this body of work,
recent developments in biopattern formation have shown that
path-dependent effects imposed by external sources are a
significant component of observed phenotypic outcomes [9].
The subject of an external driver inducing bifurcations in the
underlying intrinsic dynamics, as is the case of the system
studied here, has been less debated in biology. The study of
such systems opens up several research avenues that have only
recently attracted considerable interest [10–12]. Therefore,
there is scope for extensive testing, from a computational point
of view, of relevant features prevalent in the literature of open
systems [13–17].

In this work, we extend previous studies that sought ap-
plications in network biology [11,12,18,19]. Specifically, we
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address the question of cellular decision making through the
lenses of simpler canonical problems and the idea of dynamic
bifurcations; below we provide the biological context and
establish the equivalence between intricate genetic circuits
and simpler normal forms. The main ingredients from the
area of open systems undergoing critical transitions that we
will resort to here are the following: critical parameter time
dependence, passage through a critical region at different rates,
and stochasticity hindering the convergence to any of the
emerging states.

A representative low-order circuit underlying studies of
cellular decision making, the integrative signaling-gene regula-
tory switch, is depicted in Fig. 1(a); its structure can be tweaked
so as to resemble other circuits behind observed phenomena
(see, for example, Ref. [20]). In this context, cellular decision
making is understood as the circuit responding consistently and
accurately to the combination of external signals, by turning
on specific activity patterns of the downstream nodes [see
Fig. 1(a)]. In the same figure, we also show the phase diagram
corresponding to a set of nonlinear differential equations,
including activation, translation, and transcription of crucial
proteins, in this case transcription factors. By varying the
values of signals S1 and S2, which in the case of Fig. 1(a) work
as the external drivers, we are able to generate typical regimes
observed in systems relevant to experiments [10,21,22]. The
mechanism of Speed-dependent Cellular Decision Making
(SdCDM) [11], which arises from crossing the critical region
(IL,H to IIA) at different rates, is one of such regimes. Here,
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FIG. 1. Representative low-order genetic switch with external
stimulation. (a) Schematic representation of circuit: nodes X and Y

stand for transcription factors that can be activated to generate Xa and
Y a , respectively. S1,2 represents external or upstream signals inducing
the activation of downstream nodes; black lines represent transcrip-
tional reactions, leading to induction or repression of production of X

and Y ; gray lines depict activation or protein-protein interactions. (b)
Phase diagram in the space of (S1, S2). Thin lines represent borders
between different regimes elicited by the external signals: IL,H stands
for monostability, with X having a low (L) or a high value (H ). IIA

denotes bistability between two states at which X and Y have opposite
concentrations, (H , L) or (L, H ). See Ref. [11] for details of the
underlying equations.

instead of relying on the integrative genetic switch once again,
we will opt for simple standard norm forms that exhibit similar
behaviors and regimes to those represented in Fig. 1(b). In fact,
the effects of S1 and S2 can be economically modeled by a
supercritical Pitchfork bifurcation normal form with coupled
time-dependent critical parameter and external asymmetry
[18]. This normal form has been successfully used in the study
of genetic circuits behind, for example, decision making in
hematopoietic cell differentiation regulated by GAT A1 and
PU.1 [10,21]. More recent work has also resorted to the
idea of the bistable potential with external drivers in order
understand the influence of signaling on expression dynamics
in the GAT A-NANOG circuit in embryonic stem cells [22].
Despite the issue of bifurcations, or critical transitions, not
making part of the model underlying the study reported in
Ref. [22], their system can also be tested under the framework
highlighted below and explored in Refs. [11,18].

Our choice of a standard normal form allows us to link our
findings to previous theoretical work on dynamic bifurcations
and, ultimately, serves as a bridge to investigations of the
importance of rate-dependent effects in complex noisy genetic
networks. The work presented here is, above all, an investi-
gation into the sensitivity to initial conditions when all of the
ingredients reported above are present. Unlike previously [18],
we study the effects of both forward and reverse bifurcations
when trajectories start in the bistability region. We further
delve into the importance of fluctuations following different
distributions: the typical Gaussian and that arising in the
literature of Lévy processes in biology [23]. The latter is
an important alternative when modeling transitions between
states even when noise amplitudes are small; it constitutes a
viable candidate for modeling cell fate decision as an escape
problem [23–25]. Furthermore, the presence of a skewness
parameter provides us with the option of modeling possible

biases through an asymmetric noise distribution, which the
Gaussian white noise cannot accommodate. The possibility of
asymmetric noise distributions may be a relevant feature of
biological systems under stress, where an association between
a stimuli and an evolved response is not driven or strictly
induced per se. The actual cellular decision-making outcome
arises in the strength of numbers and average responses [26].
The use of this additional noise distribution can also contribute
to the problem of noise-induced symmetry breaking in cellular
circuits [27].

II. DYNAMICALLY BIFURCATING SYSTEMS
WITH NOISE AND ASYMMETRIES

A. Forward bifurcations

A typical bifurcation representing decision making in biol-
ogy [10,11] or second-order phase transitions in physical sys-
tems [13,28–32] is that underlying Eq. (1). In the case where the
external asymmetry g is zero and the bifurcation parameter λ is
independent of time, Eq. (1), which represents a supercritical
Pitchfork normal form, has the unique asymptotically stable
solution x = 0 when λ < 0. For positive values of λ, three
solutions can be clearly shown to appear: the asymptotically
stable branches given by ±√

λ and the trivial unstable solution
x = 0:

ẋ = λ(t )x − x3 + g, (1)

λ(t ) = λ0 + γ t. (2)

In the work presented here, we are interested in the solutions
of Eq. (1) when g is not zero. This asymmetry can be seen
as a representation of discrepancies between upstream signals
to a circuit regulating cell fate decision [see, for example,
Fig. 1(a)] [18].

Making the asymmetry different from zero destroys the
previous bifurcation point at λ = 0; a new picture emerges
made of three branches at λ = λc: a connected set of solutions
with positive values, x+, a disconnected branch with negative
values, x−, and an unstable branch xu [see Fig. 2(a)]. In this
imperfect bifurcation the branches are separated by a minimum

distance dmin = (�X)λ=λc
= (x+ − x−)λ=λc

= 3( g

2 )
1
3 ; as g is

increased so is the distance between solutions at λc. In addition,
the critical point λc is displaced towards positive values of λ by

3( g

2 )
2
3 [18]. We should add that the connected and disconnected

branches invert their positions if, contrary to Fig. 2(a), we
impose a negative asymmetry. Other types of bifurcation have
been selected as models of cell decision making in biology
[10,20,21,33,34]. The idea behind the work presented here is
still valid in those cases, although the framework has to be
adapted for optimal representation.

As was explored in the previous work [18], our aim is to
understand the effects of drivers on the behavior of a system
regulated by Eq. (1). In Ref. [18] we studied the effect of a
ramped bifurcation parameter [Eq. (2)] and a coupled time-
dependent transient asymmetry g(t ). This work was motivated
by integrative signaling-gene regulatory circuits (see Fig. 1)
that exhibit the same critical behavior [11]. By studying the
effect of sweeping the system through the critical region under
different γ rates [Eq. (2)], in the presence of fluctuations, we
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FIG. 2. Rate-dependent effects in forward dynamic bifurcations in conjunction with asymmetries and noise. (a) Bifurcation diagrams for
g = 0.01 and g = 0.05. Also shown in blue are the deterministic trajectories for g = 0.05 when γ = 0.01 (thinner), 0.1 (intermediate), and 1
(thicker) [see Eqs. (1) and (2)]. The bifurcation diagram corresponds to the steady-state solutions of Eq. (1) for each value of λ. The deterministic
trajectories correspond to numerical solutions of Eq. (1) when λ is time-dependent. The starting point for each trajectory is the stable state
x(λ = −1). The final value of λ during the one-way forward sweeping is 1. (b) Selectivity R with noise amplitude σ , for g = 0.05 and γ = 1,
when the system starts at stable state x(λ = −1), represented as PI . The final value of λ during the sweeping process is 1. One case is plotted
for comparison purposes where the maximum λ is 10. Also shown is the selectivity for the system when λ is held at 1, and, additionally, the
initial conditions are at the upper branch (U ), lower branch (L), and the point equal to the steady state x(λ = −1) (PII ). In these three additional
cases the final value of R is dependent only on branch-to-branch transitions. (c) Selectivity R with asymmetry g, for σ = 0.1 and γ = 1. For
the PI lines the initial and final values of λ during the sweeping process are −1 and 1, respectively. As in (b) we also show results for the case
where λ is not swept and remains equal to 1. Curves for starting points U and L did not change with g and are not shown. (d) Selectivity R

with sweeping speed γ , when g = 0.05 and σ = 0.1. All other parameters are as above. Black lines: Gaussian noise. Green: Lévy noise, with
μ = 1.8, c = 1/100 and ξu = 5 [see Eqs. (6) and (5)]. One thousand trajectories were used in the calculation of R, the percentage attracted
to x+.

were able to prove the existence of speed-dependent effects
in branch selectivity. The same holds for constant external
asymmetries, even if they are much smaller than 1 [28,29].
In both cases, the percentage of trajectories (R, selectivity)
in a stochastic simulation that are attracted to the branch
favored by the asymmetry is proportional to Eq. (3), where
σ represents the amplitude of fluctuations, g the asymmetry,
γ the critical parameter sweeping speed [Eq. (2)], erf(·) the
error function, and α = 0 and β = 1 if g is constant. The
expression for the selectivity R was obtained in previous
work [18,28,29] by studying the first two moments of the
distribution of trajectories when crossing the critical point λc.
If the distribution is assumed to be Gaussian-like around the
critical point, the first two moments can be used to calculate
the area under the distribution that is above the unstable branch
(for positive g). This is assumed to approximate the percentage
of trajectories that reach the favored branch of solutions and
leads, after some manipulation of the Fokker-Planck equation
associated with Eq. (4), to R:

R ∝ 1

2

(
1 + erf

{
g

σ

[
α + β

(
π

γ

) 1
4

]})
× 100. (3)

Two of the main contributors to the sensitivity of the system
to the effect of the external asymmetry, in addition to noise
amplitude (σ ) and sweeping rate (γ ), is the inflexion of the
connected branch and the position of λc [observe Fig. 2(a)]
[18,28,29,35]. These factors, in conjunction with lower sweep-
ing speeds, increase branch selectivity in a significant way due
to lower switching delays [14,18,28,29,35]; these are defined as
the additional time spent near the potential unstable boundary
after the system goes through the critical point [14]. This
result is observed even if the amplitude of fluctuations with
respect to the asymmetry is large [18]. In fact, the switching
delay dependence on sweeping speed can be clearly verified in
Fig. 2(a), where several deterministic trajectories are plotted
for a constant g = 0.05. The system was initially started at
the stable branch for λ = −1 and λ was subsequently changed
according to the linear law represented in Eq. (2). As is evident,
lower sweeping rates induce paths that are further away from
the unstable state when the critical region emerges. The instant
where the switch begins can be demonstrated to be proportional
to 1/γ , a factor that also influences the probability of reaching
the branch favored by g when fluctuations are incorporated
[18,28,30,36,37]. The effects of g also reduce the probability
of escape over the potential barrier, located along the unstable
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state, which can be estimated to be located at − g

λ−λc
far beyond

λc. The timescales and probability for these transitions can be
modeled under the Kramer’s classical theory [38].

1. The effect of noise model on branch selectivity
in forward only bifurcations

One of the motivations for the work presented here is under-
standing if differences in noise distribution affect differently
the system’s memory of initial positions. In addition, we also
aim to verify once again if rate-dependent effects are still a
determinant in final state selection. Our previous work tested
the system’s memory of transient signals when it was driven
through the critical region in one direction only [11,18]. Here
we change slightly the scope and invest in simulations that
highlight both the effect of initial conditions and a two-way
sweeping or forward-reverse bifurcation scenario. This is
closer to the situations observed in experimental biology where
signals often have a transient character [39] or more complex
profiles [4,40].

Before evaluating the forward-reverse dynamic bifurcation
scenario, let us first address the simple system represented in
Fig. 2(a) when fluctuations are present [ξ (t ) in Eq. (4)], so that
we pin down the crucial aspects underlying branch selectivity
for the noise distributions tested here:

ẋ = λ(t )x − x3 + g + σξ (t ). (4)

As expected from the diagram represented in Fig. 2(a) and
the deterministic trajectories plotted in blue, the overall shape
of the distribution of trajectories when the control parame-
ter λ is passed through the critical region is approximately
Gaussian; at the same time it gradually drifts due to the positive
external asymmetry g. Along with this bias in the process, the
distribution also spreads up to the point where the critical value

is reached λ = λc = 3( g

2 )
2
3 ; at this moment it starts reflecting

the bimodality exerted by the bistability region [18]. Around
the critical region and just before the onset of bistability,
fluctuations are amplified and the convergence times towards
the attractor are hindered. This may be counterbalanced, on
the other hand, by a strong eternal field in conjunction with a
slowly changed λ [Figs. 2(c) and 2(d)] [18,28,37].

Two distributions were tested for the noise term ξ (t ) in
Eq. (4): the standard Gaussian and the Lévy distribution. The
assumption of a Gaussian is consistent with previous work
[18,28,29,32] and follows the typical assumptions in the litera-
ture: zero mean and correlation 〈ξ (t ), ξ (t ′)〉 = dtδ(t − t ′). The
Lévy noise term is, on the other hand, less common. Its usage in
biology was recently proven to be a valid approach to studying
the effect of fluctuations in bistable systems [23]. We resort to
this additional noise paradigm with the intent of understanding
if the long tail characteristic of the Lévy distributed noise
influences considerably the memory of initial conditions. This
follows from the work on the role of stochasticity in biology
as a major determinant of cell decision outcomes in different
environments, by way of crossing or escaping over potential
barriers [23–25] or by noise-induced symmetry breaking [27].

In order to test the Lévy noise it was necessary to truncate
the distribution at an upper level, thus avoiding impractical
extreme values. The percentile function for a Lévy distribution
truncated to the support ξ ∈ [μ, ξu], where μ is the normal

lower truncation due to the shift parameter μ and ξu is the
upper truncation level, can be observed in Eq. (5), where F (ξ )
is the Lévy cumulative density function [Eq. (6)]:

p(ξ ) = c

2[erfc−1(F (ξu )ξ )]2 + μ, (5)

F (ξ ) = erfc
(√

c
2(ξ−μ)

)
. (6)

Here c is the scale parameter of the Lévy distribution and
erfc−1(x) the inverse complementary error function.

The R profile of the system perturbed by Lévy noise is
equivalent to that observed with Gaussian noise when we
start at point PI , i.e., before the bifurcation ensues, although
it is shifted. As expected, given that the Lévy distribution
imposes higher fluctuations at the same amplitude, it generates
selectivities that are lower than the standard Gaussian. The
clear bias arising from the heavy tail in the Lévy distribution
is, therefore, not observed for the λ sweeping amplitude from
−1 to 1. If, on the other hand, we increase the maximum
sweeping amplitude to λ = 10, a contrasting profile of R

versus σ is recorded [see Fig. 2(b)]. When varying the noise
intensity parameter in this scenario for the Lévy distributed
noise model (with g = 0.05, γ = 1), we observe that for
σ � 0.08 it follows a similar behavior to the Gaussian dis-
tributed model, where the percentage of paths attracted to
each attractor decreases as the fluctuations amplitude increases
[Fig. 2(b)]. Yet, contrary to the Gaussian model, for σ >

0.08, the probability of reaching the attractor favored by the
asymmetry then converges towards 1. To gain an understanding
of the general path behavior leading to the results discussed
here, we have to recall that when crossing the σ threshold
observed in Fig. 2(b), a qualitatively different regime ensues.
Beyond λc, branch-to-branch transitions can occur that hinder
the identification of the signal represented by g. Since the
propensity for transitions to take place is larger with Lévy
noise, the percentage of trajectories reaching x+ should further
decrease in a much more significant way. Nevertheless, there
are two fundamental components at play. First, the escape
rate diminishes as λ reaches higher values, especially from
x+ to x−; this arises from the difference between the potential
associated with x+,− and xu becoming larger as λ is swept [32].
Therefore, the potential difference traps the system in x+ due
to g. On another side, if the simulations are long enough, the
chances of converging towards the positive branch are higher
due to the positive heavy-tailed Lévy noise term. Consequently,
for sufficiently large noise amplitudes and longer trajectories, a
greater percentage of paths eventually converge to the positive
attractor basin as the synergy between the two components
emphasized above is stronger than the destructive power of
fluctuations. This explains the unusual curve in Fig. 2(b), when
the initial condition is at PI and λ is driven through the critical
region and ends at much higher values.

The effect of the asymmetry g as a state selector can be
visualized in Fig. 2(c). For both noise distributions the capture
of the trajectories by the upper branch, for a constant sweeping
rate γ = 1, is more efficient for higher values of g. As men-
tioned above, this results, once more, from both the position of
the critical value λc and the inflexion of the upper branch [see
also Eq. (3) for an approximate expression]. This observation
had been made in previous publications [11,18] and follows
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intuitively from the observation of the deterministic trajectories
depicted in Fig. 2. For these specific results, the noise amplitude
used is around the threshold mentioned in a previous paragraph,
σ ≈ 0.08, and the sweeping of parameter λ is done from −1
to 1. The evaluation of the impact of the external asymmetry
as a state selector is, therefore, not confounded with the
effects of the positive heavy tail of the Lévy distribution
[Fig. 2(b)].

Cell decision making has been widely modeled as a process
where the most probable outcome is already encoded in the
distribution of attractors; this perspective sees the desired
decision outcomes arising simply by attractor to attractor
transitions induced by noise (see, for example, Ref. [23]).
Here, as was the case of previous publications by some of the
authors of this study, we evaluate a different decision-making
paradigm. Nevertheless, it is important to verify which scenario
is more efficient in processing information. In Figs. 2(b) and
2(c), the values of R computed when λ is time-dependent and
follows Eq. (2) can be compared with those when it is held at its
maximum. In the latter, branch selectivity is solely determined
by escape dynamics, not the dynamic bifurcation. Overall,
when λ is held at 1, the Gaussian term requires much larger
noise amplitudes to tilt the percentage towards lower values and
is, therefore, ineffective in eliciting jumps over the potential
barrier. The Lévy distributed noise allows, on the other hand,
for jumps to occur across the potential barrier, which explains
the tendency for R to reach lower values at much lower
noise amplitudes. Measuring the selectivity obtained under a
dynamic bifurcation [starting point PI in Figs. 2(b) and 2(c)],
with a comparable situation resulting from escape over the
potential barrier [starting point PII in Figs. 2(b) and 2(c)], we
verify that, over most σ ’s and asymmetries, crossing through
the critical region enhances selectivity. This is a fundamental
result for understanding the results in the forward-reverse
dynamic bifurcation explored in Sec. II B; it arises from the
disconnection between branches and the inflection near the
critical region [see discussion at the beginning of the section
and Fig. 2(a)].

Regarding the rate-dependent effects on the propensity for
reaching the attractors favored by g, it is clear that this state
selection mechanism is present when both noise distributions
are used [Fig. 2(b)]. As observed in previous studies [18], larger
γ ’s destroy the bias exerted by g, a consequence felt stronger
if the heavy-tailed noise distribution is imposed.

B. Forward-reverse bifurcations

Typical external signals in biology have complex profiles
[40], and adequate responses to each of the signal character-
istics have to occur, to an extent, in the induced expression
patterns [39,41]. Previously, we proved that the switching
delays and the asymmetries in expression patterns induced
by external signals can be understood by the simple normal
forms represented in Eq. (1) [11,18] (see also Sec. II A). Yet,
as remarked before, the effect of signals on decision making
does not push the system in one direction only as they usually
return to basal levels; this clearly induces crossing of the critical
region in the reverse direction [39] [see Fig. 3(a)]. Moreover,
the nature of signals and networks in biology dictates that
the drivers are often compounded [32] and stochastic [4].

A forward-reverse simulation experiment stands, therefore,
as a closer representation of the dynamical behavior of the
typical circuitry determining cellular decision making. An
interesting contribution to the subject of recurrent bifurcations
was also explored through deterministic forcings, although
the effects of stochasticity were not approached [42] and the
motivation was not the study of biological networks. Here,
in order to understand the main ingredients at play in these
complex scenarios, we generalize the sweeping process in both
directions; the system starts in the bistability region, crosses
into the monostability region, and inverts the movement back
to the parameter value it started. This is represented in Fig. 3(a),
which can be reproduced by changing λ(t ) to −λ(t ) in
Eq. (1).

1. Effects of sweeping speed and stochasticity
for different initial conditions

The scenario explored in Sec. II A helps us to understand
each stage of the experiment represented in Fig. 3(a): the
forward sweeping segment destroys the memory of the initial
conditions; the backward segment, studied in Sec. II A,
takes the degradation of the initial information encoded in
the state of the system at the point of reversal, and either
recovers the position at t = 0 or, due to action of fluctuations
and the convergence properties of the system, completely
forgets its initial state. It should be pointed out that, for a
particular sweeping speed γ , if the sweeping amplitude is large
enough, convergence to the upper branch is always present
in a deterministic setting [see trajectories in Fig. 3(a)]; under
these circumstances, if the system starts at the lower part of
the diagram, memory of any initial conditions in this region
is destroyed. Yet, as we are, in fact, modeling the presence
of fluctuations [ξ (t ) in Eq. (4)], which represent stochastic
processes inherent to each stage of the integrative genetic
circuits [1–4,43], there is always a hindrance to the capacity
of the system to respond to external signals, represented here
by the joint action of the time-dependent profile of λ and g. In
this sense, both sources contain features that are processed by
the normal form in the presence of noise. The initial condition
x(0) constitutes the third source.

If we start the system at U , L, or I represented in Fig. 3(a),
it either retains or loses the memory of the initial instant while
responding and processing λ(t ) and g. During the forward
segment the trajectories tend to converge to the only available
steady-state solution after crossing the critical region at −λc.
This convergence is affected by the same parameters as the
scenario explored in a previous section where one-way only
sweeps were included. If the sweeping speed is sufficiently
low, the system definitely converges. Once λ is forced back to
the starting point, during the backward segment, the propensity
to be captured by the basin of attraction of the branch favored
by g changes much more if the simulations start at L and I .
In either, larger sweeping rates reduce the sensitivity of the
system to g but increase the likelihood of maintaining memory
of the initial condition [see Fig. 3(c)]; lower sweeping rates
have the opposite effect. The reasons behind this can also
be understood by inspecting the deterministic trajectories in
Fig. 3(a). Since given enough sweeping amplitude convergence
to the upper branch is always observed in a deterministic
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at the lower steady state for λ0 = −2 (blue). Thick full lines and dashed lines represent forward and backward sweeping, respectively. The
bifurcation diagram corresponds to steady-state solutions of Eq. (1) for each value of λ. The deterministic trajectories correspond to numerical
solutions of Eq. (1) when λ is time-dependent. (b) Selectivity R with γFwd = 1 and γRev = γ . (c) Selectivity R with γFwd = γRev = γ . (d)
Selectivity R with γFwd = γRev = 1 and maximum amplitude of λ during the forward segment. Black lines: Gaussian noise. Green: Lévy noise,
with μ = 1.8, c = 1/100 and ξu = 5 [see Eqs. (6) and (5)]. 1000 trajectories were used in the calculation of R, the percentage attracted to
x+. g = 0.05; σ = 0.1. Fwd: forward segment. Rev: reverse segment. For panels (a), (b), and (c) the maximum value of λ during the forward
segment is 2.

setting, the likelihood of the system converging to the original
lower branch is increased only if the differences in the system’s
relaxation timescale and that of λ(t ) are significantly different
[14,29]. A similar reasoning holds for trajectories starting
at U , although the convergence properties after reaching the
monostable region are different. In this case, lower sweeping
rates secure that the upper bifurcation branch x+ is tracked at
all times during the forward segment of the forward-backward
experiment. If the same sweeping rate is held in the backward
segment, the trajectories always track the connected branch
and sensitivity to g is secured. In addition, memory of the
initial condition is also present. Yet an interesting feature is
verified when γ is increased from low values to values above
1. In this region, initially the trend is as expected: higher rates
destroy information despite still helping to track the upper
branch in the forward sweeping segment. Although the reverse
segment is done at the same speed, at this stage it is sufficient to
put the mean value among replicated trajectories closer to the
unstable boundary which, as was explained above, enhances
the propensity to jump across the potential barrier. On the
other hand, the chances of remaining in the attractor basin
of the upper branch, presuming we start at U , increase once
again to very high values as we cross the threshold of γ ≈ 1.
This stems from not tracking the connected branch and the
resulting distance to the stable solution once the monostability
region is reached. Not being able to converge fast enough
secures reduced branch to branch transitions once the system
is reversed and, naturally, an improvement in R. This trend

also occurs when Lévy noise is used, although consistently
with its typical shape, selectivity is smaller than that achieved
with the typical Gaussian noise. For the results pertaining to
the starting points L and I , once again an interesting feature
is observed when the heavy-tailed distribution is used. Despite
an increase in sweeping rate inducing the expected results,
the relative magnitude with respect to the results obtained
with the Gaussian noise term is inverted at high enough γ ’s.
This can also be attributed to the likelihood of larger positive
deviations being more prevalent in the Lévy distribution,
which, in combination with the fact that very large sweeping
rates trap the system in the starting basin of attraction, improves
the “apparent” relative sensitivity to g [see Fig. 3(c)].

Also regarding the importance of critical parameter sweep-
ing speed in the forward and backward segments, Fig. 3(b)
demonstrates that if γFwd is held at 1 and γRev is varied, the
effects registered before for equal rates is less pronounced,
despite the general tendency being the same. Therefore, dif-
ferences in the sweeping segments may also be a potential
mechanism for optimal cellular decision making. This is rem-
iniscent of path-dependent effects recently observed in biocir-
cuits regulating pattern selection [9], of expression dynamics
behind stress-induced response [44], and, to an extent, of
high-dimensional versions of the integrated circuit represented
in Fig. 1(a) [12]. The combination of time-dependent signals
and their shape [39], including ascending and descending rates,
may have an influence on the probability of reaching certain
attractors or cell fates.
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2. Varying the elapsed time before system reversal

When simulating the system according to the same numer-
ical recipe as that presented in the previous section, it is of
interest to inspect how the amount of time elapsed before the
system is reversed affects the number of paths attracted to
each attractor. For maximum values of λ below 1, 100% of
the paths converge to the positive steady state if the starting
point is U and the noise model is Gaussian [see Figs. 3(a)
and 3(d)]. This slowly decreases as maximum amplitudes of
λ are gradually increased to 3. Attaining larger values of λ

before reversal allows for the convergence of the system to the
solutions represented by the upper branch, which is favored by
the constant external asymmetry. This is fundamental because
although the drift rate is approximately g, the relaxation to the
equilibrium in the monostability region is quite slow for values
of λ not far from λc; for example, at λ = 0, the position of
the steady state is approximately [g(λ = 0)]1/3, which makes
the relaxation time [g(λ = 0)]−2/3 [29]. Therefore, larger
maximum amplitudes increase the convergence rate. On the
other hand, proximity to the stable positive branch at large λ

values implies proximity to the unstable branch if the sweeping
speed is sufficiently high once the critical parameter is reversed
(see also Sec. II A). This, in turn, affects the capacity of the
system to retain information of the starting condition due to the
importance of the sweeping rate in enhancing the likelihood
of escape, especially in fluctuation distributions with larger
jumps, which explains why R decreases significantly for larger
sweeping amplitudes [see Fig. 3(d)].

For lower starting positions [L or I in Fig. 3(a)], the reverse
scenario is observed [Fig. 3(d)]. As the forward sweeping
maximum λ amplitude is increased the more efficient the
asymmetry is; towards larger values all starting positions attain
roughly a selectivity of 80% and 60% for Gaussian and Lévy
noises, respectively. A similar reasoning as that presented
above is valid here. Yet the tendency observed is that larger
amplitudes lead to an improvement of the effectiveness of g as
a state selector in the face of fluctuations.

The effect of the distribution of fluctuations is once again
verified, especially for starting positionsL and I [see Fig. 3(a)]:
the Lévy distribution leads to lower selectivities for larger
sweeping amplitudes, i.e., when proximity of sample paths
to the unstable state is more probable. On the other hand, the
larger asymmetry for positive jumps in ξ [see Eq. (4)] when
a Lévy noise term is used works to increase the relative R if
lower sweeping amplitudes are imposed, i.e., when distances
to the unstable branch are such that the Gaussian noise is not as
successful in eliciting jumps into the basing of attraction of the
selected branch. Despite the fact that the Lévy distribution has
a long tail towards positive jumps, which effectively secured
an overwhelming bias towards the positive branch for a very
particular case when one-way only dynamic bifurcations were
tested (Sec. II A 1), the results plotted in Fig. 3(d) were
derived with σ = 0.1 and final λ = −2. At this amplitude
the imbalance towards the upper branch is still relatively
minor [see Fig. 2(b) and Eqs. (6) and (5)], and its success
in increasing selectivity is secured only in conjunction with
the other ingredient tested in this section. This synergy is, in
many ways, similar to that observed in Fig. 3(c), where lower
sweeping rates exert a similar action to that of larger sweeping
amplitudes. We must also add that the order of the respective

selectivity curves is consistent with the distance of the initial
conditions to the steady state favored by g.

III. DISCUSSION AND FURTHER WORK

Several important contributions stemming from nonequilib-
rium physics have been applied to the problem of information
processing in biocircuits [27,45,46]. The equally rich field of
open systems [13,15,17] and dynamic bifurcations [14,35],
which deals with equivalent problems, has been less utilized in
the interpretation of biological intracellular phenomena. The
mechanism of Speed-dependent Cellular Decision Making,
initially proposed in Ref. [11] and further advanced in Ref. [18]
contributes to the expansion of this field in biology. Here
we developed the framework further by testing the ability of
dynamically bifurcating systems to retain memory of initial
conditions in the face of forward-reverse sweeping through
critical regions and heavy-tailed noise distributions. This
systematic investigation is clearly in line with the effects of
complex signals that dictate encoded evolutionary responses to
environmental pressures. Moreover, asymmetric heavy-tailed
Lévy distributions have recently been proposed as viable
alternatives that naturally incorporate large deviations even at
small noise amplitudes. In order to analyze clearly all of the
elements underlying rate-dependent phenomena in fluctuating
systems, we resorted once more to the paradigmatic bistable
potential problem undergoing a supercritical Pitchfork bifur-
cation. This simple system was proven to exhibit similar char-
acteristics to representative intracellular circuits and consti-
tuted a simple approach allowing for thorough computational
tests.

Overall, sweeping through the critical region at different
rates has different effects on correct branch identification when
we start at different initial conditions in forward-backward
dynamic bifurcations. Whereas a slow passage through the
critical region may help to process the information carried by
an external asymmetry and, additionally, a gradual increase in
sweeping rates degrades this sensitivity, this is only strictly true
in forward bifurcations from a monostability to a bistability
region. In forward-backward sweeps, if the system starts at
the branch favored by the external signal, monotonicity of
state selectivity with sweeping rate is not observed. A region
in the vicinity of sweeping rates close to 1 hinders both the
maintenance of memory of initial conditions and the effect of
external asymmetries. For initial conditions not in the attractor
basins of the state favored by the external signal, the gradual
tendency with sweeping rates is similar to that observed in
previous studies.

Moreover, it is the combination of sweeping speed and
noise distribution that allows for a robust memory of start-
ing conditions. Heavy-tailed distributions can destroy all
information encoded in an external signal if the sweeping
speed is not adapted to the starting point and the ampli-
tude of maximal deviation in a forward-reverse dynamic
bifurcation. Additional tests on other bifurcations that can
explain decision making in biology [10,21,47] should also
reveal specific balances between bifurcation type, type of
external signal, and unexpected rate-dependent effects con-
tributing to correct information processing in the face of large
fluctuations.
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Regarding the rate-dependent forward-reverse dynamic bi-
furcation as a mechanism for decision making, we observed
that, if sweeping speeds and amplitudes are sufficiently low
and high, respectively, this is fundamentally a more efficient
strategy for processing signals than attractor to attractor transi-
tions over potential barriers, if the system is initially at a “sub-
optimal” position. The latter decision-making mechanism has
been accepted in the literature as a strategy used by biocircuitry
under uncertainty. The field of dynamic bifurcations has been

less explored as a tool. Yet, as was proven in previous work
and in the present paper, it is a viable alternative that should
be explored in real cellular networks.
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