9,781 research outputs found

    Pre-implantation mouse embryos cultured In vitro under different oxygen concentrations show altered ultrastructures

    Get PDF
    Abstract Assisted Reproductive Technologies routinely utilize different culture media and oxygen (O2) concentrations to culture human embryos. Overall, embryos cultured under physiological O2 tension (5%) have improved development compared to embryos cultured under atmospheric O2 conditions (20%). The mechanisms responsible for this remain unclear. This study aimed to evaluate the effect of physiologic (5%) or atmospheric O2 (20%) tension on the microscopic ultrastructure of pre-implantation mouse embryos using Transmission Electron Microscopy (TEM). Embryos flushed out of the uterus after natural mating were used as the control. For use as the control, 2-cells, 4-cells, morulae, and blastocysts were flushed out of the uterus after natural fertilization. In vitro fertilization (IVF) was performed using potassium simplex optimized medium (KSOM) under different O2 tensions (5% and 20%) until the blastocyst stage. After collection, embryos were subjected to the standard preparative for light microscopy (LM) and TEM. We found that culture in vitro under 5% and 20% O2 results in an increase of vacuolated shaped mitochondria, cytoplasmic vacuolization and presence of multi-vesicular bodies at every embryonic stage. In addition, blastocysts generated by IVF under 5% and 20% O2 showed a lower content of heterochromatin, an interruption of the trophectodermal and inner cell mass cell membranes, an increased density of residual bodies, and high levels of glycogen granules in the cytoplasm. In conclusion, this study suggests that in vitro culture, particularly under atmospheric O2 tension, causes stage-specific changes in preimplantation embryo ultrastructure. In addition, atmospheric (20%) O2 is associated with increased alterations in embryonic ultrastructure; these changes may explain the reduced embryonic development of embryos cultured with 20% O2

    Characterization of a novel type of HIV-1 particle assembly inhibitor using a quantitative Luciferase-Vpr packaging-based assay

    Get PDF
    The HIV-1 auxiliary protein Vpr and Vpr-fusion proteins can be copackaged with Gag precursor (Pr55Gag) into virions or membrane-enveloped virus-like particles (VLP). Taking advantage of this property, we developed a simple and sensitive method to evaluate potential inhibitors of HIV-1 assembly in a living cell system. Two proteins were coexpressed in recombinant baculovirus-infected Sf9 cells, Pr55Gag, which formed the VLP backbone, and luciferase fused to the N-terminus of Vpr (LucVpr). VLP-encapsidated LucVpr retained the enzymatic activity of free luciferase. The levels of luciferase activity present in the pelletable fraction recovered from the culture medium correlated with the amounts of extracellular VLP released by Sf9 cells assayed by conventional immunological methods. Our luciferase-based assay was then applied to the characterization of betulinic acid (BA) derivatives that differed from the leader compound PA-457 (or DSB) by their substituant on carbon-28. The beta-alanine-conjugated and lysine-conjugated DSB could not be evaluated for their antiviral potentials due to their high cytotoxicity, whereas two other compounds with a lesser cytotoxicity, glycine-conjugated and ε-NH-Boc-lysine-conjugated DSB, exerted a dose-dependent negative effect on VLP assembly and budding. A fifth compound with a low cytotoxicity, EP-39 (ethylene diamine-conjugated DSB), showed a novel type of antiviral effect. EP-39 provoked an aberrant assembly of VLP, resulting in nonenveloped, morula-like particles of 100-nm in diameter. Each morula was composed of nanoparticle subunits of 20-nm in diameter, which possibly mimicked transient intermediates of the HIV-1 Gag assembly process. Chemical cross-linking in situ suggested that EP-39 favored the formation or/and persistence of Pr55Gag trimers over other oligomeric species. EP-39 showed a novel type of negative effect on HIV-1 assembly, targeting the Pr55Gag oligomerisation. The biological effect of EP-39 underlined the critical role of the nature of the side chain at position 28 of BA derivatives in their anti-HIV-1 activity

    Telomere lengths in human oocytes, cleavage stage embryos and blastocysts

    Get PDF
    Telomeres are repeated sequences that protect the ends of chromosomes and harbour DNA-repair proteins. Telomeres shorten during each cell division in the absence of telomerase. When telomere length becomes critically short, cell senescence occurs. Telomere length therefore reflects both cellular ageing and capacity for division. We have measured telomere length in human germinal vesicle (GV) oocytes and pre-implantation embryos, by quantitative fluorescence in-situ hybridisation (Q-FISH), providing baseline data towards our hypothesis that telomere length is a marker of embryo quality. The numbers of fluorescent foci suggest that extensive clustering of telomeres occurs in mature GV stage oocytes, and in pre-implantation embryos. When calculating average telomere length by assuming that each signal presents one telomere, the calculated telomere length decreased from the oocyte to the cleavage stages, and increased between the cleavage stages and the blastocyst (11.12 vs 8.43 vs 12.22kb respectively, p<0.001). Other methods of calculation, based upon expected maximum and minimum numbers of telomeres, confirm that telomere length in blastocysts is significantly longer than cleavage stages. Individual blastomeres within an embryo showed substantial variation in calculated average telomere length. This study implies that telomere length changes according to the stage of pre-implantation embryo development

    Insights on cytotoxic cells of the colonial ascidian Botryllus schlosseri

    Get PDF
    Morula cells (MCs) represent the most abundant circulating hemocyte of the compound ascidian Botryllus schlosseri. They are cytotoxic cells involved in the rejection reaction between contacting, genetically incompatible colonies. Upon the recognition of foreign substances, they degranulate and release their content, which contribute to the cell death along the contact borders. A major role in MC-related cytotoxicity is exerted by the enzyme phenoloxidase (PO) that converts polyphenol substrata to quinones which, then, polymerize to form melanins. During this reaction, reactive oxygen species are formed which are the cause of MC-related cytotoxicity. Here, we carried out new analyses to investigate further the nature of MC content and its role in cytotoxicity. Results confirm that PO is located inside MC vacuoles together with arylsulfatase, iron and polyphenols/quinones, the latter probably representing ready-to-use cytotoxic molecules, deriving from the oxidation of DOPA-containing proteins. In addition, small DOPA-containing peptides, called tunichromes, are also present inside MCs. MC degranulation and PO-mediated cytotoxicity are prevented by secretion inhibitors and by H89 and calphostin C. The observation that PO activity is always detectable in MCs in the absence of protease treatment, and its inhibition by sulfites and sulfates, suggest a non-classical pathway of PO modulation in botryllid ascidians

    Role of the Mitochondrial Genome During Early Development in Mice

    Get PDF
    The role of the mitochondrial genome in early development and differentiation was studied in mouse embryos cultured in vitro from the two to four cell stage to the blastocyst (about 100 cells). During this period the mitochondria undergo morphological differentiation: progressive enlargement followed by an increase in matrix density, in number of cristae, and in number of mitochondrial ribosomes. Mitochondrial ribosomal and transfer RNA synthesis occurs from the 8 to 16 cell stage on and contributes to the establishment of a mitochondrial protein-synthesizing system. Inhibition of mitochondrial RNA- and protein-synthesis by 0.1 µg/ml of ethidium bromide or 31.2 µg/ml of chloramphenicol permits essentially normal embryo development and cellular differentiation. Mitochondrial morphogenesis is also nearly normal except for the appearance of dilated and vesicular cristae in blastocyst mitochondria. Such blastocysts are capable of normal postimplantation development when transplanted into the uteri of foster mothers. Higher concentrations of these inhibitors have general toxic effects and arrest embryo development. It is concluded that mitochondrial differentiation in the early mouse embryo occurs through the progressive transformation of the preexisting mitochondria and is largely controlled by the nucleocytoplasmic system. Mitochondrial protein synthesis is required for the normal structural organization of the cristae in blastocyst mitochondria. Embryo development and cellular differentiation up to the blastocyst stage are not dependent on mitochondrial genetic activity

    Early Human Embryonic Development: Individuation Before Implantation

    Get PDF

    Human embryos from overweight and obese women display phenotypic and metabolic abnormalities

    Get PDF
    STUDY QUESTION Is the developmental timing and metabolic regulation disrupted in embryos from overweight or obese women? SUMMARY ANSWER Oocytes from overweight or obese women are smaller than those from women of healthy weight, yet post-fertilization they reach the morula stage faster and, as blastocysts, show reduced glucose consumption and elevated endogenous triglyceride levels. WHAT IS KNOWN ALREADY Female overweight and obesity is associated with infertility. Moreover, being overweight or obese around conception may have significant consequences for the unborn child, since there are widely acknowledged links between events occurring during early development and the incidence of a number of adult disorders. STUDY DESIGN, SIZE, DURATION We have performed a retrospective, observational analysis of oocyte size and the subsequent developmental kinetics of 218 oocytes from 29 consecutive women attending for ICSI treatment and have related time to reach key developmental stages to maternal bodyweight. In addition, we have measured non-invasively the metabolic activity of 150 IVF/ICSI embryos from a further 29 consecutive women who donated their surplus embryos to research, and have related the data retrospectively to their body mass index (BMI). PARTICIPANTS/MATERIALS, SETTING, METHODS In a clinical IVF setting, we compared oocyte morphology and developmental kinetics of supernumerary embryos collected from overweight and obese women, with a BMI in excess of 25 kg/m2 to those from women of healthy weight. A Primovision Time-Lapse system was used to measure developmental kinetics and the non-invasive COnsumption/RElese of glucose, pyruvate, amino acids and lactate were measured on spent droplets of culture medium. Total triglyceride levels within individual embryos were also determined. MAIN RESULTS AND THE ROLE OF CHANCE Human oocytes from women presenting for fertility treatment with a BMI exceeding 25 kg/m2 are smaller (R2 = −0.45; P = 0.001) and therefore less likely to complete development post-fertilization (P < 0.001). Those embryos that do develop reach the morula stage faster than embryos from women of a BMI < 25 kg/m2

    Cell arrest and cell death in mammalian preimplantation development

    Get PDF
    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development
    corecore