926 research outputs found

    Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution

    Get PDF
    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning

    Diffusion, convection and erosion on R3 x S2 and their application to the enhancement of crossing fibers

    Get PDF
    In this article we study both left-invariant (convection-)diffusions and left-invariant Hamilton-Jacobi equations (erosions) on the space R3 x S2 of 3D-positions and orientations naturally embedded in the group SE(3) of 3D-rigid body movements. The general motivation for these (convection-)diffusions and erosions is to obtain crossing-preserving fiber enhancement on probability densities defined on the space of positions and orientations. The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on R3 x S2 and can be solved by R3 x S2-convolution with the corresponding Green’s functions or by a finite difference scheme. The left-invariant Hamilton-Jacobi equations are Bellman equations of cost processes on R3 x S2 and they are solved by a morphological R3 x S2-convolution with the corresponding Green’s functions. We will reveal the remarkable analogy between these erosions/dilations and diffusions. Furthermore, we consider pseudo-linear scale spaces on the space of positions and orientations that combines dilation and diffusion in a single evolution. In our design and analysis for appropriate linear, non-linear, morphological and pseudo-linear scale spaces on R3 x S2 we employ the underlying differential geometry on SE(3), where the frame of left-invariant vector fields serves as a moving frame of reference. Furthermore, we will present new and simpler finite difference schemes for our diffusions, which are clear improvements of our previous finite difference schemes. We apply our theory to the enhancement of fibres in magnetic resonance imaging (MRI) techniques (HARDI and DTI) for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. We provide experiments of our crossing-preserving (non-linear) left-invariant evolutions on neural images of a human brain containing crossing fibers

    Total Variation and Mean Curvature PDEs on RdSd1\mathbb{R}^d \rtimes S^{d-1}

    Get PDF
    Total variation regularization and total variation flows (TVF) have been widely applied for image enhancement and denoising. To include a generic preservation of crossing curvilinear structures in TVF we lift images to the homogeneous space M=RdSd1M = \mathbb{R}^d \rtimes S^{d-1} of positions and orientations as a Lie group quotient in SE(d). For d = 2 this is called 'total roto-translation variation' by Chambolle & Pock. We extend this to d = 3, by a PDE-approach with a limiting procedure for which we prove convergence. We also include a Mean Curvature Flow (MCF) in our PDE model on M. This was first proposed for d = 2 by Citti et al. and we extend this to d = 3. Furthermore, for d = 2 we take advantage of locally optimal differential frames in invertible orientation scores (OS). We apply our TVF and MCF in the denoising/enhancement of crossing fiber bundles in DW-MRI. In comparison to data-driven diffusions, we see a better preservation of bundle boundaries and angular sharpness in fiber orientation densities at crossings. We support this by error comparisons on a noisy DW-MRI phantom. We also apply our TVF and MCF in enhancement of crossing elongated structures in 2D images via OS, and compare the results to nonlinear diffusions (CED-OS) via OS.Comment: Submission to the Seventh International Conference on Scale Space and Variational Methods in Computer Vision (SSVM 2019). (v2) Typo correction in lemma 1. (v3) Typo correction last paragraph page

    New Exact and Numerical Solutions of the (Convection-)Diffusion Kernels on SE(3)

    Get PDF
    We consider hypo-elliptic diffusion and convection-diffusion on R3S2\mathbb{R}^3 \rtimes S^2, the quotient of the Lie group of rigid body motions SE(3) in which group elements are equivalent if they are equal up to a rotation around the reference axis. We show that we can derive expressions for the convolution kernels in terms of eigenfunctions of the PDE, by extending the approach for the SE(2) case. This goes via application of the Fourier transform of the PDE in the spatial variables, yielding a second order differential operator. We show that the eigenfunctions of this operator can be expressed as (generalized) spheroidal wave functions. The same exact formulas are derived via the Fourier transform on SE(3). We solve both the evolution itself, as well as the time-integrated process that corresponds to the resolvent operator. Furthermore, we have extended a standard numerical procedure from SE(2) to SE(3) for the computation of the solution kernels that is directly related to the exact solutions. Finally, we provide a novel analytic approximation of the kernels that we briefly compare to the exact kernels.Comment: Revised and restructure

    Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging

    Get PDF
    Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well-defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations U:RdSd1RU:\mathbb{R}^{d} \rtimes S^{d-1} \to \mathbb{R} defined on the extended space of positions and orientations, which we relate to data on the roto-translation group SE(d)SE(d), d=2,3d=2,3. This allows to define multiple frames per position, one per orientation. We compute these frames via exponential curve fits in the extended data representations in SE(d)SE(d). These curve fits minimize first or second order variational problems which are solved by spectral decomposition of, respectively, a structure tensor or Hessian of data on SE(d)SE(d). We include these gauge frames in differential invariants and crossing preserving PDE-flows acting on extended data representation UU and we show their advantage compared to the standard left-invariant frame on SE(d)SE(d). Applications include crossing-preserving filtering and improved segmentations of the vascular tree in retinal images, and new 3D extensions of coherence-enhancing diffusion via invertible orientation scores

    The Influence of Spatial Registration on Detection of Cerebral Asymmetries Using Voxel-Based Statistics of Fractional Anisotropy Images and TBSS

    Get PDF
    The sensitivity of diffusion tensor imaging (DTI) for detecting microstructural white matter alterations has motivated the application of voxel-based statistics (VBS) to fractional anisotropy (FA) images (FA-VBS). However, detected group differences may depend on the spatial registration method used. The objective of this study was to investigate the influence of spatial registration on detecting cerebral asymmetries in FA-VBS analyses with reference to data obtained using Tract-Based Spatial Statistics (TBSS). In the first part of this study we performed FA-VBS analyses using three single-contrast and one multi-contrast registration: (i) whole-brain registration based on T2 contrast, (ii) whole-brain registration based on FA contrast, (iii) individual-hemisphere registration based on FA contrast, and (iv) a combination of (i) and (iii). We then compared the FA-VBS results with those obtained from TBSS. We found that the FA-VBS results depended strongly on the employed registration approach, with the best correspondence between FA-VBS and TBSS results when approach (iv), the “multi-contrast individual-hemisphere” method was employed. In the second part of the study, we investigated the spatial distribution of residual misregistration for each registration approach and the effect on FA-VBS results. For the FA-VBS analyses using the three single-contrast registration methods, we identified FA asymmetries that were (a) located in regions prone to misregistrations, (b) not detected by TBSS, and (c) specific to the applied registration approach. These asymmetries were considered candidates for apparent FA asymmetries due to systematic misregistrations associated with the FA-VBS approach. Finally, we demonstrated that the “multi-contrast individual-hemisphere” approach showed the least residual spatial misregistrations and thus might be most appropriate for cerebral FA-VBS analyses
    corecore