57 research outputs found

    Analysis of Amoeba Active Contours

    Full text link
    Subject of this paper is the theoretical analysis of structure-adaptive median filter algorithms that approximate curvature-based PDEs for image filtering and segmentation. These so-called morphological amoeba filters are based on a concept introduced by Lerallut et al. They achieve similar results as the well-known geodesic active contour and self-snakes PDEs. In the present work, the PDE approximated by amoeba active contours is derived for a general geometric situation and general amoeba metric. This PDE is structurally similar but not identical to the geodesic active contour equation. It reproduces the previous PDE approximation results for amoeba median filters as special cases. Furthermore, modifications of the basic amoeba active contour algorithm are analysed that are related to the morphological force terms frequently used with geodesic active contours. Experiments demonstrate the basic behaviour of amoeba active contours and its similarity to geodesic active contours.Comment: Revised version with several improvements for clarity, slightly extended experiments and discussion. Accepted for publication in Journal of Mathematical Imaging and Visio

    Amoeba Techniques for Shape and Texture Analysis

    Full text link
    Morphological amoebas are image-adaptive structuring elements for morphological and other local image filters introduced by Lerallut et al. Their construction is based on combining spatial distance with contrast information into an image-dependent metric. Amoeba filters show interesting parallels to image filtering methods based on partial differential equations (PDEs), which can be confirmed by asymptotic equivalence results. In computing amoebas, graph structures are generated that hold information about local image texture. This paper reviews and summarises the work of the author and his coauthors on morphological amoebas, particularly their relations to PDE filters and texture analysis. It presents some extensions and points out directions for future investigation on the subject.Comment: 38 pages, 19 figures v2: minor corrections and rephrasing, Section 5 (pre-smoothing) extende

    Morphological bilateral filtering

    No full text
    International audienceA current challenging topic in mathematical morphology is the construction of locally adaptive operators; i.e., structuring functions that are dependent on the input image itself at each position. Development of spatially-variant filtering is well established in the theory and practice of Gaussian filtering. The aim of the first part of the paper is to study how to generalize these convolution-based approaches in order to introduce adaptive nonlinear filters that asymptotically correspond to spatially-variant morphological dilation and erosion. In particular, starting from the bilateral filtering framework and using the notion of counter-harmonic mean, our goal is to propose a new low complexity approach to define spatially-variant bilateral structuring functions. Then, in the second part of the paper, an original formulation of spatially-variant flat morphological filters is proposed, where the adaptive structuring elements are obtained by thresholding the bilateral structuring functions. The methodological results of the paper are illustrated with various comparative examples

    Riemannian mathematical morphology

    No full text
    This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonic quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonic case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry-Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces

    Overview on possible causes of COVID-19

    Get PDF
    Background: The infection with the new coronavirus SARS-CoV-2 has caused a large number of cases of disease and death worldwide. Identifying the source of COVID-19 is an important issue though still unresolved. The analysis of the literature on highlighting possible sources of the SARS-CoV-2 virus was carried out. Conclusions: The COVID-19 pandemic is occurring on the underlying imminent global ecological catastrophe as a result of the anthropogenic activity. Therefore, it can be stated that Homo Sapiens in the context of the interaction with the biosphere is a maladaptive species. According to the literature, the species’ adaptive responses to environmental changes are due to endogenous retroviruses. The latter act as evolutionary factors. Possible pandemic COVID-19 is not a separate epidemic process caused by the penetration of a new virus into human populations, but rather is one of the manifestations of a more complex natural phenomenon – an evolutionary process under the guise of an infectious one. In terms of evolution, COVID-19 plays the role of a biosphere factor that seeks to help a relatively new species to adapt to the general conditions of survival in a symbiotic relationship with other living organisms

    Practical book on medical biology

    Get PDF
    BIOLOGY MEDICALPRACTICAL BOOKБИОЛОГИЯБИОЛОГИЯ МЕДИЦИНСКАЯПРАКТИЧЕСКИЕ ПОСОБИЯIn the practical book the main divisions and aims of biology are described
    corecore