16 research outputs found

    On Words with the Zero Palindromic Defect

    Full text link
    We study the set of finite words with zero palindromic defect, i.e., words rich in palindromes. This set is factorial, but not recurrent. We focus on description of pairs of rich words which cannot occur simultaneously as factors of a longer rich word

    On morphisms preserving palindromic richness

    Full text link
    It is known that each word of length nn contains at most n+1n+1 distinct palindromes. A finite rich word is a word with maximal number of palindromic factors. The definition of palindromic richness can be naturally extended to infinite words. Sturmian words and Rote complementary symmetric sequences form two classes of binary rich words, while episturmian words and words coding symmetric dd-interval exchange transformations give us other examples on larger alphabets. In this paper we look for morphisms of the free monoid, which allow to construct new rich words from already known rich words. We focus on morphisms in Class PretP_{ret}. This class contains morphisms injective on the alphabet and satisfying a particular palindromicity property: for every morphism φ\varphi in the class there exists a palindrome ww such that φ(a)w\varphi(a)w is a first complete return word to ww for each letter aa. We characterize PretP_{ret} morphisms which preserve richness over a binary alphabet. We also study marked PretP_{ret} morphisms acting on alphabets with more letters. In particular we show that every Arnoux-Rauzy morphism is conjugated to a morphism in Class PretP_{ret} and that it preserves richness

    Rich Words and Balanced Words

    Get PDF
    This thesis is mostly focused on palindromes. Palindromes have been studied extensively, in recent years, in the field of combinatorics on words.Our main focus is on rich words, also known as full words. These are words which have maximum number of distinct palindromes as factors.We shed some more light on these words and investigate certain restricted problems. Finite rich words are known to be extendable to infinite rich words. We study more closely how many different ways, and in which situations, rich words can be extended so that they remain rich.The defect of a ord is defined to be the number of palindromes the word is lacking.We will generalize the definition of defect with respect to extending the word to be infinite.The number of rich words, on an alphabet of size nn, is given an upper and a lower bound. Hof, Knill and Simon presented (Commun. Math. Phys. 174, 1995) a well-known question whether all palindromic subshifts which are enerated by primitive substitutions arise from substitutions which are in class P. Over the years, this question has transformed a bit and is nowadays called the class P conjecture. The main point of the conjecture is to attempt to explain how an infinite word can contain infinitely many palindromes.We will prove a partial result of the conjecture. Rich square-free words are known to be finite (Pelantov\'a and Sarosta, Discrete Math. 313, 2013). We will give another proof for that result. Since they are finite, there exists a longest such word on an nn-ary alphabet.We give an upper and a lower bound for the length of that word. We study also balanced words. Oliver Jenkinson proved (Discrete Math., Alg. and Appl. 1(4), 2009) that if we take the partial sum of the lexicographically ordered orbit of a binary word, then the balanced word gives the least partial sum. The balanced word also gives the largest product. We will show that, at the other extreme, there are the words of the form 0qp1p0^{q-p}1^p (pp and qq are integers with 1p<q1\leq p<q), which we call the most unbalanced words. They give the greatest partial sum and the smallest product.Tässä väitöskirjassa käsitellään pääasiassa palindromeja. Palindromeja on tutkittu viime vuosina runsaasti sanojen kombinatoriikassa.Suurin kiinnostuksen kohde tässä tutkielmassa on rikkaissa sanoissa. Nämä ovat sanoja joissa on maksimaalinen määrä erilaisia palindromeja tekijöinä.Näitä sanoja tutkitaan monesta eri näkökulmasta. Äärellisiä rikkaita sanoja voidaan tunnetusti jatkaa äärettömiksi rikkaiksi sanoiksi.Työssä tutkitaan tarkemmin sitä, miten monella tavalla ja missä eri tilanteissa rikkaita sanoja voidaan jatkaa siten, että ne pysyvät rikkaina.Sanan vajauksella tarkoitetaan puuttuvien palindromien lukumäärää.Vajauksen käsite yleistetään tapaukseen, jossa sanaa on jatkettava äärettömäksi sanaksi.Rikkaiden sanojen lukumäärälle annetaan myös ylä- ja alaraja. Hof, Knill ja Simon esittivät kysymyksen (Commun. Math. Phys. 174, 1995), saadaanko kaikki äärettömät sanat joissa on ääretön määrä palindromeja tekijöinä ja jotka ovat primitiivisen morfismin generoimia, morfismeista jotka kuuluvat luokkaan P. Nykyään tätä ongelmaa kutsutaan luokan P konjektuuriksi ja sen tarkoitus on saada selitys sille,millä tavalla äärettömässä sanassa voi olla tekijöinä äärettömän monta palindromia. Osittainen tulos tästä konjektuurista todistetaan. Rikkaiden neliövapaiden sanojen tiedetään olevan äärellisiä (Pelantov\'a ja Starosta, Discrete Math. 313, 2013). Tälle tulokselle annetaan uudenlainen todistus.Koska kyseiset sanat ovat äärellisiä, voidaan selvittää mikä niistä on pisin.Ylä- ja alaraja annetaan tällaisen pisimmän sanan pituudelle. Työssä tutkitaan myös tasapainotettuja sanoja.Tasapainotetut sanat antavat pienimmän osittaissumman binäärisille sanoille (Jenkinson, Discrete Math., Alg. and Appl. 1(4), 2009).Lisäksi ne antavat suurimman tulon.Muotoa 0qp1p0^{q-p}1^p (pp ja qq ovat kokonaislukuja joille 1p<q1\leq p<q) olevien sanojen todistetaan vastaavasti antavan suurimman osittaissumman ja pienimmän tulon.Ne muodostavat täten toisen ääripään tasapainotetuille sanoille, ja asettavat kaikki muut sanat näiden väliin.Siirretty Doriast

    Combinatorics on Words 10th International Conference

    Get PDF
    This volume contains the Local Proceedings of the Tenth International Conference on WORDS, that took place at the Kiel University, Germany, from the 14th to the 17th September 2015. WORDS is the main conference series devoted to the mathematical theory of words, and it takes place every two years. The first conference in the series was organised in 1997 in Rouen, France, with the following editions taking place in Rouen, Palermo,Turku, Montreal, Marseille, Salerno, Prague, and Turku. The main object in the scope of the conference, words, are finite or infinite sequences of symbols over a finite alphabet. They appear as natural and basic mathematical model in many areas, theoretical or applicative. Accordingly, the WORDS conference is open to both theoretical contributions related to combinatorial, algebraic, and algorithmic aspects of words, as well as to contributions presenting application of the theory of words, for instance, in other fields of computer science, inguistics, biology and bioinformatics, or physics. For the second time in the history of WORDS, after the 2013 edition, a refereed proceedings volume was published in Springer’s Lecture Notes in Computer Science series. In addition, this local proceedings volume was published in the Kiel Computer Science Series of the Kiel University. Being a conference at the border between theoretical computer science and mathematics, WORDS tries to capture in its two proceedings volumes the characteristics of the conferences from both these worlds. While the Lecture Notes in Computer Science volume was dedicated to formal contributions, this local proceedings volume allows, in the spirit of mathematics conferences, the publication of several contributions informing on current research and work in progress in areas closely connected to the core topics of WORDS. All the papers, the ones published in the Lecture Notes in Computer Science proceedings volume or the ones from this volume, were refereed to high standards by the members of the Program Committee. Following the conference, a special issue of the Theoretical Computer Science journal will be edited, containing extended versions of papers from both proceedings volumes. In total, the conference hosted 18 contributed talks. The papers on which 14 of these talks were based, were published in th LNCS volume; the other 4 are published in this volume. In addition to the contributed talks, the conference program included six invited talks given by leading experts in the areas covered by the WORDS conference: Jörg Endrullis (Amsterdam), Markus Lohrey (Siegen), Jean Néraud (Rouen), Dominique Perrin (Paris), Michaël Rao (Lyon), Thomas Stoll (Nancy). WORDS 2015 was the tenth conference in the series, so we were extremely happy to welcome, as invited speaker at this anniversary edition, Jean Néraud, one of the initiators of the series and the main organiser of the first two editions of this conference. We thank all the invited speakers and all the authors of submitted papers for their contributions to the the success of the conference. We are grateful to the members of the Program Committee for their work that lead to the selection of the contributed talks, and, implicitly, of the papers published in this volume. They were assisted in their task by a series of external referees, gratefully acknowledged below. The submission and reviewing process used the Easychair system; we thank Andrej Voronkov for this system which facilitated the work of the Programme Committee and the editors considerably. We grateful thank Gheorghe Iosif for designing the logo, poster, and banner of WORDS 2015; the logo of the conference can be seen on the front cover of this book. We also thank the editors of the Kiel Computer Science Series, especially Lasse Kliemann, for their support in editing this volume. Finally, we thank the Organising Committee of WORDS 2015 for ensuring the smooth run of the conference

    Palindromic richness for languages invariant under more symmetries

    Full text link
    For a given finite group GG consisting of morphisms and antimorphisms of a free monoid A\mathcal{A}^*, we study infinite words with language closed under the group GG. We focus on the notion of GG-richness which describes words rich in generalized palindromic factors, i.e., in factors ww satisfying Θ(w)=w\Theta(w) = w for some antimorphism ΘG\Theta \in G. We give several equivalent descriptions which are generalizations of know characterizations of rich words (in the terms of classical palindromes) and show two examples of GG-rich words

    On the Zero Defect Conjecture

    Full text link
    peer reviewe
    corecore