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Preface

This volume contains the Local Proceedings of the Tenth International
Conference on WORDS, that took place at the Kiel University, Germany,
from the 14th to the 17th September 2015. WORDS is the main conference
series devoted to the mathematical theory of words, and it takes place
every two years. The first conference in the series was organised in 1997 in
Rouen, France, with the following editions taking place in Rouen, Palermo,
Turku, Montreal, Marseille, Salerno, Prague, and Turku.

The main object in the scope of the conference, words, are finite or
infinite sequences of symbols over a finite alphabet. They appear as natural
and basic mathematical model in many areas, theoretical or applicative.
Accordingly, the WORDS conference is open to both theoretical contribu-
tions related to combinatorial, algebraic, and algorithmic aspects of words,
as well as to contributions presenting application of the theory of words,
for instance, in other fields of computer science, linguistics, biology and
bioinformatics, or physics.

For the second time in the history of WORDS, after the 2013 edition, a
refereed proceedings volume was published in Springer’s Lecture Notes
in Computer Science series. In addition, this local proceedings volume
was published in the Kiel Computer Science Series of the Kiel University.
Being a conference at the border between theoretical computer science
and mathematics, WORDS tries to capture in its two proceedings volumes
the characteristics of the conferences from both these worlds. While the
Lecture Notes in Computer Science volume was dedicated to formal contri-
butions, this local proceedings volume allows, in the spirit of mathematics
conferences, the publication of several contributions informing on current
research and work in progress in areas closely connected to the core topics
of WORDS. All the papers, the ones published in the Lecture Notes in
Computer Science proceedings volume or the ones from this volume, were
refereed to high standards by the members of the Program Committee.
Following the conference, a special issue of the Theoretical Computer
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Science journal will be edited, containing extended versions of papers
from both proceedings volumes.

In total, the conference hosted 18 contributed talks. The papers on
which 14 of these talks were based, were published in th LNCS volume;
the other 4 are published in this volume. In addition to the contributed
talks, the conference program included six invited talks given by leading
experts in the areas covered by the WORDS conference: Jörg Endrullis
(Amsterdam), Markus Lohrey (Siegen), Jean Néraud (Rouen), Dominique
Perrin (Paris), Michaël Rao (Lyon), Thomas Stoll (Nancy). WORDS 2015
was the tenth conference in the series, so we were extremely happy to
welcome, as invited speaker at this anniversary edition, Jean Néraud, one
of the initiators of the series and the main organiser of the first two editions
of this conference.

We thank all the invited speakers and all the authors of submitted
papers for their contributions to the the success of the conference.

We are grateful to the members of the Program Committee for their
work that lead to the selection of the contributed talks, and, implicitly, of
the papers published in this volume. They were assisted in their task by
a series of external referees, gratefully acknowledged below. The submis-
sion and reviewing process used the Easychair system; we thank Andrej
Voronkov for this system which facilitated the work of the Programme
Committee and the editors considerably. We grateful thank Gheorghe Iosif
for designing the logo, poster, and banner of WORDS 2015; the logo of the
conference can be seen on the front cover of this book. We also thank the
editors of the Kiel Computer Science Series, especially Lasse Kliemann,
for their support in editing this volume. Finally, we thank the Organising
Committee of WORDS 2015 for ensuring the smooth run of the conference.

Kiel, Florin Manea
September 2015 Dirk Nowotka
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Primitive Roots of
Bi-periodic Infinite Pictures

Nicolas Bacquey

GREYC - Université de Caen Basse-Normandie / ENSICAEN / CNRS
Campus Côte de Nacre, Boulevard du Maréchal Juin

CS 14032 CAEN cedex 5, FRANCE

Abstract

This paper defines and studies the notion of primitive root of a
bi-periodic infinite picture, that is a rectangular pattern that tiles the
bi-periodic picture and contains exactly one representative of each
equivalence class of its pixels. This notion extends to dimension 2 the
notion of primitive root of a bi-infinite periodic word.

We prove that, for each bi-periodic infinite picture P,

Ź there exists at least one primitive root of P;

Ź there are at most two ordered pairs of positive integers (m, n) such
that every primitive root of P has size mˆ n;

Ź for each such pair (m, n), every rectangular pattern of size mˆ n
extracted from P is a primitive root of P.

We also discuss some additional properties of primitive roots.



1 Introduction: Primitive words in dimension 1
and 2

In the field of formal languages, primitive words are finite words that are
not a power of a smaller word. These words are a well studied subject, with
an array of open problems related to them. For instance, it is unknown
if the language of all primitive words is context-free (see e.g. [5] or [7]
for more matter on primitive languages). In this paper, we will define an
extension of that notion over words of dimension 2, i.e. pictures over a finite
alphabet. It is important to note that we will consider rectangular words
as part of a bi-periodic, infinite picture instead of independently from their
surroundings. Informally speaking, we will say that primitive rectangular
words will be the smallest rectangular words with which we will be able
to rebuild the whole infinite picture by translation.

A trivial extension of the notion of primitive words would be to say
that a rectangular word is primitive if it is primitive in both directions.
However, our twist in the definition will allow us to consider a broader
array of primitive words than this trivial extension.

The work presented in this paper originated from the field of Cellular
Automata, which are a massively parallel computational model (see [4]
or [6]). Our initial goal was to design an algorithm able to perform leader
election over infinite periodical pictures [1, 2]. We noticed that the set of
leaders of an infinite picture constitute a lattice, and that this lattice could
be used to delimit finite rectangular words.

Those particular words, which are the primitive roots we will discuss in
this article, appear to have very interesting properties that closely relate
to formal language theory. We will first formally define those primitive
roots, then we will give a tight upper bound to their number (they are not
unique up to a shift, as it happens with languages of dimension 1). Finally,
we will discuss some of their most interesting properties.

2 Context and definitions

We will now introduce a few definitions that will lead to the proper
definition of a primitive root of a bi-dimensional picture.
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(b) A new picture σ´1
h ˝ σ´1

v (P)

Figure 1. Illustration of the shift function over a picture.

2.1 Definition (pictures). Let Σ be a finite alphabet, we call picture a
function P : Z2 Ñ Σ. We say that a picture P is bi-periodic if there is a pair
of non-collinear vectors (x0, y0), (x1, y1) P Z2 called a period of P such that
@(x, y) P Z2:
P(x + x0, y + y0) = P(x, y)
P(x + x1, y + y1) = P(x, y).
In the context of pictures, an element p P Z2 is called a pixel.

All along this article, every picture we talk about will be bi-periodic,
except when noted otherwise.

2.2 Definition (shift functions). We introduce the horizontal shift function
σh and the vertical shift function σv defined over pictures as follows :
@(x, y) P Z2

σh(P)(x, y) = P(x + 1, y)
σv(P)(x, y) = P(x, y + 1).

Figure 1 illustrates the action of these functions over a bi-periodic
picture. It is immediate to see that those functions are invertible, and that
they commute with each other.

2.3 Definition (equivalent pixels). We say that two pixels p1 = (x1, y1) and
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(a) Two equivalent pixels.2 1
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(b) The equivalent pixels lattice.

Figure 2. Similar pixels and their induced lattice.

p2 = (x2, y2) of a picture P are equivalent if the transformation that trans-
lates p1 onto p2 leaves the picture unchanged, i.e. if σx2´x1

h ˝ σ
y2´y1
v (P) = P.

In that case, we note p1 „ p2.

We note that this definition actually corresponds to an equivalence
relation. It is easy to see that the following lemma holds for equivalence
classes of pixels:

2.4 Lemma. For any bi-periodic picture P, there exists a finite number of equiva-
lence classes of pixels of that picture. Moreover, each of these equivalence classes
contains an infinite number of pixels. Finally, the equivalence class of pixel (0, 0)
constitutes an integer lattice of dimension 2, i.e. a sub-group of (Z2,+) (see
Figure 2b).

2.5 Definition (rectangular patterns). Let P be a picture over Σ, we call
rectangular pattern of size mˆ n extracted at (x0, y0) the following function:

Rx0,y0 : J0, m´ 1Kˆ J0, n´ 1K Ñ Σ
(x, y) ÞÑ P(x + x0, y + y0)

2.6 Definition (primitive root). We say that a rectangular pattern Rx0,y0

of size mˆ n is a primitive root of the picture P if it contains exactly one
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(c) Primitive roots of pic-
ture P

Figure 3. Rectangular patterns in a bi-periodic picture.

representative of each equivalence class of pixels of the picture, i.e.
@(x, y) P Z2; D!(x1, y1) P J0, m ´ 1Kˆ J0, n ´ 1K such that (x, y) „ (x0 +
x1, y0 + y1).

Figure 3 gives an example of primitive roots of a picture. The following
lemma holds directly from the previous definition :

2.7 Lemma. All primitive roots of a given picture have the same area, which is
the number of equivalence classes of that picture.

Let us notice that these definitions can be adapted to pictures of dimen-
sion 1, i.e. words over Σ. It can be easily seen that primitive roots exactly
are primitive words in that context.

We also notice that our definition of primitive root is non-constructive.
Our first non-trivial result is that these primitive roots indeed exist.

2.8 Theorem (existence of primitive roots). Let P be a bi-periodic picture,
then primitive roots can be extracted from P.

Theorem 2.8. This proof will use Hermite normal form of square matrices,
which are a well studied tool of linear algebra. Simply put, an integer
matrix H is said to be in Hermite normal form if

Ź it is lower triangular

Ź its diagonal entries are positive

5



Ź in every column, the entries below the diagonal are non-negative and
smaller than the ones on the diagonal.

For any integer matrix M, it is known that there exists a unique integer
matrix H in Hermite normal form such that H = U ˆ M, where U is
unimodular with integer coefficients. We will also use notions related to
integer lattices, such as the fundamental domain of a lattice. More references
about Hermite normal form and lattices can be found in [3].

Let us consider the integer lattice L formed by the equivalence class
of pixel (0, 0) (See Lemma 2.4). Let us call B a basis of that lattice (see
Figure 4a), and let B1 be the family of vectors whose matrix is the Hermite
normal form of the matrix associated with B (see [3]). Without loss of

generality we can assume that B1 =
(

α 0
β γ

)
.

Because of the properties of Hermite transformation (i.e. the matrix U
is unimodular), it is clear that {(α, 0), (β, γ)} is also a basis of L (see
Figure 4b).

Let F be the fundamental domain of L associated with basis B1 (see
[3]). More precisely, let us consider the pixels within F . Clearly, because B1
is a basis of L, there must be exactly one representative of each equivalence
class among them (see Figure 4c).

Let also R be the rectangular pattern of size αˆ γ extracted from P
at position (0, 0) (see Figure 4c). It appears that R contains exactly the
same equivalence classes as F , because each pixel of R is either a pixel
of F or the translation by a vector (´α, 0) of a pixel of F (that translation
preserves equivalence classes, since (α, 0) is a vector of B1).

We therefore know that R contains exactly one representative of each
equivalence class of P, which makes it a primitive root.

We note that the construction of such primitive roots is non-trivial in
the general case: The naive algorithm that takes an arbitrary rectangular
pattern that contains at least (resp. at most) one representative of each
equivalence class and shrinks it (resp. expands it) until it contains exactly
one representative does not work. Figure 5 gives counter-examples, in
the form of rectangular patterns that contain at least (resp. at most) one
representative of each class, and cannot be shrunk (resp. expanded).

6



B =

(
3 2
1 2

)

(a) The original lattice L with
an unspecified base

B1 =
(

2 0
1 2

)

(b) The same lattice with an
Hermite normal form base

2 1 2 1

0 1 0 1

1 2 1 2

ñ
2 1 2 1

0 1 0 1

1 2 1 2

(c) Transforming the fundamental domain F of B1
into a rectangular pattern R

Figure 4. Illustration of primitive root construction.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
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Figure 5. Counter-examples to the naive algorithm.
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Figure 6. Tilings of a bi-periodic picture by its primitive roots.

3 Main result

Now that we have proved that there exist primitive roots in any bi-periodic
picture, we will describe them exactly. In order to achieve this, we will
need the following lemma:

3.1 Lemma. Let R be a primitive root of a bi-periodic picture P, then R tiles P
by translation.

This lemma is illustrated by Figure 6, and can be easily proved by
noticing that a translation of R can be constructed around each pixel of P
(because R contains at least one representative of each equivalence class),
and that these translations cannot overlap (those representatives must be
unique in R). This tiling can also be obtained by copying R on each point
of the lattice L defined previously.

We can now introduce our second theorem, which gives us a more
precise characterization of the primitive roots of a picture.

3.2 Theorem. let P be a bi-periodic picture, and let S Ă N2 be the set of all
possible sizes for primitive roots of P (more precisely, S = {(m, n); DRx,y a
primitive root of P of size mˆ n}), then:

Ź |S| ď 2 (there are at most two different sizes for primitive roots).

8



m
n

x2

y1

Figure 7. The particular tiling vectors associated to a given primitive root.

Ź @(m, n) P S; @(x, y) P Z2 if Rx,y is the rectangular pattern of size mˆ n
extracted from P at (x, y), then Rx,y is a primitive root of P (that is, primitive
roots can be extracted from anywhere provided that they are of appropriate
size).

Theorem 3.2. We will prove the first point of Theorem 3.2 by associating a
matrix in Hermite normal form to each primitive root of picture P, and by
considering what it implies.

Let Rx0,y0 be a primitive root of P of size m ˆ n. Thanks to Lemma
3.1, we know that there exists a tiling of P by R. We consider two partic-
ular vectors of that tiling, which are illustrated on Figure 7 and defined
thereafter:

Ź Let V1 = (m,´y1) where y1 is the smallest positive integer such that
(x0, y0) „ (x0 + m, y0 ´ y1).

Ź Let V2 = (x2, n) where x2 is the smallest positive integer such that
(x0, y0) „ (x0 + x2, y0 + n).

Because R tiles the picture, it is clear that we have 0 ď y1 ă n and
0 ď x2 ă m. We will now prove that we have either y1 = 0 or x2 = 0.

Indeed, if we have y1 ‰ 0 and x2 ‰ 0, that would mean there exists a
rectangular “hole” of size x2 ˆ y1 in the tiling (see Figure 8). Because we
have x2 ă m and y1 ă n, that means it is impossible to fit a translation
of R into that hole, therefore a contradiction with the fact that R tiles the
picture. We now have either V1 = (m, 0) or V2 = (0, n).

It is important to note that, as they are non-colinear, V1 and V2 consti-
tute a basis of the lattice L associated with P. Up to a re-ordering of the

9



x2

y1

Figure 8. An illustration of what the tiling would look like if y1 ‰ 0 and x2 ‰ 0.

dimensions, we can suppose without loss of generality that V1 = (m, 0)

and V2 = (x2, n). Let us consider the matrix B =

(
m 0
x2 n

)
.

It is the matrix of a basis of L, and it happens to be in Hermite normal
form (because 0 ď x2 ă m). It means that every (m, n) eligible to be the
size of a primitive root must be the couple of diagonal coefficients of the
matrix of a basis of L in Hermite normal form (up to a reordering of the
dimensions). We know that such a matrix is unique (see [3]), and that
there exist 2 reorderings of 2 dimensions (2! = 2). Therefore, it means that
the couple (m, n) can only have at most two different values, giving us the
first point of the theorem.

Now to prove the second point, we will only prove that if Rx0,y0 is a
primitive root of size mˆ n, then the rectangular patterns R1x0+1,y0

and
R2x0,y0+1 of same size also are. The second point would then automatically
follow by induction.

Let therefore Rx0,y0 be a primitive root of P of size mˆ n. Let also V1
and V2 be the particular vectors defined earlier. We assume without loss
of generality that V1 = (m, 0) and V2 = (x2, n).

Figure 9 shows that both R1x0+1,y0
and R2x0,y0+1 contain the same equiva-

lence classes as Rx0,y0 . Indeed, in both cases there exists a bijection between
the equivalence classes of the original pattern and those of the new one;
this bijection is a translation by particular vectors which conserve the

10



(a) The original primitive
root and its translation vec-
tors V1 and V2.

(b) The new pattern
R1x0+1,y0

(c) The new pattern
R2x0 ,y0+1

Figure 9. Translation of a primitive root preserves its equivalence classes. Here we
have V1 = (6, 0) and V2 = (2, 3).
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Figure 10. Here are given all the primitive roots of the example picture.

equivalence classes of a pixel.

In the case of R1x0+1,y0
, the vectors are either V1 or (0, 0) (see Figure 9b).

In the case of R2x0,y0+1, the vectors are V2, V2 ´V1 or (0, 0) (see Figure 9c).
As R1x0+1,y0

and R2x0,y0+1 contain the same equivalence classes as Rx0,y0 and
also are rectangular patterns, then they also are primitive roots of P.

Note that the upper bound stated in Theorem 3.2 is tight, as there are
pictures for which the primitive roots can have 2 different sizes (in fact,
most of them). An example is given on Figure 3c.

The second point of Theorem 3.2 can give us all the primitive roots of
a given picture. An example of its application is given on Figure 10.
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4 Discussion about the root extracting function

In this section, we will study some interesting properties of the function
F that maps a bi-periodic picture to the set of its primitive roots, or
equivalently (as Theorem 3.2 states) the set of sizes of its primitive roots.

More formally, we can say that F : ΣZ2 Ñ (N2)2. Note that F (P) is
only defined if its argument P is a periodic picture.

4.1 Computability of function F
The first and perhaps most interesting result is that function F is indeed
computable, even if its argument is an infinite object (more precisely, an
infinite object with finite support, but whose size is unknown). A few
computational models can reasonably process an input whose size is
infinite, but the computability of this function has been proved with the
model of Cellular Automata, which is one of those models (See e.g. [4] or
[6] for general matters on Cellular Automata).

This computability result will not be extensively discussed here, as it
would easily double the size of this article and has already been proved in
[2]. However, note that this result could also adapt to classical computa-
tional models with finite input, such as Turing Machines. In that case it
becomes quasi trivial, because the only relevant way to describe the input
picture would be to give one of its periods (not necessarily the shortest
one). If the period is known, then a straightforward application of the
construction given in the proof of Theorem 2.8 would immediately give
the primitive roots of the picture.

4.2 Injectivity in the general case

It is immediate to see that two bi-periodic pictures which are shifts of
each other have exactly the same set of primitive roots, so the injectivity
of function F is clearly disproved. However, it would be interesting to
see what happens if the pictures are defined up to a shift, which is a
reasonable assumption.

It appears that the function F is not injective either in that case. Indeed,
Figure 11 proves it by giving two different bi-periodic pictures that have
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0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

1

0

2

0

1 0 2 0

Figure 11. Illustration of the non-injectivity of the root extracting function: both
pictures have the same set of primitive roots (all the primitive roots are shifts of
the ones presented on the figure).

exactly the same set of primitive roots. We can infer that the mere knowl-
edge of its primitive roots is not sufficient to deduce a whole bi-periodic
picture; one would also need the tiling vectors of a given root.

An attentive reader may have noticed that both pictures shown on
Figure 11 are rotations of each other, and that the set of their primitive
roots is invariant by rotation. This reader could ask if the injectivity of
function F is true if the pictures are defined up to a rotation. Unfortunately,
it is not the case, as there exist more complex counterexamples which are
not equivalent by rotation.

4.3 Bijectivity in the case of a double root

Now let us consider what happens when there is only one possible size
for the primitive root. This case happens when the Hermite normal form
of the matrix associated with P is diagonal instead of simply triangular.
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Figure 12. When there is only
one possible size for the primi-
tive roots of a picture, the inverse
function exists and is trivial.

wh = (0, 0)(1, 1)

wv = (0, 1)(0, 1)
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Figure 13. A primitive root can be seen as a
one-dimensional vertical word wv over the
alphabet of horizontal tuples of Σ, or as a hor-
izontal word wh over the alphabet of vertical
tuples of Σ.

An example of that case is shown on Figure 12.
If Rx0,y0 is a double root of the picture P of size mˆ n, it means that

the translation vectors associated with Rx0,y0 are horizontal and vetical
(V1 = (m, 0) and V2 = (0, n)). In that case, the original picture can be
rebuilt P by merely translating Rx0,y0 along V1 and V2. This means that F
is bijective if there is a double root, provided the picture is defined up to a
translation.

4.4 Properties of the primitive roots

It can be interesting to study the relation between the primitive roots we
defined in this article with primitive words of dimension 1 (see e.g. [7]). In
particular, if P is a picture over an alphabet Σ and Rx0,y0 is a root of P of
size mˆ n, R can be seen as a horizontal word over the alphabet Σn, or as
a vertical word over the alphabet Σm (as shown on Figure 13). It appears
that at least one of these words is primitive in their particular alphabet
(the proof is quite simple, and uses once again the fact that either V1 or V2
have a null component).

Conversely, one could ask if any rectangular pattern that is either
“horizontally primitive” or “vertically primitive” can be the primitive root
of a certain bi-periodic picture. It seems to be the case, but we were not
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able to find a formal proof of that property.

5 Conclusion and perspectives

Although the definition of a primitive root is non-constructive, this article
succeeds in exhibiting all of them for every bi-periodic picture, and shows
some of their properties. Now let us review the remaining points that
could lead to future works.

5.1 Open problems

As stated earlier, we still don’t know if every two-dimensional word that
fits our naive precondition (i.e. being either horizontally primitive or
vertically primitive) can be the primitive root of a picture. Deciding that
property could lead to a characterization of the 2-dimensional language of
potential primitive roots. Even if we don’t know much about that language,
we still have some lower bounds about its recognizability (it obviously
is as hard to recognize as the language of primitive words, which is its
restriction to dimension 1).

5.2 Primitive roots in higher dimensions

An immediate extension of our work would be to extend it to pictures
of dimension higher than 2. All the definitions scale nicely, up to the
definition of a multi-dimensional primitive root, as a hyper-parallelogram
containing exactly one representative of each equivalence class of pixels.
The existence of such primitive roots also holds, due to the same argument
used in the proof of Theorem 2.8, only using the Hermite normal form of
matrices of higher dimensions.

However, Theorem 3.2 seems harder to prove; it would state that for
a multi-periodic picture of dimension d, there are at most d! possible sizes for
its primitive roots. We know how to construct pictures that have at least
d! different sizes of primitive roots (d! is the number of linear orders
of the d dimensions). In order to prove that this bound is a maximum,
we miss a statement that would be equivalent to “at least one of the
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translating vectors have a null component” in higher dimensions. Note
that this problem is a purely geometric one; it only relates to the tiling of
the space by translations of a hyper-parallelogram, and does not relate to
formal languages. The subject of properties of primitive roots of higher
dimensions is also left unexplored.
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Abstract

Generalized pseudostandard words were introduced by De Luca
and de Luca in [4]. Recently, they have been studied intensively, nev-
ertheless in comparison to the palindromic and pseudopalindromic
closure, there are still a lot of open problems concerning generalized
pseudopalindromic closure and the associated generalized pseudo-
standard words. We present here a necessary and sufficient condition
for their periodicity over ternary alphabet. More precisely, we describe
how the directive bi-sequence of a generalized pseudostandard word
has to look like in order to correspond to a periodic word. We extend
thus the result from [1] where we found such a condition over binary
alphabet. It is interesting that the conditions on periodicity over binary
and ternary alphabet are surprisingly different. We state moreover as
a conjecture a necessary and sufficient condition for periodicity over
any alphabet.



1 Basics from combinatorics on words

Any finite set of symbols is called an alphabet A, the elements are called
letters. A (finite) word w over A is any finite sequence of letters. Its length
|w| is the number of letters it contains. The empty word – the neutral
element for concatenation of words – is denoted ε and its length is set
|ε| = 0. The symbol A˚ stands for the set of all finite words over A. An
infinite word u over A is any infinite sequence of letters. A finite word w
is a factor of the infinite word u = u0u1u2 . . . with ui P A if there exists
an index i ě 0 such that w = uiui+1 . . . ui+|w|´1. The symbol L(u) is used
for the set of factors of u and is called the language of u, similarly Ln(u)
stands for the set of factors of u of length n.

Let w P L(u). A left extension of w is any word aw P L(u), where a P A.
The factor w is called left special if w has at least two left extensions. The
(factor) complexity of u is the map Cu : N Ñ N defined as

Cu(n) = #Ln(u).

The following results on complexity come from [8]. If an infinite word
is eventually periodic, i.e., it is of the form wvω, where w, v are finite
words (w may be empty – in such a case we speak about a purely periodic
word) and ω denotes an infinite repetition, then its factor complexity is
bounded. An infinite word is not eventually periodic – such a word is
called aperiodic – if and only if its complexity satisfies: C(n) ě n + 1 for
all n P N. If an infinite word u contains for every length n a left special
factor of length n, the complexity is evidently strictly growing, hence u is
aperiodic.

An involutory antimorphism is a map ϑ : A˚ Ñ A˚ such that for every
v, w P A˚ it holds ϑ(vw) = ϑ(w)ϑ(v) and moreover ϑ2 equals identity.
It is clear that in order to define an antimorphism, it suffices to provide
letter images. There are only two involutory antimorphisms over the
alphabet {0, 1}: the reversal (mirror) map R satisfying R(0) = 0, R(1) = 1,
and the exchange antimorphism E given by E(0) = 1, E(1) = 0. We
use the notation 0 = 1 and 1 = 0, E = R and R = E. There are only
four involutory antimorphisms over the alphabet {0, 1, 2}: the reversal
map R satisfying R(0) = 0, R(1) = 1, R(2) = 2, and three exchange
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antimorphisms E0, E1, E2 given by

E0(0) = 0, E0(1) = 2, E0(2) = 1
E1(0) = 2, E1(1) = 1, E1(2) = 0
E2(0) = 1, E2(1) = 0, E2(2) = 2 .

Consider an involutory antimorphism ϑ over A. A finite word w is
a ϑ-palindrome if w = ϑ(w). The ϑ-palindromic closure wϑ of a word
w is the shortest ϑ-palindrome having w as prefix. For instance, over
binary alphabet 011R = 0110, 011E = 011001. We say that an infinite word
u is obtained by the ϑ-palindromic closure using a directive sequence
∆ = δ1δ2 . . . of letters in A if wn is a prefix of u for every n P N, where

w0 = ε and wn+1 = (wnδn+1)
ϑ.

We speak about the palindromic closure if ϑ = R and the pseudopalin-
dromic closure if we do not need to specify which antimorphism ϑ is
used.

2 Definition of generalized pseudostandard
Words

Generalized pseudostandard words form a generalization of infinite words
obtained by the palindromic, resp. pseudopalindromic closure; such con-
structions were described and studied in [3], [5], [7], [4].

2.1 Definition. Let A be an alphabet and G be the set of all involutory
antimorphisms on A˚. Let ∆ = δ1δ2 . . . and Θ = ϑ1ϑ2 . . ., where δi P A
and ϑi P G for all i P N. The infinite generalized pseudostandard word u(∆, Θ)
is the word whose prefixes wn are obtained from the recurrence relation

wn+1 = (wnδn+1)
ϑn+1 ,

w0 = ε.

The sequence Λ = (∆, Θ) is called the directive bi-sequence of the word
u(∆, Θ).

Examples of generalized pseudostandard words include: episturmian
words (they are obtained by the palindromic closure, thus Θ = Rω),
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the Thue–Morse word [4], standard Rote words [2], and a subclass of
generalized Thue–Morse words [6].

In contrast to the palindromic and pseudopalindromic closure, the
sequence of prefixes wn does not have to contain all ϑ-palindromic prefixes
of u(∆, Θ), where ϑ is an involutory antimorphism over A. However, if
it is the case, we say that the directive bi-sequence is normalized. In [2],
the authors provide an algorithm over binary alphabet for normalization
of any directive bi-sequence in such a way that the obtained generalized
pseudostandard word remains unchanged.

2.2 Theorem. Let Λ = (∆, Θ) be a directive bi-sequence, where ∆ is a sequence
over {0, 1} and Θ is a sequence over {E, R}. Then there exists a normalized
directive bi-sequence Λ̃ = (∆̃, Θ̃) such that u(∆, Θ) = u(∆̃, Θ̃).

Moreover, in order to normalize the sequence Λ, it suffices firstly to execute
the following changes of its prefix (if it is of the corresponding form):

Ź (aā, RR)Ñ (aāa, RER),

Ź (ai, Ri´1E)Ñ (ai ā, RiE) for i ě 1,

Ź (ai āā, RiEE)Ñ (ai āāa, RiERE) for i ě 1,

and secondly to replace step by step from left to right every factor of the form:

Ź (abb̄, ϑϑϑ)Ñ (abb̄b, ϑϑϑϑ),

where a, b P {0, 1} and ϑ P {E, R}.

3 Periodicity of generalized pseudostandard
words over ternary alphabet

Let us first recall a sufficient and necessary condition for periodicity of
binary generalized pseudostandard words. Let us underline that such
words are either purely periodic or aperiodic since they are recurrent (their
language is closed under R or E which guarantees that every factor occurs
at least twice).
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3.1 Theorem ([1]). Let Λ = (∆, Θ) be a directive bi-sequence of a binary
generalized pseudostandard word, where ∆ is a sequence over {0, 1} and Θ is
a sequence over {E, R}. The generalized pseudostandard word u(∆, Θ) is periodic
if and only if the following condition is satisfied:

(Dϑ P {E, R})(Dn0 P N)(@n ą n0)(δn+1 = 0 ô ϑn = ϑ) , (3.2)

where ∆ = δ1δ2 . . . and Θ = ϑ1ϑ2 . . .

Let us remark that using Theorem 2.2, it is not difficult to find the
normalized version of the directive bi-sequence satisfying (3.2) of a binary
generalized pseudostandard word:

1. If the sequence Θ contains both E and R infinitely many times, then the
normalized directive bi-sequence is of the form

(∆̃, Θ̃) = (v(aa)ω, σ(RE)ω)

for some v P {0, 1}˚, σ P {E, R}˚, |v| = |σ| and a P {0, 1}.

2. If the sequence Θ contains only one antimorphism ϑ infinitely many
times, then the normalized directive bi-sequence is also of the form

(∆̃, Θ̃) = (vaω, σϑω)

for some v P {0, 1}˚, σ P {E, R}˚, |v| = |σ| and a P {0, 1}.

3.3 Example. Let us show an example of a periodic binary generalized
pseudostandard word. Assume Λ = ((011)ω , (EER)ω). The condition (3.2)
is met since E is always followed by 1 and R by 0. Let us write down the
first few prefixes wn:

w1 = 01
w2 = 011001
w3 = 01100110
w4 = 0110011001.

It can be easily verified by the reader that u((011)ω, (EER)ω) = (0110)ω.

For ternary generalized pseudostandard words, straightforward anal-
ogy of (3.2) does not work.
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3.4 Example. Consider the ternary infinite word u = u((01)ω, (RE1)
ω). It

is easy to show that any prefix p of u is left special – both 1p and 2p are
factors of u, thus u is an aperiodic word.

The condition for periodicity gets more complicated.

3.5 Theorem. Let u = u(∆, Θ) be a ternary generalized pseudostandard word
over {0, 1, 2}. Then u is periodic if and only if one of the following conditions is
met:

1. The sequences ∆ and Θ are eventually constant, i.e., ∆ = vaω for some
v P {0, 1, 2}˚ and a P {0, 1, 2} and Θ = σϑω for some σ P {E0, E1, E2, R}˚
and ϑ P {E0, E1, E2, R}, |v| = |σ|.

2. Ź Θ contains exactly two antimorphisms ϑ P {E0, E1, E2} and R infinitely
many times;

Ź ∆ contains two (not necessarily distinct) letters a and b infinitely many
times such that ϑ(a) = b;

Ź there exists n0 P N such that for every n ą n0 we have either

ϑn = ϑ ñ δn+1 = a ^ ϑn = R ñ δn+1 = b,

or
ϑn = ϑ ñ δn+1 = b ^ ϑn = R ñ δn+1 = a.

3. The normalized directive bi-sequence (∆̃, Θ̃) of u satisfies:

(∆̃, Θ̃) = (v(ijk)ω, σ(EkEjEi)
ω),

where v P {0, 1, 2}˚, σ P {E0, E1, E2, R}˚, |v| = |σ|, and i, j, k P {0, 1, 2}
are mutually different letters.

3.6 Example. Consider Λ = (0(211)ω, (RE0E0)
ω). Since E0(1) = 2, the

second condition of Theorem 3.5 is satisfied. Let us write down the first
few prefixes wn of u:

w1 = 0
w2 = 0210
w3 = 0210120210
w4 = 0210120210120.

It is left for the reader to show that u = (021012)ω.
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3.7 Example. Consider Λ = ((102)ω, (E2E0E1)
ω). The third condition of

Theorem 3.5 is satisfied. Let us write down the first few prefixes wn of u:

w1 = 10

w2 = 1002

w3 = 100221

w4 = 10022110

w5 = 1002211002.

(3.8)

It is not difficult to see that u = (100221)ω.

We omit the complete proof of Theorem 3.5 here for it is long and
technical (we will publish it in a short time on arXiv under the same
title: Periodicity of Generalized Pseudostandard Words). However, we will
at least provide some basic ideas. Let us underline that in the proof of
the binary case, we made use of the fact that a normalization algorithm
was provided in Theorem 2.2. Over ternary alphabet, it is still clear that
every directive bi-sequence may be normalized, however the algorithm
for normalization similar to the one over binary alphabet (Theorem 2.2)
has not been found yet. Consequently, we provide in the sequel some
partial results on normalization over ternary alphabet that are interesting
themselves and that are moreover essential in the proof of Theorem 3.5.

3.1 Normalization of directive bi-sequences over ternary
alphabet

In order to prove a sufficient and necessary condition for periodicity of
ternary generalized pseudostandard words, even some partial results on
normalization over ternary alphabet suffice. These results are needed in
both elimination of some aperiodic cases and determining the period of
periodic cases listed in Theorem 3.5. Let us introduce these partial results.

3.1.1 Directive bi-sequences with antimorphisms R and Ei

Let us start with bi-sequences that contain infinitely many times exactly
two distinct antimorphisms including R.
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3.9 Lemma. Let the directive bi-sequence (∆, Θ) of a ternary generalized pseu-
dostandard word u contain as its factor (abc, ϑRR), resp., (abc, Rϑϑ), where
ϑ P {E0, E1, E2} and a, b, c P {0, 1, 2} satisfy ϑ(b) = c. Denote wn = ϑ(wn),
wn+1 = R(wn+1) and wn+2 = R(wn+2), resp., wn = R(wn), wn+1 =
ϑ(wn+1) and wn+2 = ϑ(wn+2) the corresponding pseudopalindromic prefixes of
u. Then between wn+1 and wn+2 there is a ϑ-palindromic, resp., R-palindromic
prefix w of u followed by the letter b.

3.10 Corollary. Under the assumptions of Lemma 3.9 we have:
If the factor (abc, ϑRR), resp., (abc, Rϑϑ) of the directive bi-sequence (∆, Θ) of
the word u is replaced with the factor (abcb, ϑRϑR), resp., (abcb, RϑRϑ), the
same generalized pseudostandard word is obtained.

3.11 Example. Let us illustrate Lemma 3.9 and Corollary 3.10. Assume we
have already constructed the prefix wk = 012 of a generalized pseudostan-
dard word. Suppose further that the factor (120, E1RR) of the directive
bi-sequence follows. It is readily seen that the assumptions of Lemma 3.9
are met (in particular we have E1(2) = 0). Let us write down the prefixes
wk+1, wk+2 and wk+3.

wk+1 = 0121012,

wk+2 = 01210122101210,

wk+3 = 0121012210121001210122101210.

It is evident that between the prefixes wk+2 and wk+3, there is the E1-
palindrome 012101221012100121012,

followed by 2. Corollary 3.10 moreover states that the generalized pseudo-
standard word remains the same if we replace the factor (120, E1RR) of
the directive bi-sequence with the factor (1202, E1RE1R) – the reader can
check it easily.

3.12 Corollary. Let the directive bi-sequence Λ = (∆, Θ) of a ternary generalized
pseudostandard word u satisfy: The sequence Θ = ϑ1ϑ2 . . . contains infinitely
many times exactly two distinct antimorphisms ϑ and R. The sequence ∆ =
δ1δ2 . . . contains infinitely many times two (not necessarily distinct) letters a, b
such that ϑ(a) = b. Let further the bi-sequence Λ satisfy: There exists n0 P N
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such that for all n ą n0 we have either

ϑn = ϑ ñ δn+1 = a and ϑn = R ñ δn+1 = b , (3.13)

or
ϑn = ϑ ñ δn+1 = b and ϑn = R ñ δn+1 = a . (3.14)

Then there exists a directive bi-sequence Λ̃ = (v(ab)ω, σ(Rϑ)ω), where v P
{0, 1, 2}˚, σ P {E0, E1, E2, R}˚ such that u(Λ) = u(Λ̃).

At this moment, we know that if a directive bi-sequence satisfies the
assumptions of Lemma 3.9, it is not normalized. The remaining question
is whether the new bi-sequence whose existence is guaranteed by Corol-
lary 3.12 is normalized (at least from a certain moment on). A partial
answer to this question provides the following lemma.

3.15 Lemma. Let the directive bi-sequence Λ = (δ1δ2 . . . , ϑ1ϑ2 . . .) of a gen-
eralized pseudostandard word u be of the form Λ = (v(ab)ω, σ(Rϑ)ω), where
v P {0, 1, 2}˚, σ P {E0, E1, E2, R}˚, and |v| = |σ|, ϑ P {E0, E1, E2} and
a, b P {0, 1, 2} such that ϑ(a) = b. Then for all n ą n0 = |v| the sequence
(wn)nąn0 contains all ϑ-, resp., R-palindromic prefixes of length larger than |wn0 |
of the word u followed by the letter a, resp., b.

3.1.2 Directive bi-sequences with antimorphisms Ei and Ej

Let us now treat directive bi-sequences that contain infinitely many times
exactly two antimorphisms Ei, Ej with i, j P {0, 1, 2}. An essential difference
between such antimorphisms and those ones studied previously is that
REi = EiR for all i P {0, 1, 2}, but EiEj is distinct from EjEi for i = j.

3.16 Remark. For i, j, k P {0, 1, 2} mutually different, we have EiEjEk = Ej.

3.17 Corollary. Let for some i P {0, 1, 2} and v P {0, 1, 2}˚ hold v = Ei(v). Let
further j, k P {0, 1, 2} be such that i, j, k are mutually different. It holds then that
Ej(v) = EkEj(v), i.e., Ej(v) is an Ek-palindrome.

3.18 Lemma. Let the directive bi-sequence (∆, Θ) of a ternary generalized pseu-
dostandard word u contain the factor (kj, EiEj), where i, j, k P {0, 1, 2} and i ‰ j.
Denote wn = Ei(wn), wn+1 = Ej(wn+1) the corresponding pseudopalindromic
prefixes of u. Then no Ei-palindromic prefix of u followed by the letter j is skipped
between the pseudopalindromic prefixes wn and wn+1.
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3.19 Lemma. Let the directive bi-sequence (∆, Θ) of a ternary generalized pseu-
dostandard word u contain the factor (kij, EjEiEj), where i, j, k P {0, 1, 2} and
i = j. Denote wn = Ej(wn), wn+1 = Ei(wn+1) and wn+2 = Ej(wn+2) the cor-
responding pseudopalindromic prefixes of u. Then either between the pseudopalin-
dromes wn and wn+1, or between wn+1 and wn+2 there is an El-palindromic
prefix w of u followed by l, where l is distinct from both i and j.

3.20 Example. Let us illustrate Lemma 3.19. Assume we have already
constructed the prefix wk = 012 of a generalized pseudostandard word.
Suppose further that the factor (110, E0E1E0) of the directive bi-sequence
follows. It is readily seen that the assumptions of Lemma 3.19 are met. Let
us write down the prefixes wk+1, wk+2 and wk+3.

wk+1 = 012120,

wk+2 = 0121201012,

wk+3 = 012120101202012120.

It is evident that between the prefixes wk+2 and wk+3, there is the E2-
palindrome 01212010120201 followed by 2.

4 Open problems

We have provided a necessary and sufficient condition for periodicity of
generalized pseudostandard words over ternary alphabet. This condition
concerns the directive bi-sequence and in one case the normalized directive
bi-sequence of the corresponding generalized pseudostandard word. The
problem is that we only know that the normalized form of every directive
bi-sequence exists, but in contrast to binary alphabet, we have no algorithm
for producing the normalized directive bi-sequence from a given directive
bi-sequence over ternary alphabet. Therefore, it is desirable to find such
a normalizing algorithm over ternary or even any alphabet. Section 3.1
may serve as a hint in such an effort.

Observing results for binary and ternary alphabet, we have the follow-
ing conjecture for multiliteral alphabet.

4.1 Conjecture (Periodicity of generalized pseudostandard words). Let
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u(∆, Θ) be a d-ary generalized pseudostandard word. Then u is periodic if and
only if the following conditions are met:

1. The normalized directive bi-sequence is of the form

(∆̃, Θ̃) = (vδ1δ2δ3 . . . , σϑ1ϑ2ϑ3 . . .),

where |v| = |σ| and ϑi(δi+1) = ϑj(δj+1) for all i, j P N.

2. For all i P N, if w is a ϑi-palindrome, then ϑi+1(w) is a ϑi+2-palindrome.

In order to explain that this conjecture is in correspondence with
results over binary and ternary alphabet, let us write down the statements
for periodicity over binary and ternary alphabet using the normalized
directive bi-sequence. Considering remarks following Theorem 3.1, we
have the next corollary.

4.2 Corollary. Let (∆̃, Θ̃) be the normalized directive bi-sequence of a binary
generalized pseudostandard word u = u(∆̃, Θ̃). Then u is periodic if and only if
one of the following conditions is met:

1. (∆̃, Θ̃) = (vaω, σϑω) for some v P {0, 1}˚, σ P {E, R}˚, |v| = |σ|, a P
{0, 1}.

2. (∆̃, Θ̃) = (v(aa)ω, σ(RE)ω) for some v P {0, 1}˚, σ P {E, R}˚, |v| = |σ|,
and a P {0, 1}.

Using Theorem 3.5, Lemma 3.9 and Corollary 3.12, we get the following
corollary.

4.3 Corollary. Let (∆̃, Θ̃) be the normalized directive bi-sequence of a ternary
generalized pseudostandard word u = u(∆̃, Θ̃). Then u is periodic if and only if
one of the following conditions is met:

1. (∆̃, Θ̃) = (vaω , σϑω) for some v P {0, 1, 2}˚, σ P {E0, E1, E2, R}˚, |v| = |σ|,
ϑ P {E0, E1, E2, R} and a P {0, 1, 2}.

2. (∆̃, Θ̃) = (v(ab)ω, σ(REi)
ω) for some v P {0, 1, 2}˚, σ P {E0, E1, E2, R}˚,

|v| = |σ|, i P {0, 1, 2} and a, b P {0, 1, 2}.

3. (∆̃, Θ̃) = (v(ijk)ω, σ(EkEjEi)
ω), where v P {0, 1, 2}˚, σ P {E0, E1, E2, R}˚,

|v| = |σ| and i, j, k P {0, 1, 2} are mutually different letters.
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Abstract

We introduce the notion of de Bruijn entropy of an Eulerian quiver
and show how the corresponding relative entropy can be applied to
practical string similarity problems. This approach explicitly links
the combinatorial and information-theoretical properties of words
and its performance is superior to edit distances in many respects
and competitive in most others. The computational complexity of our
current implementation is parametrically tunable between linear and
cubic, and we outline how an optimized linear algebra subroutine
can reduce the cubic complexity to approximately linear. A realistic
application to molecular phylogenetics is provided.



1 Introduction

String similarity is a fundamental problem touching on computer science,
bioinformatics, machine learning, and many other areas [19]. Most fast ap-
proaches to string similarity (e.g., bag-of-words or string kernel methods)
are heuristic, whereas most theoretically grounded approaches to string
similarity (e.g., Kolmogorov complexity methods) are slow. In this paper,
we discuss a technique that bridges the gap, offering performance that
can be tuned between linear and (in a sufficiently optimized implemen-
tation) subquadratic time while offering a clear interpretation in terms
of combinatorial and information-theoretical primitives. Our technique is
particularly well suited for comparing words based on their local struc-
ture and is agnostic to global structure, which is particularly interesting
for comparing words encoding paths through digraphs with cycles (e.g.,
control flow graphs of computer programs) or for streaming data.

The paper is structured as follows. We begin by establishing notation
and graph constructions in Section 2 before discussing basic combina-
torial properties in Section 3 and our ultimate information-theoretical
considerations in Section 4. Finally, we outline an application to molec-
ular phylogenetics as an example where an approximate “ground truth”
furnishes a basis for evaluating the performance of our approach and its
comparison with conventional techniques.

2 Preliminaries

We begin with some preliminaries to establish basic definitions and no-
tation. Let n ă 8 and consider a finite set A := {a1, . . . , an} which we
call an alphabet. A word or string over A of length ` is an element of
A`; a symbol is a word of length 1. The word w = (w1, . . . , w`) will typi-
cally be written as w = w1 . . . w`. With a slight abuse of notation, we write
`(w) = `. The concatenation of two words w = w1 . . . w` and w1 = w11 . . . w1̀ 1
is ww1 := w1 . . . w`w11 . . . w1̀ 1 .

A cyclic word or necklace [23] of length ` is the set of cyclic shifts
of a word. We shall engage in a minor abuse of notation by letting w
denote either a word or a cyclic word depending on context. If w is cyclic,
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wj := w((j´1) mod `)+1.
Recall that a quiver (also known as a multidigraph, directed multigraph,

etc.) Q is an ordered pair (V(Q), E(Q)) ” (V, E) s.t. E is a multiset over
V ˆV [4]. The adjacency matrix A(Q) of Q is defined so that if there are
a edges from vj to vk, then A(Q)jk := a. It is clear that a quiver may be
reconstructed from its adjacency matrix and vice versa, so that we may
write f (Q) ” f (A) for a generic function f without any ambiguity so
long as either side is defined. Furthermore, we may make the implicit
identifications vj ” j and Q ” A(Q) for convenience.

For w cyclic and k ă `(w), the order k de Bruijn quiver 1 Qk(w) is given by

Ź V(Qk(w)) := Ak;

Ź E(Qk(w)) := {(w1+j . . . wk+j, w2+j . . . wk+1+j) : 0 ď j ă `}.

That is, the edges of Qk(w) correspond to the subwords of length (k + 1)
(a/k/a (k + 1)-grams) of w, with multiplicities counted. Figure 1 shows an
example.

A

AG@3
��

AT@1

��

C

CA@6
yy

A

AG@1
��

AT@4

��

C

CA@6
yy

G

GT@4

99 TTA@2

XX

TC@5

]]

G

GT@2

99 TTA@3

XX

TC@5

]]

Figure 1. The cyclic words ATAGTC (L) and AGTATC (R) have identical or-
der 1 de Bruijn quivers and (equivalently) the same 2-grams over the alphabet
{A, C, G, T}. The quiver edges are annotated with wjwj+1@j and colored accord-
ing to j. Removing the dashed edges yields quivers for non-cyclic words in the
obvious way.

1 NB. Similar constructions (usually digraphs rather than quivers) appear throughout the
literature: see e.g., [16] for a recent example.
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Remarks.

Ź The order 0 de Bruijn quiver of a word w has one vertex corresponding
to the empty word and edges corresponding to each symbol in w, with
multiplicity.

Ź If w is a n-ary de Bruijn sequence of length nk, then Qk´1(w) is the
n-ary de Bruijn graph with nk edges.

Ź Qk(w) is Eulerian (i.e., [strongly] connected and with indegrees equal
to outdegrees, so that we may unambiguously write deg(v) for either
quantity at vertex v) iff w contains every possible k-gram (otherwise,
there are isolated vertices, but we may elide this technicality without
comment at times). An Euler circuit on Qk(w) corresponds to a Hamil-
tonian path on Qk+1(w). These properties are why we deal with cyclic
words.

3 Combinatorics

This section is an application of the so-called transfer matrix method [23].
Write w „k w1 iff Qk(w) = Qk(w1). It is clear that „k is an equivalence

relation; denote the corresponding equivalence class of w by [w]k. Let
Wk(w) := |[w]k| denote the number of cyclic words with the same order
k de Bruijn quiver as w. In order to compute Wk(w) it is convenient to
consider the adjacency matrix Ak(w) ” A(Qk(w)).

If A is a square matrix, write d(A) for the vector with components
given by the diagonal entries of A; similarly, write d(x) for the diagonal
matrix with diagonal entries given by the components of x. Note that
since d(d(x)) = x this is hardly an abuse of notation. If now 1 denotes a
vector of ones, then L(A) := d(A1)´ A is the Laplacian of A. We recall
two classical theorems:

Matrix-tree theorem. Let Q be a quiver. The diagonal cofactors of
L(A(Q)) are all equal to each other and to the number t(Q) of directed
spanning trees of Q oriented towards any fixed vertex. �
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BEST theorem. The number of Euler circuits of an Eulerian quiver Q
is c(Q) = t(Q) ¨ ∏

vPV(Q)

(deg(v)´ 1)!. � (3.1)

These readily yield the following

Corollary. [10, 8] Let A := Ak(w) correspond to an Eulerian de Bruijn
quiver. Then

Wk(w) = W(A) := ∑
d|gcd(A)

φ(d) ¨ c(A/d)
d ¨ (A/d)!

. � (3.2)

Here φ(¨) is the totient function, the gcd is defined elementwise and
M! := ∏i,j Mij!. The d = 1 term dominates, giving the simple and effective
approximation W(A) « c(A)/A!. We note that if Q is an Eulerian (not
necessarily de Bruijn) quiver with adjacency matrix A, then we may still
write W(A) or W(Q) for the RHS of (3.2). However, it is not necessary to
directly interpret W in this more abstract context, since any finite Eulerian
quiver can be embedded in some de Bruijn quiver.

Sketch of proof. The formula is obvious when gcd(A) = 1, as in
this case every cyclic word in [w]k corresponds to A! Euler circuits. More
generally, for d|m|gcd(A), the term φ(d)¨c(A/d)

d¨(A/d)! counts the cyclic words in

[w]k of period `/m with multiplicity φ(d)
d ¨ 1

m/d = φ(d)
m . Since 1

m ∑d|m φ(d) =
1, the result follows. �

3.1 Example

Consider A = {0, 1}, k = 1, and fix `. If g P {00, 01, 10, 11}, let xg(w)
be the number of times that g occurs in w. Because w is cyclic, we must
have x01 = x10 = (` ´ x00 ´ x11)/2 =: x˚, and A1(w) =

( x00 x˚
x˚ x11

)
. 2

We have that L(A1(w)) = x˚
(

1 ´1
´1 1

)
, so t(Q1(w)) = x˚. Furthermore,

deg(0) = x00 + x˚ and deg(1) = x˚ + x11, so c(Q1(w)) = x˚ ¨ (x00 +

2 The degenerate case x˚ = 0 corresponds to the words 0` and 1`, and must be treated
separately.
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x˚ ´ 1)! ¨ (x˚ + x11 ´ 1)!. It follows after a line or two of algebra that
W1(w) ” W1(x00, x˚; `) equals

x˚
(x00 + x˚)(x˚ + x11)

¨ ∑
d|gcd(x00,x11,x˚)

φ(d) ¨
(
(x00 + x˚)/d

x˚/d

)(
(x˚ + x11)/d

x˚/d

)
.

Explicitly, for ` = 16, we have the following table of values (zeros
omitted):

x00

x˚

W1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 7 12 17 20 23 24 25 24 23 20 17 12 7
3 22 55 90 120 140 147 140 120 90 55 22
4 43 120 212 280 309 280 212 120 43
5 42 126 210 245 210 126 42
6 22 56 75 56 22
7 4 7 4
8 1

Summing over the table shows that there are 4116 distinct cyclic binary
words of length 16, which can be confirmed via the Cauchy-Frobenius
lemma.

Figure 2 shows results in the same vein for ` = 256. It is evident that W1
behaves very much like a Gaussian, with the only significant qualitative
difference resulting from the triangular domain. Similar results hold for
more general contexts, and this fact might enable analytical estimates for
W(A). �

4 Information theory

4.1 De Bruijn entropy

Definition. The order k de Bruijn entropy of a cyclic word w is Hk(w) :=
log Wk(w).

As in Section 3, we may also consider the entropy of an Eulerian quiver
Q or of its adjacency matrix A, written respectively H(Q) and H(A).
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Figure 2. (L) Contour plot of H1 := log2 W1 for ` = 256. Inset: plot of H1 values
intermittently sampled along the dotted line. Samples along horizontal lines behave
similarly. (R) Black countours: plot of H1 after the horizontal transformation x00 ÞÑ
(1 + x˚

`/2´x˚ ) ¨ x00. Red contours: naive quadratic fit. Inset: plot of transformed
H1 values intermittently sampled along the line x˚ = `/4. Note that the naive
quadratic fit is a slight overestimate at the peak.

Typically the logarithm will be taken with base |A| unless otherwise
indicated.

This definition evokes Boltzmann’s physical interpretation of entropy
as the logarithm of the number of microscopic configurations of a system
that are consistent with the system’s macroscopic characterization. Here,
the “macroscopic characterization” of w is just Qk(w), and “microscopic
configurations” are just members of [w]k. Another perspective realizes this
definition as an analogue for finite words of the capacity of the discrete
noiseless channel à la Shannon [20], or equivalently of the topological
entropy of a subshift of finite type [11].

4.1.1 Compression arguments

Consider A = {0, 1} and k = 1 as in Section 3.1. In order to fully specify a
cyclic binary word w of length `, it suffices to specify both

Ź A1(w), which requires a total of 2dlog2 `e´ 1 bits (because it requires
dlog2 `e bits to specify x00 and dlog2 `e´ 1 bits to specify x˚);

Ź The appropriate element of [w]1, which requires at most dH1(w)e /

35



`´ log2 ` bits (because there are roughly `´12` cyclic binary words of
length `).

In particular, if H1(w) ă `´ 2 log2 `+ 1, then we have the outline of a
scheme for losslessly compressing w (the generalizations to both k ą 1
and the nonbinary case n ą 2 are not fundamentally different). Note that
while most words are too statistically uniform (or more precisely, the
adjacency matrices of their de Bruijn quivers have elements that are too
similar) to be compressed in this way, in practice one is rarely interested in
compressing statistically uniform data. Indeed, we recall that a standard
diagonal argument shows that any fixed compression scheme will fail to
compress most data [14].

The perspective of algorithmic information theory hinted at here will
directly motivate the definition of relative de Bruijn entropy in Section 4.2.

4.1.2 Maximally informative values of k

Although the paper [21] leverages the empirical probability distribution
of k-tuples rather than the more detailed notion of de Bruijn quivers, it
nevertheless gives strong experimental evidence that the natural heuristic
k = blogn `c is a good approximation for the lower limit of a reasonably
narrow range of maximally informative values of k in practice. While
this paper also discusses upper limits on this range, these depend on the
particular word and are of less practical interest for the obvious reason
that increasing k requires more storage.

4.1.3 Remarks on computational complexity

A detailed analysis of the complexity of computing the de Bruijn entropy
is likely to be both more intricate and less informative than an experimen-
tal one, owing to the complex relationship between the local statistical
behavior of words and their corresponding quiver connectivity structure
as a function of k (this is particularly true for the relative de Bruijn entropy,
for which see below). However, we note that the dominant contribution to
runtime is a matrix determinant (note that forming the adjacency matrices
of quivers of words can be done in linear time), and we briefly discuss its
complexity here.
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Let ω denote the exponent for the complexity of matrix multiplica-
tion (say, 3 or perhaps 2.808 in practice, or 2.373 in theory [24]). Now
O((nk)ω) = O(`) ðñ k = ω´1 logn `+ O(1) determines k s.t. comput-
ing the de Bruijn entropy requires linear time with standard techniques
of linear algebra (e.g., computing the determinant via LU or QR decom-
position as in our current implementation). Meanwhile, as pointed out in
Section 4.1.2, a reasonable rule of thumb for the maximally informative
value of k is blogn `c.

These two observations can be combined by thinking of k as a scale
below which where we have complete information about the structure of
words and of `1/ω as a scale above which negligible information suitable
for comparisons between words is discernable in linear time using standard
techniques of linear algebra. That is, the computation of a de Bruijn entropy
can be forced to run in linear time by choosing k = bω´1 logn `c (or, for that
matter, k = O(1)), with the consequence that this amounts to neglecting
not only correlations at scales greater than k (as usual), but also the ability
to capture statistical fluctuations of any sort at scales beyond `1/ω . Insisting
on k = blogn `c means in practical terms that our technique requires cubic
time in the implementation used here.

However, it is possible to do better, though for the sake of keeping this
paper reasonably circumscribed we will confine ourselves here to a brief
discussion. The reader will probably have noticed the phrase “standard
techniques of linear algebra” repeated above, and considered the associated
references to matrix decompositions for computing a determinant in (what
is in practice) cubic time. In fact the determinant can be evaluated in less
than O((nk)ω) time: it can be done in O((nk)2) or even O((nk) log2(nk))
time using so-called black box linear algebra [25, 27]. The key here is that a
diagonal minor L̂ of the Laplacian has a predetermined sparse structure, so
that the oracle x ÞÑ L̂x can be realized in subquadratic time. This faciliates
the computation of the characteristic polynomial of L̂ using so-called
superfast Toeplitz solvers in O((nk) log2(nk)) time [3, 1], from which the
determinant follows trivially. 3

3 The notorious instability of superfast Toeplitz solvers for asymmetric matrices [6] is
probably not a critical concern in the present context since the Laplacian matrix has integer
entries; in any event, recently developed superfast solvers (see, e.g., [28]) have also addressed
this problem.
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Thus although our current implementation essentially has cubic time
complexity for maximally informative values of k, it can already be re-
garded as having linear complexity for k independent of `, and a suffi-
ciently optimized linear algebra subroutine would yield complexity that
is just the product of a linear and a polylogarithmic term in the general
regime of interest, rendering it competitive with bag-of-words or ker-
nel methods [19] that have linear complexity but weaker or more ad hoc
theoretical justification.

4.2 Entropy of componentwise Eulerian quivers and rela-
tive de Bruijn entropy

Write
A� A1 := (A´ A1)_ 0 + (A1 ´ A)T _ 0, (4.1)

where the maxima are taken elementwise. It is easy to see that if A
and A1 both correspond to componentwise Eulerian quivers (i.e., the in- and
outdegrees coincide, but some are zero, so that the quiver is not connected),
then so does A� A1. Indeed, this is the adjacency matrix of the quiver
that naturally corresponds to A´ A1 after reversing edges with negative
matrix entries. 4

With this in mind, let A(j) be adjacency matrices respectively corre-
sponding to Eulerian quivers Q(j), so that Q :=

⋃
j Q(j) is a componentwise

Eulerian quiver with corresponding adjacency matrix A. Define

W(A) := ∏
j

W(A(j)) (4.2)

and
H(A) := log W(A) = ∑

j
H(A(j)). (4.3)

To avoid degeneracies, we define W(a) ” 1 and H(a) ” 0, where here

4 Similarly, define A� A1 := A� A1T . If A and A1 both correspond to Eulerian (resp.,
componentwise Eulerian) quivers, then so does A� A1. The operations � and � therefore
induce an abelian semigroup structure on the set of (possibly degenerate) Eulerian quivers
and an abelian group structure on the set of (possibly degenerate) componentwise Eulerian
quivers.
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a is the 1ˆ 1 adjacency matrix corresponding to the quiver Γa with a
single vertex and a ě 0 edges (i.e., loops). This definition extends the prior
one from Eulerian quivers to componentwise Eulerian quivers. Note that
H(A) = H(AT) and (A� A1)T = A1� A, so that H(A� A1) = H(A1� A).

Suppose now that we have two cyclic words w and w1 over A. Given
w and therefore also Ak(w), all that is needed to determine Ak(w1) is the
difference Ak(w1)´ Ak(w), or equivalently the two nonnegative matrices

Ak(w|w1) := [Ak(w)´ Ak(w1)]_ 0; (4.4)

Ak(w1|w) := [Ak(w1)´ Ak(w)]_ 0. (4.5)

In order to completely specify w1 given w, it therefore suffices to specify
Ak(w|w1), Ak(w1|w), and a number of roughly Hk(w1) bits. It is clear that
Hk+1(w1) ď Hk(w1). If w1 is far from statistically uniform, then there will be
some critical value k ăă `(w1) s.t. Hk(w1) = 0 (note that H`(w1)´1(w1) ” 0).
At this point all the information in w1 that is not latent in w is encoded
in the matrices Ak(w|w1) and Ak(w1|w). In other words, the conditional
Kolmogorov complexity K(w1|w) as well as the information distance [2, 13]
can be approximated by a function of these matrices. 5

This motivates the following

Definition. The order k relative de Bruijn entropy of w1 given w is

Hk(w1||w) := H(Ak(w, w1)),

where Ak(w, w1) := Ak(w)� Ak(w1) = Ak(w|w1) + AT
k (w

1|w). More gen-
erally, the relative entropy of A1 given A is defined as

H(A1||A) := H(A1 � A).

Note that (unlike the Kullback-Leiber incarnation of relative entropy for
probability distributions) the relative entropy of componentwise Eulerian
quivers is symmetric. Our experiments have shown that it is however not a

5 We note in passing that the problem of comparing two words of vastly different length
is sometimes of interest, and strategies such as those discussed in [21] may be appropriate in
certain (but certainly not all) contexts.
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pseudometric: i.e., it does not satisfy the triangle inequality. Nevertheless,
it is straightforward to use the relative entropy to derive a pseudometric
on a fixed set of words using the results of [5].

4.2.1 Example

For 1 ă m P N, let w := 0m`1m` and w1 := (0`1`)m. For k ă `, a straightfor-
ward (if somewhat tedious) calculation shows that Hk(w||w1) . m log mk,
whereas the (Levenshtein) edit distance between w and w1 is 2bm/2c`.
That is, for k and m fixed we have that Hk(w||w1) = O(1), whereas the
corresponding edit distance is O(`). �

5 Application to molecular phylogenetics

Molecular phylogenetics–i.e., the analysis of evolutionary relationships
based on hereditary molecular characteristics–and biological classification
of organisms typically focus on comparing DNA sequences [7]. A partic-
ularly convenient form of DNA for this purposes is mitochondrial DNA
(mtDNA). mtDNA is an extremely economical repository of information
in that nearly every base pair in human mtDNA is known to code for
some protein or RNA product, and there is even overlap between coding
regions; meanwhile mammalian mtDNA sequences are only on the order
of 20k base pairs. Moreover, mtDNA is not highly conserved and mutates
rapidly.

In figure 3 below we show that relative de Bruijn entropy produces
results comparable if not superior to an edit distance (cf. figure 4) for
constructing phylogenetic trees that easily capture most of the evolutionary
relationships among primates (cf. figure 2 of [17]) from mtDNA sequences
alone. Furthermore, the comparative performance of the relative entropy
is likely to improve in other problem domains (e.g., dynamic analysis of
computer programs) that can actually leverage the fact that the relative
entropy captures local correlations while ignoring global correlations.

It is worth noting that the technique outlined here is alignment-free [7],
and a suitable implementation optimized for speed (which our current
implementation is not, cf. Section 4.1.3) is a promising candidate tool
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for bioinformatics. In particular, it is an attractive alternative to current
techniques such as those in [15, 26, 21, 22, 9] and the older but perhaps
conceptually closer approach of [12]. We note also that de Bruijn quivers
have been considered in the context of multiple alignment [18, 29, 30].
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Figure 3. Automatically generated phylogenetic tree using average linkage for k =
7 relative de Bruijn entropy (unnormalized). Mismatches w/r/t the tree in figure
2 of [17] appear for the suborders Haplorrhini and Strepsirrhini, for the families
Cebidae and Lorisidae, and for the subfamily Callitrichinae. Note that Lorisiformes
here should be labeled as Galagidae, but this merely reflects an ambiguity in the
input data annotation. Not explicitly shown, but also matched, are the tribes
Cercopithecini, Colobini, Papionini, and Presbytini, the subfamilies Homininae and
Lorisnae, the superfamily Hominoidea, and the infraorders Lorisformes (cf. previous
comment) and Simiformes.
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Figure 4. Average linkage for (Levenshtein) edit distance (unnormalized). Note
that while the edit distance results match Strepsirrhini and Lorisidae, they fail to
match the more fine-grained taxa Macaca and Homindae, the latter of which is
particularly important to members of, e.g., Homo sapiens. (NB. Cercopithecinae and
Cercopithecidae are ambiguously labeled here and in figure 3 due to the input data
annotation and as such are not remarked on for comparative evaluation.)
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Abstract

We prove that if u is a k-ary Arnoux–Rauzy word and π a non-
trivial letter-to-letter homomorphism, then the word π(u) has its
factor complexity equal to (k ´ 1)n + q for all sufficiently large n and
some integer q.



1 Introduction

In combinatorics on words, the factor complexity Cu(n) of an infinite word
u is an important property. It can be seen as a measure of disorder as it
counts the number of distinct factors of length n of u. The famous Sturmian
words can be characterized by their factor complexity: they are infinite
aperiodic words with the least factor complexity possible Cu(n) = n + 1.
This class is extensively studied, see for instance [14] for an overview.

The study of factor complexity is usually limited to some specific
classes of words. An important class of infinite words is formed by purely
morphic words, i.e., words that are fixed points of a morphism which is
prolongable on the first letter of the infinite word. For a purely morphic
word, due to [15], general asymptotic behaviour of its factor complex-
ity is known. General techniques to determine its factor complexity are
also known, see [6, 7], and for a specific class of morphisms, techniques
described in [13] can be used to calculate factor complexity more efficiently.

A word is morphic if it is an image under a morphism of a purely
morphic word. A theorem of Cobham [8] says that a word u is morphic if
and only if it can be written as τ(σω(a)) where a P A, σ is a non-erasing
endomorphism of A˚ and τ : A˚ Ñ B˚ is a letter-to-letter morphism.
Thus, when studying morphic images of purely morphic words, we can
restrict ourselves to letter-to-letter morphisms.

A further generalization of the notion of morphic word is an S-adic
word. Let (Ai) be a sequence of alphabets and σi : Ai̊+1 Ñ Ai̊ a sequence
of morphisms. If the limit

u = lim
iÑ+8 σ0σ1 ¨ ¨ ¨ σi´1(ai),

where ai P Ai, exists, then u admits an S-adic representation and its S-
adic expansion is the sequence ((σi, ai))iPN. A purely morphic word has
a periodic S-adic expansion. For more general information about this
concept, see [3, 7, 9] where one can find also results on factor complexity
in general and for some specific cases. In [4], the authors investigate
factor complexity of S-adic words generated by Arnoux–Rauzy–Poincaré
algorithm.

In this paper, we enlarge the classes of words with known factor

48



complexity by non-trivial letter-to-letter projections of k-ary Arnoux–Rauzy
words. Arnoux–Rauzy words were studied in [16] and later in [1]. Since
one can associate with every Arnoux–Rauzy word a so-called standard
word that admits an S-adic representation and has the same set of factors,
the sets of factors of Arnoux–Rauzy words belong to the class that can
be generated using S-adic rules. Thus, letter-to-letter projections of k-ary
Arnoux–Rauzy words can also be perceived as S-adic words.

In Section 3, we prove the following theorem saying that the factor
complexity of a non-trivial letter-to-letter image of an k-ary Arnoux-Rauzy
word u reaches its maximal order of growth which is given by the factor
complexity of u, i.e., we prove that the complexity is (k´ 1)n +O(1):

1.1 Theorem. Let u be an Arnoux–Rauzy word over A with #A ě 3. Let π be a
non-trivial letter-to-letter morphism of A. There exist integers N and q such that

Cπ(u)(n) = (#A´ 1) n + q

for all n greater than N.

In [17], the first author shows that another property of Arnoux–Rauzy
words is preserved when applying a specific morphism. Namely, it is
shown that letter-to-letter projections of ternary Arnoux–Rauzy words
are rich in palindromes, i.e., are saturated by palindromic factors to the
highest possible level as Arnoux–Rauzy words are. For another result on
morphic images of Arnoux–Rauzy words one may refer to [5].

2 Preliminaries

We recall needed notions from combinatorics on words and results on
Arnoux–Rauzy words.

2.1 Combinatorics on words

An alphabet A is a finite set of symbols, called letters. A finite word w =
w0w1 ¨ ¨ ¨wn´1 is a finite sequence of letters wi P A. The integer n is the
length of w and is denoted by |w|. The unique word of length 0 is the empty
word and is denoted by ε. The set of all finite words over A is denoted by
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A˚. An infinite word u = (ui)
+8
i=0 is an infinite sequence of letters ui P A.

The set of all infinite words over A is denoted by AN. Let p, v, s and w be
words such that w = pvs with p, v P A˚ and w, s P A˚ YAN. The word v
is said to be a factor of the word w, the word p is a prefix of w and s is its
suffix. Given an infinite word, the set of all its factors is denoted by L(u).
Thus, using this notation, the factor complexity of u can be expressed as

Cu(n) = # (L(u)XAn) .

Given a finite or infinite word u = u0u1u2 . . . with ui P A, the letter
having occurrence i in u (while indexing from 0) is denoted by u[i], i.e.,
u[i] = ui. The prefix of u of length n is denoted by u[:n] = u0u1 . . . un´1.
If w is a factor of u and i P N such that w = ui ¨ ¨ ¨ ui+|w|´1, then i is an
occurrence of w in u. An infinite word u is recurrent if every its factor has
infinitely many occurrences in u.

If w = w0 ¨ ¨ ¨wn´1 is a finite word, its reversal is the word

w = wn´1 ¨ ¨ ¨w0,

i.e., the word w read from the last letter to the first. A word w is a palindrome
if w = w.

If v, w, z are finite words such that vw = z, we also write w = v´1z and
v = zw´1.

A mapping σ : A˚ Ñ A˚ is a morphism if for all w, v P A˚ we have
σ(wv) = σ(w)σ(v). This allows us to naturally extend the domain of σ to
infinite words. We say that σ is prolongable on a P A if σ(a) = au for some
non-empty word u. As σn(a) is a prefix of σn+1(a) for all n, we can set
u = limnÑ+8 σn(a) = σω(a). Such a word u is a fixed point of σ and is
said to be purely morphic (or purely substitutive). If u is a purely morphic
word and τ : A˚ Ñ B˚ a morphism, then the word τ(u) is said to be
morphic.

Let u be an infinite word and w P L(u). We define the set of right
extensions of w as Rext(w) = {a P A : wa P L(u)}. If #Rext(w) ą 1, then w
is right special. The notion of left special is defined analogously. If w is both
left special and right special, it is bispecial. Counting the number of right
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extensions of all words of fixed length n leads to the following formula:

Cu(n + 1)´ Cu(n) = ∆(Cu(n)) = ∑
wPL(u)
|w|=n

(#Rext(w)´ 1) . (2.1)

Since if w is not right special, we have #Rext(w) = 1, the summand is
non-zero only if w is right special.

2.2 Arnoux–Rauzy words

In this subsection we recall the definition and needed properties of Arnoux–
Rauzy words.

Instead of giving the definition of an Arnoux–Rauzy word using S-adic
expansion (one can refer to [1] for k = 3 and to [3, 12] for larger alphabets),
we give a combinatorial definition. An infinite word u P AN is a k-ary
Arnoux–Rauzy word if #A = k, the word u is recurrent, and for each n
there is exactly one right special factor and one left special factor, both of
length n and having exactly k right respectively left extensions in u. In
fact, Arnoux–Rauzy words belong to the family of so-called episturmian
words as they are a generalization of Sturmian words. The reader may
refer to [10, 12] or to [2], where other generalizations of Sturmian words
are also investigated.

We list some properties of Arnoux–Rauzy words. Let u be a k-ary
Arnoux–Rauzy word over A. It follows from the definition that there
are no two distinct bispecial factors of the same length. Thus, we may
let (wi)

+8
i=0 be the sequence of all bispecial factors of u ordered by their

increasing length. This sequence has the following properties:

1. There exists a sequence ∆(u) = (δi)
+8
i=0 P AN such that for each i ą 0

we have wi = (wi´1δi´1)
(+) (2.2)

where v(+) is the shortest palindrome that has v as its prefix (the so-
called palindromic closure of the finite word v). The sequence ∆(u) is the
directive sequence of u.

2. For all i, the word wi is palindrome.
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3. For all i, the word wj is a suffix and a prefix of the word wi for all j ă i.
In particular, every suffix of wi is a right special factor.

4. Every letter of A occurs in ∆(u) infinitely many times.

The following lemma due to [11] states how one can evaluate the
palindromic closure in (2.2) while constructing the sequence (wi).

2.3 Lemma (Justin’s formula). If the letter δi occurs in δ0 ¨ ¨ ¨ δi´1, we set j
such that j ă i, δj = δi, and δi does not occur in δj+1 ¨ ¨ ¨ δi´1.

wi+1 =

{
wiδiwi if δi does not occur in δ0 ¨ ¨ ¨ δi´1;
wiw´1

j wi otherwise.

2.4 Example. Let A = {0, 1, 2} and let Ψ be a morphism over A determined
by 0 ÞÑ 01, 1 ÞÑ 02, and 2 ÞÑ 0.

Let uT be the fixed point of Ψ starting with 0:

u = 010201001020101020100102010201001020101020100102010 . . .

The word uT is probably the most famous Arnoux–Rauzy word — the
Tribonacci word. The sequence of its bispecial factors starts as follows:

w0 = ε,

w1 = 0,

w2 = 010,

w3 = 0102010,

w4 = 01020100102010,
...

It is known that the directive sequence of uT is ∆(uT) = 012012012 . . ..

3 Proofs

In this section, u stands for an Arnoux–Rauzy word over A with #A ě 3,
the sequence (wi)

+8
i=0 the sequence of all bispecial factors of u ordered by
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their increasing length and ∆(u) = (δi)
+8
i=0 is the directive word of u. The

morphism π is a non-trivial letter-to-letter morphism from A to B with
#B ą 1.

3.1 Definition. Let x P A. We define px : N Ñ N such that (px(n))8n=0 is
a strictly increasing sequence of all indices i such that δi = x. Furthermore,
for all i P N we define vi to be the word such that

wi+1 = wivi.

Let x P A. In accordance with Lemma 2.3, we have vpx(0) = xwpx(0)´1
(we set w´1 = ε). Let i ą 0. We have

wpx(i) = wpx(i)´1vpx(i)´1 = . . . = wpx(i´1)vpx(i´1)vpx(i´1)+1 ¨ ¨ ¨ vpx(i)´1.

This equality together with

wpx(i)+1 = wpx(i)w
´1
px(i´1)wpx(i),

which follows from Lemma 2.3, leads to

vpx(i) = vpx(i´1)vpx(i´1)+1 ¨ ¨ ¨ vpx(i)´1. (3.2)

The last equation ensures that the following definition is correct.

3.3 Definition. Let x P A. Let vx denote the infinite word given by

vx = lim
nÑ8 vpx(n).

3.4 Example (Example 2.4 continued). Since the directive word of the
Tribonacci word uT is purely periodic, we have

px(n) = 3n + x

for all x P {0, 1, 2}. We have

v0 = 0102 . . . ,

v1 = 1020 . . . ,

v2 = 2010 . . . .

3.5 Lemma. Let x, y P A with x ‰ y. There exists an integer N such that

π(vx[N]) ‰ π(vy[N]).
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Proof. If π(x) ‰ π(y), we set N = 0. Suppose π(x) = π(y).
Let i, j and k be integers such that

Ź px(i) ă k ă px(i + 1);

Ź py(j) ă k ă py(j + 1);

Ź π(δk) ‰ π(x).

Since every letter occurs infinitely many times in ∆(u), such a choice is
always possible.

Suppose without loss of generality that px(i) ă py(j). Using (3.2), we
obtain vpy(j+1) = vpy(j) ¨ ¨ ¨ vk ¨ ¨ ¨ vpy(j+1)´1.

Set s = vpy(j) ¨ ¨ ¨ vk´1, i.e., vpy(j+1) = svk ¨ ¨ ¨ vpy(j+1)´1.
Similarly, we obtain

vpx(i+1) = vpx(i) ¨ ¨ ¨ vpx(i+1)´1 = vpx(i) ¨ ¨ ¨ vpy(j)´1svk ¨ ¨ ¨ vpx(i+1)´1. (3.6)

As

wk = wpx(i)vpx(i)vpx(i)+1 ¨ ¨ ¨ vk´1 = wpx(i)vpx(i) ¨ ¨ ¨ vpy(j)´1s (3.7)

we obtain

wk = wk = s vpy(j)´1 ¨ ¨ ¨ vpx(i)wpx(i) = swpx(i)vpx(i) ¨ ¨ ¨ vpy(j)´1 (3.8)

since wpx(i)vpx(i) ¨ ¨ ¨ vpy(j)´1 = wpy(j) is a palindrome.
Let us now compare vpy(j+1)[|s|] and vpx(i+1)[|s|]. It follows from the

definition of s that vpy(j+1)[|s|] = δk. Comparing (3.7) and (3.6), we obtain

vpx(i+1)[|s|] = wk[|s|+ |wpx(i)|] = x

where the last equality follows from (3.8).
Thus,

π(vpy(j+1)[|s|]) = π(δk) ‰ π(x) = π(vpx(i+1)[|s|])
and the proof is finished.

An immediate corollary of the last lemma is that if we have two distinct
letters x and y, then the longest common prefix of π(vx) and π(vy) is a
finite word. This fact allows us to introduce the following notation.
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3.9 Definition. Let A1 Ă A with #A1 ě 2. We define the word vA1 to be
the longest common prefix of all the words of {π(vx) : x P A1}. Let nA1
denote its length, i.e., nA1 = |vA1 |.
3.10 Example (Example 3.4 continued). Let B = {a, b} and ξ : A˚ Ñ B˚ be
determined by

ξ(x) =
{

a for x P {0, 1}
b for x = 2.

We have

ξ(v0) = aaa . . . ,

ξ(v1) = aab . . . ,

ξ(v2) = baa . . . .

Thus, vA = v{0,2} = v{1,2} = ε and v{0,1} = aa.

3.11 Lemma. Let A1 Ă A with #A1 ě 2. If u P L(u) is right special, then
π(u)vA1 P L(π(u)) is right special.

Proof. There exists an integer n such that the right special factor u is a
suffix of wi for all i ą n. Thus, since for all i ą n the word wivi is a factor
of u, we conclude that up is a factor of u for all prefixes p of vx for any
x P A1. In particular, we obtain that π(u)vA1 is a factor of π(u).

The definition of vA1 also implies that there exist letters x, y P A1 such
that π(vx[nA1 ]) ‰ π(vy[nA1 ]). It implies that π(u)vA1 is right special as
π(vx[nA1 ]) and π(vy[nA1 ]) are its right extensions in π(u).

3.12 Lemma. Let A1 and A2 be subsets of A of cardinality at least 2 such
that vA1 ‰ vA2 . There exist right special factors u1, u2 P L(u) such that
|π(u1)vA1 | = |π(u2)vA2 | and π(u1)vA1 ‰ π(u2)vA2 .

Proof. If nA1 = nA2 , then we may set u1 = u2 = ε and the claim follows
from the assumption vA1 ‰ vA2 .

Suppose without loss of generality that nA2 ą nA1 and let u be the right
special factor of u of length nA2 ´ nA1 . Let a = π(u[0]) and find x P A
such that π(x) ‰ a. As u is an Arnoux–Rauzy word, we have ux P L(u).
Since the directive word of u contains every letter infinitely many times,
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the factor ux is a factor of wj for some j. Thus, we may let u2 be a right
special factor of u such that ux is its prefix. Let u1 be the right special
factor of u such that |u1|+ nA1 = |u2|+ nA2 , i.e., |π(u1)vA1 | = |π(u2)vA2 |.
Clearly, |u1| ą |u2| and thus u2 is a suffix of u1.

We have (
π(u1)vA1

)
[|u|] = π(u[0]) = a

and (
π(u2)vA2

)
[|u|] = π(x) ‰ a

which implies π(u1)vA1 ‰ π(u2)vA2 .

3.13 Definition. Let A1 Ă A with #A1 ě 2. We define

γ(A1) = #{π(vx[nA1 ]) : x P A1}´ 1.

The reason for the definition of the mapping γ is the following fact
that is used later together with (2.1) to evaluate a bound on the factor
complexity of π(u): for a right special factor u P L(u) we have

#Rext(π(u)vA1)´ 1 ě γ(A1). (3.14)

We will be interested in right special factors of the form π(u)vA1 . As
there may be distinct subsets A1 and A2 of A such that vA1 = vA2 , we
use the following definition to evaluate correctly the number of right
extensions of such right special factors of π(u).

3.15 Definition. Let Ã be the maximal subset of 2A such that

1. @A1 P Ã, #A1 ě 2;

2. @A1 P Ã, @x P AzA1, vA1Y{x} ‰ vA1 .

3.16 Example (Example 3.10 continued). We have Ã = {A, {0, 1}}.

3.17 Lemma. ∑
A1PÃ

γ(A1) = #A´ 1

Proof. Let us first construct a rooted tree T. The vertices of T are given by
Ã. The root is A. The set A1 P Ã is a descendant of A2 P Ã if and only if
A1 ( A2.
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We first give some properties of T. If A1 is a child of A2, then there is
no set A3 P Ã such that A1 ( A3 ( A2. Also, A1 is a descendant of A2 if
and only if vA2 is a prefix of vA1 .

Let A1 P Ã and let A1 and A2 be its children with A1 ‰ A2. The
definition of Ã and A1 ‰ A2 imply that vA1 ‰ vA2 . Suppose that there
exists a letter x P A1 XA2. It implies that both vA1 and vA2 are prefixes
of π(vx). Thus, vA1 is a prefix of vA2 or vice versa. Therefore either A1
or A2 is not a child of A1 which is a contradiction. We conclude that
A1 XA2 = H.

Let A10 denote the following subset of A1:
A10 = {x P A1 : @y P A1z{x}, π(vx[nA1 ]) ‰ π(vy[nA1 ])}.

In other words, the set A10 consists of all letters of A1 that are not elements
of any of the children of A1. Therefore, we can write

A1 = A10 Y ⋃

A2 is a child of A1
A2

where all the sets are disjoint, i.e.,

#A0 + ∑
A2 is a child of A1

#A2 = #A1. (3.18)

Let h(A1) denote the height of the vertex A1, i.e., the length of a longest
path to a descendant leaf from A1. Using the following notation

S(A1) = ∑
A2PÃ
A2ĂA1

γ(A2)

we will show by induction on h(A1) that S(A1) = #A1 ´ 1.
Let A1 be a vertex of height 0, i.e., a leaf of in T. We have

S(A1) = γ(A1).
The fact that A1 is a leaf implies that for all distinct x and y of A1 we have
π(vx[nA1 ]) ‰ π(vy[nA1 ]) as otherwise {x, y} would be a subset of some
descendant of A1. Thus,

#{π(vx[nA1 ]) : x P A1} = #A1

and the definition of γ(A1) gives γ(A1) = #A1 ´ 1.
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Let n P N and suppose the claim holds for all i ă n. Let h(A1) = n.
We obtain S(A1) = γ(A1) + ∑

A2 is a child of A1
S(A2).

Since the height of a child of A1 is strictly less than h(A1), we use the
induction hypothesis and obtain

S(A1) = γ(A1) + ∑
A2 is a child of A1

(
#A2 ´ 1

)
.

It remains to evaluate γ(A1). We obtain

γ(A1) = #{π(vx[nA1 ]) : x P A1}´ 1 = #A10 + C´ 1

where C is the number of children of A1. Thus,

S(A1) = #A10 + C´ 1 + ∑
A2 is a child of A1

(
#A2

)´ C.

Using (3.18) we conclude that

S(A1) = #A1 ´ 1.

To finish the proof of the lemma, it suffices to evaluate S(A).

3.19 Lemma. There exists an integer n0 such that for all n ě n0 we have

∑
wPL(π(u))

w is right special
|w|=n

(#Rext(w)´ 1) ě #A´ 1.

Proof. As u is an Arnoux–Rauzy word, there is exactly one right special
factor of length n for each n P N. Thus we may set z to be the left-infinite
word such that all its suffixes are right special factors of u. We associate
with each A1 P Ã the left-infinite word ζ(A1) = π(z)vA1 . By Lemma 3.11,
each suffix of ζ(A1) is right special in π(u). Let sn,A1 be the suffix of length
n of ζ(A1). Set

n0 = min{n : @A1,A2 P Ã,A1 ‰ A2, sn,A1 ‰ sn,A2}.

The existence of the integer n0 is guaranteed by Lemma 3.12.
Since for all n ě n0, the factor sn,A1 is distinct from sn,A2 if A1 ‰ A2 P Ã,
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we conclude, using (3.14), that if n ě n0, then

∑
wPL(π(u))

w is right special
|w|=n

(#Rext(w)´ 1) ě ∑
A1PÃ

(
#Rext(sn,A1)´ 1

) ě ∑
A1PÃ

γ(A1) = #A´ 1

where the last equality follows from Lemma 3.17.

Proof of Theorem 1.1. Let us restate the claim of Lemma 3.19 using (2.1):
there exists an integer n0 such that for all n ě n0 we have

∆Cπ(u)(n) ě #A´ 1.

As π is a letter-to-letter morphism, we have

Cπ(u)(n) ď Cu(n) = (#A´ 1)n + 1

for all n.
Therefore, ∆Cπ(u)(n) ą #A´ 1

can happen only for finitely many n. This implies that there exists an
integer N such that ∆Cπ(u)(n) = #A´ 1

for all n ě N, i.e., Cπ(u)(n) = (#A´ 1) n + q

for all n ě N for some integer q.

3.20 Example (Example 3.16 continued). One can show that there are exactly
two right special factors in ξ(uT) of fixed length at least 4 and they are of
the form

ξ(u1)vA or ξ(u2)v{0,1}

where u1 and u2 are right special factors of uT . Examining shorter factors,
one can verify that

Cξ(uT)
(n) =

{
n + 1 if n ă 4
2n´ 3 if n ě 4

.
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