2,977 research outputs found

    On the decoder error probability for Reed-Solomon codes

    Get PDF
    Upper bounds On the decoder error probability for Reed-Solomon codes are derived. By definition, "decoder error" occurs when the decoder finds a codeword other than the transitted codeword; this is in contrast to "decoder failure," which occurs when the decoder fails to find any codeword at all. These results imply, for example, that for a t error-correcting Reed-Solomon code of length q - 1 over GF(q), if more than t errors occur, the probability of decoder error is less than 1/t!

    On the decode error probability for Reed-Solomon codes

    Get PDF
    Upper bounds on the decoder error probability for Reed-Solomon codes are derived. By definition, decoder error occurs when the decoder finds a codeword other than the transmitted codeword; this is in contrast to decoder failure, which occurs when the decoder fails to find any codeword at all. The results imply, for example, that for a t error correcting Reed-Solomon code of length q - 1 over GF(q), if more than t errors occur, the probability of decoder error is less than 1/t! In particular, for the Voyager Reed-Solomon code, the probability of decoder error given a word error is smaller than 3 x 10 to the minus 14th power. Thus, in a typical operating region with probability 100,000 of word error, the probability of undetected word error is about 10 to the minus 14th power

    More on the decoder error probability for Reed-Solomon codes

    Get PDF
    The decoder error probability for Reed-Solomon codes (more generally, linear maximum distance separable codes) is examined. McEliece and Swanson offered an upper bound on P sub E (u), the decoder error probability given that u symbol errors occurs. This upper bound is slightly greater than Q, the probability that a completely random error pattern will cause decoder error. By using a combinatoric technique, the principle of inclusion and exclusion, an exact formula for P sub E (u) is derived. The P sub e (u) for the (255, 223) Reed-Solomon Code used by NASA, and for the (31,15) Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the P sub E (u)'s are observed to approach the Q's of the codes rapidly as u gets larger. An upper bound for the expression is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P sub E (u) indeed approaches Q as u becomes large, and some laws of large numbers come into play

    Performance Analysis of Algebraic Soft-Decision Decoding of Reed-Solomon Codes

    Get PDF
    We investigate the decoding region for Algebraic Soft-Decision Decoding (ASD) of Reed-Solomon codes in a discrete, memoryless, additive-noise channel. An expression is derived for the error radius within which the soft-decision decoder produces a list that contains the transmitted codeword. The error radius for ASD is shown to be larger than that of Guruswami-Sudan hard-decision decoding for a subset of low-rate codes. We then present an upper bound for ASD's probability of error, where an error is defined as the event that the decoder selects an erroneous codeword from its list. This new definition gives a more accurate bound on the probability of error of ASD. We also derive an estimate of the error-correction radius under multivariate interpolation decoding of a recent generalization of Reed-Solomon codes by F. Parvaresh and A. Vardy

    The undetected error probability for Reed-Solomon codes

    Get PDF
    This paper is an extension of a recent paper by McEliece and Swanson dealing with the decoder error probability for Reed-Solomon codes {more generally, linear MDS codes). McEliece and Swanson offered an upper bound on P_E(u), the decoder error probability given u symbol errors occur. In this paper, by using combinatoric technique like the principle of inclusion and exclusion, an exact formula for P_E(u) is derived. The P_E(u) of an MDS code is observed to approach Q rapidly as u gets large, where Q is the probability that a compltely random error pattern will cause decoder error. An upper bound for the expression │P_E(u)/Q-1│ is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P_E(u) indeed approaches Q as u becomes large, and some laws of large number come info play somehow

    Iterative Algebraic Soft-Decision List Decoding of Reed-Solomon Codes

    Get PDF
    In this paper, we present an iterative soft-decision decoding algorithm for Reed-Solomon codes offering both complexity and performance advantages over previously known decoding algorithms. Our algorithm is a list decoding algorithm which combines two powerful soft decision decoding techniques which were previously regarded in the literature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding algorithm and belief-propagation based on adaptive parity check matrices, recently proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we present a belief-propagation based algorithm with a significant reduction in computational complexity. We introduce the concept of using a belief-propagation based decoder to enhance the soft-input information prior to decoding with an algebraic soft-decision decoder. Our algorithm can also be viewed as an interpolation multiplicity assignment scheme for algebraic soft-decision decoding of Reed-Solomon codes.Comment: Submitted to IEEE for publication in Jan 200

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Decoding Reed-Muller codes over product sets

    Get PDF
    We give a polynomial time algorithm to decode multivariate polynomial codes of degree dd up to half their minimum distance, when the evaluation points are an arbitrary product set SmS^m, for every d<Sd < |S|. Previously known algorithms can achieve this only if the set SS has some very special algebraic structure, or if the degree dd is significantly smaller than S|S|. We also give a near-linear time randomized algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d0d 0. Our result gives an mm-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.Comment: 25 pages, 0 figure
    corecore